317-323 (September 25, 1963) Paper Chromatographic Survey Of

Total Page:16

File Type:pdf, Size:1020Kb

317-323 (September 25, 1963) Paper Chromatographic Survey Of Bot. Mag. Tokyo 76: 317-323(September 25, 1963) Paper Chromatographic Survey of Anthocyanins in Gladiolus-Flowers I by Mannen SHIBATA* and Masayoshi NOZAKA*°** ReceivedJuly 17, 1963 In the course of their analytical experiments on anthocyanins occurring in a variety of flowers, Robinson and Robinsonl' described that a salmon-pink variety of gladiolus (Gladiolus gandavensis) contains pelargonidin-3, 5-dimonoside, which is ac- companied in some cases by a small amount of cyanidin or peonidin derivatives, as seen in "Flaming Sword ". Moreover, they stated that scarlet variety (e. g. " Scaretta ") produces pelargonidin -3-bioside, crimson variety cyanidin-3,5-dimonside (distribution number 0), and purple red variety (e.g. "Jacob von Bengeren ") forms malvidin-3,5-dimonoside. So far as we are aware, this is the one and only report that has appeared on anthocyanin components in gladiolus-flowers. The present study aims at a comprehensive survey of anthocyanins appearing in a great number of garden varieties of gladiolus chiefly by means of paper chromatographic analysis. Materials and methods The flowers of ten garden varieties of gladiolus were examined in this experi- ment. They were obtained from Sakata Nursery Co., Ltd. in Yokohama, and grown in the garden of senior author (M. S.). Their names and flower colours are shown in Table 1. Analytical experiments were carried out according to the method that was pre- viously applied for the study of tulip flowers2'. Chromatographic separation of individual anthocyanins was effected by the one-dimensional ascending procedure on Toyo No. 52 filter paper (40X 40 cm) at 28±10 in an incubator, using the solvents as shown in Table 2, Table 1. Plant names and flower colours used for experiments. 318 Bot. Mag. Tokyo Vol. 76 Table 2. Designation and composition of the solvents used for chromatographic irrigation. Collection of flower materials and extraction of anthocyanins : Early in July, 1962, two or three stalks bearing several flowers in each were collected and treated immediately in the following way: Fresh perianths were extracted with cold, 1 per cent methanolic hydrochloric acid (ca. 10 nil per perianth) overnight. The filtered solution was concentrated under reduced pressure at room temperature and stored in a refrigerator. Mass paper chromatographic separation and determination of Rf-values of com- ponent anthocyanins : Individual anthocyanins, which were separated into several colour-bands by means of mass paper chromatography (one-dimensional, ascending procedure), were subjected to colorimetric estimation of their amounts on the chro- matogram. Each of the colour bands was cut off and eluted in a separate manner with 1 per cent methanolic hydrochloric acid. With these eluates, Rf-values were measured as usual. In these cases, authentic specimens (pelargonin, cyanin, chry- santhemin, keracyanin, delphin, tulipanin, delphinidin 3-monoglucoside (synthetic), etc.) were used for co-chromatographic purpose. Hydrolysis of anthocyanins and determination of the products were carried out in the same way as described in the previous report2' . Results A. Determination of the anthocyanins : The present survey has revealed that at least seven kinds of anthocynin are present in the flowers of ten gladiolus varie- ties, each containing 2-5 (mostly 2-3) kinds of anthocyanin. According to their Rf- values and colour shades on the chromatogram, the anthocyanin spots were designated tentatively as A1, A2, A3, A4, A5, A6 and A7, as shown in Table 3. Table 3. The Rf-values and colours of anthocyanins obtained by irrigation with BuH. i i i B. Determination of the anthocyanidins (aglycones) : The anthocyanidins obtained by acid hydrolysis of individual anthocyanins were chromatographed, and the Rf- September, 1963 SHIBATA, M, and NOZAKA, M. 319 Table 4. Comparison of RI-values of authentic specimens with those of gladiolus