The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition

Total Page:16

File Type:pdf, Size:1020Kb

The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition molecules Review The Chemical Reactivity of Anthocyanins and Its Consequences in Food Science and Nutrition Olivier Dangles * ID and Julie-Anne Fenger University of Avignon, INRA, UMR408, 84000 Avignon, France; [email protected] * Correspondence: [email protected]; Tel.: +33-490-144-446 Academic Editors: M. Monica Giusti and Gregory T. Sigurdson Received: 6 July 2018; Accepted: 31 July 2018; Published: 7 August 2018 Abstract: Owing to their specific pyrylium nucleus (C-ring), anthocyanins express a much richer chemical reactivity than the other flavonoid classes. For instance, anthocyanins are weak diacids, hard and soft electrophiles, nucleophiles, prone to developing π-stacking interactions, and bind hard metal ions. They also display the usual chemical properties of polyphenols, such as electron donation and affinity for proteins. In this review, these properties are revisited through a variety of examples and discussed in relation to their consequences in food and in nutrition with an emphasis on the transformations occurring upon storage or thermal treatment and on the catabolism of anthocyanins in humans, which is of critical importance for interpreting their effects on health. Keywords: anthocyanin; flavylium; chemistry; interactions 1. Introduction Anthocyanins are usually represented by their flavylium cation, which is actually the sole chemical species in fairly acidic aqueous solution (pH < 2). Under the pH conditions prevailing in plants, food and in the digestive tract (from pH = 2 to pH = 8), anthocyanins change to a mixture of colored and colorless forms in equilibrium through acid–base, water addition–elimination, and isomerization reactions [1,2]. Each chemical species displays specific characteristics (charge, electronic distribution, planarity, and shape) modulating its reactivity and interactions with plant or food components, such as the other phenolic compounds. This sophisticated chemistry must be understood to interpret the variety of colors expressed by anthocyanins and the color changes observed in time and to minimize the irreversible color loss signaling the chemical degradation of chromophores. The chemical reactivity of anthocyanins is also important to interpret their fate after ingestion and their effects on health, as anthocyanins may be consumed as a complex mixture of native forms, derivatives, and degradation products, which themselves can evolve in the digestive tract [3]. 2. The Basis of Anthocyanin Chemistry 2.1. Anthocyanins Are Weak Diacids Due to conjugation with the electron-withdrawing pyrylium ring, the phenolic OH groups of the flavylium ion at C40, C5, and C7 are fairly acidic [1,2]. In terms of structure–acidity relationships, it is clear that C7-OH is the most acidic group with a pKa1 of ca. 4, i.e., 6 pKa units below the phenol itself. The corresponding neutral quinonoid base (Figure1) can thus be considered to be the prevailing 0 tautomer. At higher pH levels, a second proton loss from C4 -OH (pKa2 ≈ 7 for common anthocyanins) yields the anionic base with maximized electron delocalization over the three rings. Along this deprotonation sequence, the wavelength of maximal visible absorption typically shifts by 20–30 nm Molecules 2018, 23, 1970; doi:10.3390/molecules23081970 www.mdpi.com/journal/molecules Molecules 2018, 23, 1970 2 of 23 Molecules 2018, 23, x 2 of 24 + − (AH20Molecules–30! nmA), 2018 (AH then, 23+ ,→ x by A), 50–60 then nmby 50 (A–60! nmA (A) (Figure → A−) 2(Figure), and the2), and corresponding the corresponding color turns color fromturns2 red offrom 24 to purple-bluered to purple [4-].blue [4]. 20–30 nm (AH+ → A), then by 50–60 nm (A → A−) (Figure 2), and the corresponding color turns from red to purple-blue [4]. FigureFigure 1.1. Flavylium ions are weak diacids. Figure 1. Flavylium ions are weak diacids. FigureFigure 2. 