pigments. values and colours on the chromatograms were carefully compared with those of authentic specimens run in parallel (Table 4). From Table 4, it is indicated that Al and A3 are glycosides of pelargonidin, As and A7 are glycosides of delphinidin, A2 belongs to peonidin glycoside, A4 to malvidin glycoside, and A5 to cyanidin gly- coside. In general, it appears that glycosides of pelargonidin occur most frequently, cyanidin and malvidin less frequently, and those of peonidin occur only rarely. C. Determination of the organic acids and sugars: a. Organic acids: All an- thocyanin solutions were saponified by potassium hydroxide in an atmosphere of hydrogen as usual. In every case saponified and unsaponified samples gave the same Rf-value. Moreover, it was also ascertained that ester combination with organic acid is not involved in any of the anthocyanins examined. b. Sugars involved in glycosidation : From the results of the present experi- ment, it was shown that sugar moieties in gladiolus-anthocyanins were glucose and rhamnose. In seven kinds of anthocyanins examined, two anthocyanins (A1 and A2) liberated both glucose and rhamnose, while the remaining five anthocyanins (A3- A7) gave glucose alone. Discussion According to the present survey, at least seven kinds of anthocyanin are present in common garden varieties of gladiolus, as shown in Table 5. Here, a brief discussion will be made on the chemical nature of individual pigments. A 1-anthocyanin (Rf =0.61 with BuH, orange red in colour) is composed of pelar- gonidin, glucose and rhamnose. Probably, this is pelargonidin 3-rhamnoglucoside, which has been known to occur in bracts of poinsettia3' and in flowers of tulip2' . On irrigation with BuAA, it gives Rf-value, 0.36, which is identical with the value already obtained by Harborne4' . As yet, crystallization has not been achieved in our laboratory. A2-anthocyanin (RI =0.50 with BuH, reddish pink in colour) is made up of peo- nidin, glucose and rhamnose. RI-value with BuAA is 0.22. This agrees with the value, which has been given for peonidin-3-rhamnoglucosido-5-glucoside by Harborne4'. A~-anthocyanin (Rf =0.36 with BuH, orange yellow in colour) is composed of pelargonidin and glucose. Up to present, three kinds of pelargonidin have been described in literature, whose Rf-values are as follows: pelargonin (pelargonidin 3,5- diglucoside) 0.42 with BuH, callistephin (pelargonidin-3-glucoside) 0.384' (with n-butanol/ 320 Bot. Mag. Tokyo Vol. 76 September, 1963 SHIBATA, M., and NozAKA, M. 321 2N hydrochloric acid, 1:1, v/v, Whatman No. 1 filter paper, by one-dimensional des- cending method), and raphanusin (pelargonidin-3-diglucosido-5-glucoside) 0.395 with BuH. The Rf-values of A3-anthocyanin were 0.36 with BuH, 0.25 with BuAA and 0.67 with AAH, respectively. These values agree with those described by Harborne4~. So far as the present experiments are concerned, Aa-anthocyanin seems to be either pelargonidin-3-diglucosido-5-glucoside (raphanusin) or pelargonidin-3-triglucoside, chiefly as regards its colour, Rf -values, etc. A4-anthocyanin (Rf =0.32 with BuH, mauve in colour) is composed of malvidin Table 6. Identification of anthocyanins in gladiolus-flowers 322 Bot. Mag. Tokyo Vol. 76 and glucose. The Rf-value (0.32 with BuH) and colour of this pigment are identical with those of authentic malvin (malvidin 3,5 diglucoside) run in parallel. A5-anthocyanin (RI =0.27 with BuH, magenta in colour) is composed of cyanidin and glucose. RI-value is 0.27 on irrigation with BuH, being completely in agreement with that of cyanin (cyanidin 3,5-diglucoside). A6-anthocyanin (RI =0.16 with BuH, purple in colour) is made up of delphinidin and glucose. In anthocyanins being composed of delphinidin and glucose only, myrtillin-a71 (delphinidin-3-monoglucoside) and delphin (=hyacin)6~ (delphinidin 3,5- diglucoside) have been known, and the RI-values obtained with BuH are 0.27 for the former and 0.16 for the latter. The RI-values for A6-anthocyanins were determined as 0.16 with BuH, and 0.11 with BuAA. Delphin also showed quite