2. (I ()I Absorption) Absorption spectra spectra of of Cat Cat--Mv3Glc:Mv3Glc: pH jump from pHpH == 1.01.0 (100%(100% flavylium) flavylium) to to pH pH 3.00, 3.00, Figure 2. (I) Absorption spectra of Cat-Mv3Glc: pH jump from pH = 1.0 (100% flavylium) to pH 3.00, 3.59,3.59, 4.50, 4.50, 5.70, 5.70, 5.96, 5.96, 6.25, 6.25, and and 7.15, 7.15, respectively. respectively. Spectra recorded 1010 msms after after mixing mixing (negligible (negligible water water 3.59, 4.50, 5.70, 5.96, 6.25, and 7.15, respectively. Spectra recorded 10 ms after mixing (negligible water addition)addition). .( II(II) )Spectra Spectra of of the the componentscomponents obtainedobtained by mathematical decompositiondecomposition. .From From [4] [4] with with addition). (II) Spectra of the components obtained by mathematical decomposition. From [4] with permissionpermission of of the the American American Chemical Chemical SocietySociety.. permission of the American Chemical Society. Molecules 2018, 23, 1970x 3 of 2324 2.2. Anthocyanins Are Hard and Soft Electrophiles 2.2. Anthocyanins Are Hard and Soft Electrophiles By analogy with enones, the C2 and C4 atoms of the pyrylium ring can be regarded as hard and soft electrophilicBy analogy withcenters, enones, respectively. the C2 andHence, C4 they atoms respectively of the pyrylium react with ring hard can (O be-centered) regarded and as hard soft and(S- and soft C electrophilic-centered) nucleophiles, centers, respectively. the first mechanism Hence, they being respectively driven by reactlocal charges with hard and (O-centered) the second andone by soft interaction (S- and C-centered)s between nucleophiles,the frontier molecular the first mechanism orbitals (HOMO being drivenof nucleophile by locals charges and LUMO and the of secondelectrophile one bys). interactions between the frontier molecular orbitals (HOMO of nucleophiles and LUMO of electrophiles). 2.2.1. Nucleophilic Addition at C2 2.2.1. Nucleophilic Addition at C2 Water addition is the ubiquitous process taking place within aqueous anthocyanin solutions Water addition is the ubiquitous process taking place within aqueous anthocyanin solutions [1,2]. [1,2]. It leads to the colorless hemiketal (Figure 3) and can be characterized by the thermodynamic It leads to the colorless hemiketal (Figure3) and can be characterized by the thermodynamic hydration constant Kh, or as an acceptable approximation (chalcones making only a minor hydration constant Kh, or as an acceptable approximation (chalcones making only a minor contribution, contribution, typically less than 20%, of the total pool of colorless forms), by the apparent0 constant typically less than 20%, of the total pool of colorless forms), by the apparent constant K h connecting K′h connecting the flavylium ion and the colorless forms taken collectively. With common0 the flavylium ion and the colorless forms taken collectively. With common anthocyanins, pK h lies anthocyanins, pK′h lies in the range of 2–3, which means that hydration is thermodynamically more in the range of 2–3, which means that hydration is thermodynamically more favorable than proton favorable than0 proton transfer (pK′h < pKa1). Fortunately, it is also much slower, and its pH-dependent transfer (pK h < pKa1). Fortunately, it is also much slower, and its pH-dependent kinetics can be kinetics can be quantified by the apparent rate constant of hydration (kobs) (Equation (1), h = [H+], χAH quantified by the apparent rate constant of hydration (k ) (Equation (1), h = [H+], c = mole fraction = mole fraction of AH+ within the mixture of colored formsobs [2,5]: AH of AH+ within the mixture of colored forms [2,5]: k k h kobs k h= AH k+'h0 h = h + 0 k'h h (1) kobs khcAH k−hh 2 2k−hh.. (1) 11+KKaa11/ h + Kaa11KKa2a/2h/ h 0 kh isis the the absolute absolute rate constant of water addition, kk′−−hh isis the the apparent apparent rate rate constant constant of of water water elimination elimination 0 0 (from thethe mixturemixture of of hemiketal hemiketal and andcis cis-chalcone-chalcone in in fast fast equilibrium), equilibrium) and, andK hK≈′h ≈kh k/hk/k−′−h ((transtrans--chalconechalcone neglected). EquationEquation (1)(1) cancan be be easily easily understood understood by by keeping keeping in in mind mind that that the the flavylium flavylium ion ision the is solethe coloredsole colo formred form that isthat electrophilic is electrophilic enough enough to directly to directly react react with with water. water. Figure 3. Flavylium ions are hard electrophiles reacting at C2 with O-centeredO-centered nucleophiles, such as water (water addition followed by formation of minor concentrationsconcentrations ofof chalcones).chalcones). At a given pH, the initial visible absorbance (A0) (no colorless forms) and the final visible At a given pH, the initial visible absorbance (A0) (no colorless forms) and the final visible absorbance (Af) (hydration equilibrium established) can be easily related through Equation (2): absorbance (Af) (hydration equilibrium established) can be easily related through Equation (2): A 2 f 1 Ka1 / h Ka1Ka2 /2h Af 1 + Ka1/h + Ka1Ka2/h = .2 . (2 (2)) A 1 (K K' 0 ) / h K K 2/ h 0 A0 1 + (aK1 a1 + Khh)/h + Ka1aK1 a2/a2h Molecules 2018, 23, x 4 of 24 MoleculesThus, 2018 the, 23 magnitude, x of color loss can be expressed as (Equation (3)): 4 of 24 A A K' / h Thus, the magnitude of0 colorf loss can be expressed has (Equation (3)): Molecules 2018, 23, 1970 2 . 4 of(3 23) A0 1 (Ka1 K'h ) / h Ka1Ka2 / h A0 Af K'h / h (3) From typical values for the rate and thermodynamic constants 2of. common anthocyanins, Thus, the magnitude of colorA0 loss1 can ( beKa expressed1 K'h ) / ash (Equation Ka1Ka2 (3)):/ h simulations of the pH dependence of the apparent rate constant and percentage of color loss can be 0 constructedFrom typical(Figure values4). The forplotsA 0the− clearly Aratef andshow thermodynamic that theK reversible/h constants color loss of commondue to water anthocyanins, addition to = h (3) simulations of the pH dependence of the apparent rate0 constant and percentage2 of color loss can be the flavylium ion becomes slowerA0 at higher1 + (pHKa 1(less+ K hflavylium)/h + Ka1 Kina 2solution)/h , whereas its magnitude becomesconstructed larger (Figure because 4).
Recommended publications
  • LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins During Rabbiteye Blueberry Juice Processing
    beverages Article LC–MS/MS and UPLC–UV Evaluation of Anthocyanins and Anthocyanidins during Rabbiteye Blueberry Juice Processing Rebecca E. Stein-Chisholm 1, John C. Beaulieu 2,* ID , Casey C. Grimm 2 and Steven W. Lloyd 2 1 Lipotec USA, Inc. 1097 Yates Street, Lewisville, TX 75057, USA; [email protected] 2 United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd., New Orleans, LA 70124, USA; [email protected] (C.C.G.); [email protected] (S.W.L.) * Correspondence: [email protected]; Tel.: +1-504-286-4471 Academic Editor: António Manuel Jordão Received: 11 October 2017; Accepted: 1 November 2017; Published: 25 November 2017 Abstract: Blueberry juice processing includes multiple steps and each one affects the chemical composition of the berries, including thermal degradation of anthocyanins. Not-from-concentrate juice was made by heating and enzyme processing blueberries before pressing, followed by ultrafiltration and pasteurization. Using LC–MS/MS, major and minor anthocyanins were identified and semi-quantified at various steps through the process. Ten anthocyanins were identified, including 5 arabinoside and 5 pyrannoside anthocyanins. Three minor anthocyanins were also identified, which apparently have not been previously reported in rabbiteye blueberries. These were delphinidin-3-(p-coumaroyl-glucoside), cyanidin-3-(p-coumaroyl-glucoside), and petunidin-3-(p- coumaroyl-glucoside). Delphinidin-3-(p-coumaroyl-glucoside) significantly increased 50% after pressing. The five known anthocyanidins—cyanidin, delphinidin, malvidin, peonidin, and petunidin—were also quantitated using UPLC–UV. Raw berries and press cake contained the highest anthocyanidin contents and contribute to the value and interest of press cake for use in other food and non-food products.