identical values on parallel run. A7-anthocyanin (RI =0.12 with BuH, purple in colour) has not been described previously. This is shown to be composed of delphinidin and glucose alone, similar to the case of As-anthocyanin. However, both pigments may be distinguished by their absorption maxima (515-516 mp for A7 and 533-534 m~c for A6). A7 is a new delphinidin derivative, probably belonging to a class of delphinidin triglucoside. From these considerations seven anthocyanins occurring in a variety of gladiolus- flowers may be characterized as follows: A1: Pelargonidin-E-gluccse+rhamnose (unnamed, pelargonidin-3-rhamnoglucoside). A2: Peonidin + glucose + rhamnose (unnamed, peonidin-3-rhamnoglucosido-5-glu- coside). A3: Pelargonidin+glucose (raphanusin, pelargonidin-3-diglucosido-5-glucoside). A4: Malvidin + glucose (m alvin, malvidin-3, 5-diglucoside). A5: Cyanidin + glucose (cyanin, cyanidin-3,5-diglucoside). A6: Delphinidin+glucose (delphin, delphinidin-3,5-diglucoside). A7: Delphinidin+glucose (unnamed, delphinidin-triglucoside) The kinds and amounts of these pigment components which were found in flowers of common garden varieties of gladiolus were summarized in Table 6. The authors beg to acknowledge many thanks to Prof. K. Hayashi (Tokyo Uni- versity of Education) for supplying authentic specimens of peonidin and malvidin. Summary Anhhocyanins appearing in ten garden varieties of gladiolus (Gladiolus gandaven- sis) were paper chromatographically investigated. Individual pigments in flowers were separated from each other by mass paper chromatographic means in sufficient purity. Tests for hydrolysates, i.e. anthocyanidin, sugar and organic acid were also carried out by the same procedure. In consequence, seven anthocyanins have been detected and identified as follows : pelargonidin-3-rhamnoglucoside, peonidin-3-rham- noglucosido-5-glucoside, delphinidin triglucoside (these three have never been isolated in crystals), pelargonidin-3-diglucosido-5-glucoside (raphanusin), malvidin-3,5-diglucoside (malvin), delphinidin-3,5-diglucoside (delphin) and cyanidin-3,5-diglucoside (cyanin). No acylation is involved in these pigments. Every varities contain 2-5 (mostly 2-3) kinds of anthocyanin, in general.
Recommended publications
  • Absorption of Anthocyanin Rutinosides After Consumption of a Blackcurrant (Ribes Nigrum L.) Extract
    Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant ( Ribes nigrum L.) Extract. Item Type Article Authors Röhrig, Teresa; Kirsch, Verena; Schipp, Dorothea; Galan, Jens; Richling, Elke Citation J Agric Food Chem. 2019 Jun 19;67(24):6792-6797. doi: 10.1021/ acs.jafc.9b01567. Epub 2019 Jun 10. DOI 10.1021/acs.jafc.9b01567 Publisher American Chemical Society Journal Journal of agricultural and food chemistry Rights Attribution-NonCommercial-ShareAlike 4.0 International Download date 07/10/2021 06:54:22 Item License http://creativecommons.org/licenses/by-nc-sa/4.0/ Link to Item http://hdl.handle.net/10033/621879 This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: J. Agric. Food Chem. 2019, 67, 6792−6797 pubs.acs.org/JAFC Absorption of Anthocyanin Rutinosides after Consumption of a Blackcurrant (Ribes nigrum L.) Extract † ∥ ⊥ † ‡ § † Teresa Röhrig, , , Verena Kirsch, Dorothea Schipp, Jens Galan, and Elke Richling*, † Division of Food Chemistry and Toxicology, Department of Chemistry, Technische Universitaet Kaiserslautern, Erwin-Schroedinger-Strasse 52, D-67663 Kaiserslautern, Germany ‡ ds-statistik.de, Pirnaer Strasse 1, 01824 Rosenthal-Bielatal, Germany § Specialist in Inner & General Medicine, Hochgewanne 19, 67269 Gruenstadt, Germany *S Supporting Information ABSTRACT: The dominant anthocyanins in blackcurrant are delphinidin-3-O-rutinoside and cyanidin-3-O-rutinoside. Data on their absorption and distribution in the human body are limited. Therefore, we performed a human pilot study on five healthy male volunteers consuming a blackcurrant (Ribes nigrum L.) extract. The rutinosides and their degradation products gallic acid and protocatechuic acid were determined in plasma and urine.
    [Show full text]
  • (Piper Nigrum L.) Products Based on LC-MS/MS Analysis
    molecules Article Nontargeted Metabolomics for Phenolic and Polyhydroxy Compounds Profile of Pepper (Piper nigrum L.) Products Based on LC-MS/MS Analysis Fenglin Gu 1,2,3,*, Guiping Wu 1,2,3, Yiming Fang 1,2,3 and Hongying Zhu 1,2,3,* 1 Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; [email protected] (G.W.); [email protected] (Y.F.) 2 National Center of Important Tropical Crops Engineering and Technology Research, Wanning 571533, China 3 Key Laboratory of Genetic Resources Utilization of Spice and Beverage Crops, Ministry of Agriculture, Wanning 571533, China * Correspondence: [email protected] (F.G.); [email protected] (H.Z.); Tel.: +86-898-6255-3687 (F.G.); +86-898-6255-6090 (H.Z.); Fax: +86-898-6256-1083 (F.G. & H.Z.) Received: 16 July 2018; Accepted: 7 August 2018; Published: 9 August 2018 Abstract: In the present study, nontargeted metabolomics was used to screen the phenolic and polyhydroxy compounds in pepper products. A total of 186 phenolic and polyhydroxy compounds, including anthocyanins, proanthocyanidins, catechin derivatives, flavanones, flavones, flavonols, isoflavones and 3-O-p-coumaroyl quinic acid O-hexoside, quinic acid (polyhydroxy compounds), etc. For the selected 50 types of phenolic compound, except malvidin 3,5-diglucoside (malvin), 0 L-epicatechin and 4 -hydroxy-5,7-dimethoxyflavanone, other compound contents were present in high contents in freeze-dried pepper berries, and pinocembrin was relatively abundant in two kinds of pepper products. The score plots of principal component analysis indicated that the pepper samples can be classified into four groups on the basis of the type pepper processing.
    [Show full text]
  • Effects of Anthocyanins on the Ahr–CYP1A1 Signaling Pathway in Human
    Toxicology Letters 221 (2013) 1–8 Contents lists available at SciVerse ScienceDirect Toxicology Letters jou rnal homepage: www.elsevier.com/locate/toxlet Effects of anthocyanins on the AhR–CYP1A1 signaling pathway in human hepatocytes and human cancer cell lines a b c d Alzbeta Kamenickova , Eva Anzenbacherova , Petr Pavek , Anatoly A. Soshilov , d e e a,∗ Michael S. Denison , Michaela Zapletalova , Pavel Anzenbacher , Zdenek Dvorak a Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 11, 783 71 Olomouc, Czech Republic b Institute of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic c Department of Pharmacology and Toxicology, Charles University in Prague, Faculty of Pharmacy in Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic d Department of Environmental Toxicology, University of California, Meyer Hall, One Shields Avenue, Davis, CA 95616-8588, USA e Institute of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic h i g h l i g h t s • Food constituents may interact with drug metabolizing pathways. • AhR–CYP1A1 pathway is involved in drug metabolism and carcinogenesis. • We examined effects of 21 anthocyanins on AhR–CYP1A1 signaling. • Human hepatocytes and cell lines HepG2 and LS174T were used as the models. • Tested anthocyanins possess very low potential for food–drug interactions. a r t i c l e i n f o a b s t r a c t
    [Show full text]
  • 1 Anthocyanin Based Blue Colorants THESIS
    Anthocyanin Based Blue Colorants THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Neda Ahmadiani Graduate Program in Food Science and Nutrition The Ohio State University 2012 Master’s Examination Committee: Dr. M. Monica Giusti, Advisor Dr. Sheryl Barringer Dr. Melvin Pascall 1 Copyrighted by Neda Ahmadiani 2012 2 ABSTRACT Anthocyanins are a group of natural pigments extensively found in nature. Two main functions of these compounds are their ability to elicit different colors and to impart health benefits. Color is an essential part of the identity of foods and can affect the products’ success in the market. The food industry is searching for natural alternatives to the use of synthetic dyes. A particularly difficult challenge has been finding a natural blue that can replace synthetic FD&C Blue colorants. Some anthocyanins, under neutral to alkaline conditions can turn blue; however, the shades and stability of the blue color highly depends on the source. The aim of this study was to identify and increase our understanding of anthocyanin-based blue colorants from edible materials that can closely match the color characteristics of synthetic FD&C Blue colorants. To achieve this objective, anthocyanins from edible materials as well as commercial extracts were evaluated in regards to color and stability under a wide range of pH. Antocyanins from Baby Indian, Italian, and American eggplant, known to be delphinidin derivatives, were extracted. Delphinidin has three hydroxyl groups on its B-ring expected to cause a bathochromic shift and yield a blue hue.
    [Show full text]
  • WO 2011/086458 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... _ 21 July 2011 (21.07.2011) WO 2011/086458 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61L 27/20 (2006.01) A61L 27/54 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/IB20 11/000052 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 13 January 201 1 (13.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 12/687,048 13 January 2010 (13.01 .2010) US (84) Designated States (unless otherwise indicated, for every 12/714,377 26 February 2010 (26.02.2010) US kind of regional protection available): ARIPO (BW, GH, 12/956,542 30 November 2010 (30.1 1.2010) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): AL- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, LERGAN INDUSTRIE, SAS [FR/FR]; Route de EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Promery, Zone Artisanale de Pre-Mairy, F-74370 Pringy LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (FR).
    [Show full text]
  • A Biochemical Survey of Some Mendelian Factors for Flower Colour
    A BIOCHEMICAL 8UP~VEY OF SOME MENDELIAN FACTOI%S FO].~ FLOWEP~ COLOU~. BY ROSE SCOTT-MONCI~IEFF. (John Inncs Horticultural Institution, London.) (With One Text-figure.) CONTENTS. PAGE P~rb I. Introductory ].17 (a) The plastid 1)igmenl~s ] 21 (b) The a,n~hoxan~hius: i~heir backgromld, co-pigment and interaction effecbs upon flower-colour v~ri~bion 122 (c) The ani~hocyauins ] 25 (c) Col[oidM condition . 131 (f) Anthoey~nins as indic~bors 132 (g) The source of tim ~nl;hoey~nins 133 ]?ar[ II, Experimental 134 A. i~ecen~ investigations: (a) 2Prim,ula si,sensis 134- (b) Pa,l)aver Rhoeas 14.1 (c) Primuln aca.ulis 147 (d) Chc.l)ranth'ss Chci,rl 148 (e) ltosa lmlyanlha . 149 (f) Pelargonium zomdc 149 (g) Lalh,ymts odor~,l,us 150 (h) Vcrbom, hybrids 153 (i) Sl;'e2)loca~'])uG hybrids 15~ (j) T'rol)aeolu,m ,majors ] 55 ]3. B,eviews of published remflts of bhe t~u~horand o~hers.. (a) Dahlia variabilis (Lawreuce and Scol,~-Monerieff) 156 (b) A.nlb'rhinum majors (Wheklalo-Onslow, :Basseb~ a,nd ,~cobb- M.oncrieff ) 157 (c) Pharbilis nil (I-Iagiwam) . 158 (d) J/it& (Sht'itl.er it,lid Anderson) • . 159 (e) Zect d]f.ctys (~&udo, Miiner trod 8borl/lall) 159 Par~, III. The generM beh~wiour of Mendelian £acbors rot' flower colour . 160 Summary . 167 tLefermmes 168 I)AI~T I. II~TI~O])UOTOnY. Slm~C~ Onslow (1914) m~de the first sfudy of biochemica] chal~ges in- volved in flower-eolour va,riadon, our pro'ely chemical knowledge of bhe 118 A Bio&emical Su~'vey oI' Factor's fo~ • Flowe~' Colou~' anthocya.nin pigments has been considerably advanced by the work of Willstgtter, P~obinson, Karrer and their collaborators.
    [Show full text]
  • Ep 3138585 A1
    (19) TZZ¥_¥_T (11) EP 3 138 585 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.03.2017 Bulletin 2017/10 A61L 27/20 (2006.01) A61L 27/54 (2006.01) A61L 27/52 (2006.01) (21) Application number: 16191450.2 (22) Date of filing: 13.01.2011 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Gousse, Cecile GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO 74230 Dingy Saint Clair (FR) PL PT RO RS SE SI SK SM TR • Lebreton, Pierre Designated Extension States: 74000 Annecy (FR) BA ME •Prost,Nicloas 69440 Mornant (FR) (30) Priority: 13.01.2010 US 687048 26.02.2010 US 714377 (74) Representative: Hoffmann Eitle 30.11.2010 US 956542 Patent- und Rechtsanwälte PartmbB Arabellastraße 30 (62) Document number(s) of the earlier application(s) in 81925 München (DE) accordance with Art. 76 EPC: 15178823.9 / 2 959 923 Remarks: 11709184.3 / 2 523 701 This application was filed on 29-09-2016 as a divisional application to the application mentioned (71) Applicant: Allergan Industrie, SAS under INID code 62. 74370 Pringy (FR) (54) STABLE HYDROGEL COMPOSITIONS INCLUDING ADDITIVES (57) The present specification generally relates to hydrogel compositions and methods of treating a soft tissue condition using such hydrogel compositions. EP 3 138 585 A1 Printed by Jouve, 75001 PARIS (FR) EP 3 138 585 A1 Description CROSS REFERENCE 5 [0001] This patent application is a continuation-in-part of U.S.
    [Show full text]
  • Anthocyanin Pigments in Redbud (Cercis Spp) Flowers
    Veazie et al. J Hortic Sci Res 2017, 1(1):13-18 DOI: 10.36959/745/393 | Volume 1 | Issue 1 Journal of Horticultural Science and Research Research Article Open Access Anthocyanin Pigments in Redbud (Cercis spp) Flowers Penelope Perkins-Veazie*, Guoying Ma and Dennis Werner Department of Horticultural Science, Plants for Human Health Institute, North Carolina State University, USA Abstract Redbud (Cercis spp.) is used as a spring flowering ornamental tree and is found wild in much of North America. Typically flowers are light purple although there are selected cultigens that are white, rose, or red-purple. Flowers from cultigens common to the eastern U.S. and from wild Eastern redbud (C. canadensis) were collected and tested for color and anthocyanin pigment composition. The anthocyanins cyanidin 3-glucoside, petunidin 3-glucoside, peonidin 3-glucoside, and malvidin 3-glucoside were most aboundant in purple, rose, and red-purple redbud flowers and total anthocyanin content was 2263 to 8730 mg.kg DW-1. Small amounts of delphinidin, cyanidin, and petunidin 3, diglucosides were also present. Most of the typical purple-flowered redbuds contained cyanidin 3-glucoside as the dominant pigment, while the red-purple flowered ‘Appalachian Red’ and ‘Crosswicks Red’ contained malvidin 3,5-diglucoside as the dominant anthocyanin. An unknown anthocyanin was present in all redbud flowers, and was higher in the red-purple flowered phenotypes. These results show that the color of redbud flowers is from anthocyanins, predominantly cyanidin 3-glucoside and malvidin 3,5-diglucoside, with malvidin 3,5-diglucoside as the primary pigment in red-purple flowers and cyanidin 3-glucoside dominant in purple flowers.
    [Show full text]
  • Anthocyanin Biosynthesis 21421.Pdf
    Anthocyanin Biosynthesis – https://www.kegg.jp/kegg-bin/highlight_pathway?scale=1.0&map=map00942&keyword=flavonoids Anthocyanidins (aglycones) and anthocyanins (glycosides) are common plant pigments and belong to a structural subclass of flavonoids characterized by a 2- phenylbenzopyrylium unit. They are derived along the flavonoid modification pathways and further separated into three types, pelargonidin, cyanidin, and delphinidin, due to the different number of hydroxyl groups in the phenyl group. (Flavonoid Biosynthesis) -> [1,2,3] 1) Pelargonidin -> anthocyanidin 3-O-glucosyltransferase -> Pelargonidin 3-O- glucoside -> [1,2,3,4,5,6,7] 1) anthocyanin 3-O-glucoside-6’’-O- malonyltransferase -> Pelargonidin 3-O-(6-O-malonyl-beta-D-glucoside) -> anthocyanidin 3-O-glucoside-3’’,6’’-O-dimalonyltransferase -> Pelargonidin 3-O-3’’,6’’-O-dimalonylglucoside OR 2) anthocyanidin 3-O-glucoside 2’’-O- glucosyltransferase -> Pelargonidin 3-O-sophoroside OR 3) Pelargonidin 3- O-rutinoside -> cyanidin 3-O-rutinoside 5-O-glucosyltransferase -> Pelargonidin 3-O-rutinoside 5-O-beta-D-glucoside OR 4) cyanidin 3-O- glucoside 7-O-glucosyltransferase (acyl-glucose) -> Pelargonidin 3,7-di-O- beta-D-glucoside OR 5) anthocyanidin 3-O-glucoside 2’’’-O- xylosyltransferase -> Pelargonidin 3-O-beta-D-sambubioside -> anthocyanin 3-O-sambubioside 5-O-glucosyltransferase -> Pelargonidin 5-O-beta-D- glucoside 3-O-beta-D-sambubioside OR 6) anthocyanidin 3-O-glucoside 6’’-O- acyltransferase -> Pelargonidin 3-(6-p-coumaroyl)glucoside &/OR Pelargonidin 3-O-(6-caffeoyl-beta-D-glucoside)
    [Show full text]
  • Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols
    Hindawi Publishing Corporation ISRN Spectroscopy Volume 2013, Article ID 813563, 45 pages http://dx.doi.org/10.1155/2013/813563 Review Article Recent Applications of Mass Spectrometry in the Study of Grape and Wine Polyphenols Riccardo Flamini Consiglio per la Ricerca e la Sperimentazione in Agricoltura-Centro di Ricerca per la Viticoltura (CRA-VIT), Viale XXVIII Aprile 26, 31015 Conegliano, Italy Correspondence should be addressed to Riccardo Flamini; riccardo.�amini�entecra.it Received 24 September 2012; Accepted 12 October 2012 Academic �ditors: D.-A. Guo, �. Sta�lov, and M. Valko Copyright © 2013 Riccardo Flamini. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Polyphenols are the principal compounds associated with health bene�c effects of wine consumption and in general are characterized by antioxidant activities. Mass spectrometry is shown to play a very important role in the research of polyphenols in grape and wine and for the quality control of products. e so ionization of LC/MS makes these techniques suitable to study the structures of polyphenols and anthocyanins in grape extracts and to characterize polyphenolic derivatives formed in wines and correlated to the sensorial characteristics of the product. e coupling of the several MS techniques presented here is shown to be highly effective in structural characterization of the large number of low and high molecular weight polyphenols in grape and wine and also can be highly effective in the study of grape metabolomics. 1. Principal Polyphenols of Grape and Wine During winemaking the condensed (or nonhydrolyzable) tannins are transferred to the wine and contribute strongly to Polyphenols are the principal compounds associated to the sensorial characteristic of the product.
    [Show full text]
  • The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition
    molecules Review The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition Olivier Dangles * ID and Julie-Anne Fenger University of Avignon, INRA, UMR408, 84000 Avignon, France; [email protected] * Correspondence: [email protected]; Tel.: +33-490-144-446 Academic Editors: M. Monica Giusti and Gregory T. Sigurdson Received: 6 July 2018; Accepted: 31 July 2018; Published: 7 August 2018 Abstract: Owing to their specific pyrylium nucleus (C-ring), anthocyanins express a much richer chemical reactivity than the other flavonoid classes. For instance, anthocyanins are weak diacids, hard and soft electrophiles, nucleophiles, prone to developing π-stacking interactions, and bind hard metal ions. They also display the usual chemical properties of polyphenols, such as electron donation and affinity for proteins. In this review, these properties are revisited through a variety of examples and discussed in relation to their consequences in food and in nutrition with an emphasis on the transformations occurring upon storage or thermal treatment and on the catabolism of anthocyanins in humans, which is of critical importance for interpreting their effects on health. Keywords: anthocyanin; flavylium; chemistry; interactions 1. Introduction Anthocyanins are usually represented by their flavylium cation, which is actually the sole chemical species in fairly acidic aqueous solution (pH < 2). Under the pH conditions prevailing in plants, food and in the digestive tract (from pH = 2 to pH = 8), anthocyanins change to a mixture of colored and colorless forms in equilibrium through acid–base, water addition–elimination, and isomerization reactions [1,2]. Each chemical species displays specific characteristics (charge, electronic distribution, planarity, and shape) modulating its reactivity and interactions with plant or food components, such as the other phenolic compounds.
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]