    [Show full text]
  • A Comparison of the Production of Polyphenol Contents and the Expression of Genes Involved in Vietnamese Tea Cultivars
    International Food Research Journal 26(6): 1781-1788 (December 2019) Journal homepage: http://www.ifrj.upm.edu.my A comparison of the production of polyphenol contents and the expression of genes involved in Vietnamese tea cultivars 1Hoang, T. T. Y., 2Luu, H. L., 2Nguyen, T. L., 3Duong, T. D., 4,5Nguyen, H. D. and 2*Huynh, T. T. H 1Thai Nguyen University of Sciences, Thai Nguyen University, Thai Nguyen Province 24000, Vietnam 2Institute of Genome Research, Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam 3Thai Nguyen University of Agriculture and Forestry, Thai Nguyen University, Thai Nguyen Province 24000, Vietnam 4Advanced Centre for Bioorganic Chemistry, Institute of Marine Biochemistry, VAST, Hanoi 100000, Vietnam 5University of Science and Technology of Hanoi, VAST, Hanoi 100000, Vietnam Article history Abstract Received: 19 June, 2019 Tea (Camellia sinensis) is a popular health beverage which is consumed all over the world Received in revised form: due to its good aroma and taste. Tea consumption is also considered to reduce the risk of 16 September, 2019 several diseases in humans, including cardiovascular diseases, diabetes and cancers. Recent Accepted: 25 September, 2019 studies have shown that polyphenols derived from tea may contribute to the majority of these pharmaceutical properties. Among all the tea polyphenols, catechins are the main components that include (−)-epicatechin (EC), (−)-epicatechin gallate (ECG), (−)-epigallocatechin (EGC), (−)-epigallocatechin-3 gallate (EGCG), (+)-catechin (C), (−)-catechin gallate (CG), (−)-gallocatechin (GC), and (−)-gallocatechingallate (GCG). In the present work, four Keywords catechins (C, EGC, ECG, and EGCG) and two anthocyanidins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) in two Vietnamese tea cultivars, Trungduxanh and Trungdutim, were Catechin LAR quantitatively detected by high-performance liquid chromatography.
    [Show full text]
  • Identification of Compounds with Potential Therapeutic Uses From
    International Journal of Molecular Sciences Article Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO) Lucía Guevara 1, María Ángeles Domínguez-Anaya 1, Alba Ortigosa 1, Salvador González-Gordo 1 , Caridad Díaz 2 , Francisca Vicente 2 , Francisco J. Corpas 1 , José Pérez del Palacio 2 and José M. Palma 1,* 1 Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; [email protected] (L.G.); [email protected] (M.Á.D.-A.); [email protected] (A.O.); [email protected] (S.G.-G.); [email protected] (F.J.C.) 2 Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; [email protected] (C.D.); [email protected] (F.V.); [email protected] (J.P.d.P.) * Correspondence: [email protected]; Tel.: +34-958-181-1600; Fax: +34-958-181-609 Abstract: Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Citation: Guevara, L.; Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and Domínguez-Anaya, M.Á.; Ortigosa, A.; González-Gordo, S.; Díaz, C.; analgesic activities have been reported in the literature.
    [Show full text]
  • Solutions That Meet Your Demands for Food Testing & Agriculture
    Solutions that meet your demands for food testing & agriculture Our measure is your success. Excellent choices for food & agriculture applications products I applications I software I services Agilent Technologies Consumer Products Toys, jewelry, clothing, and other products are frequently recalled due to the presence of unsafe levels of substances such as lead from paint and phthal- ates from product polymers and packaging. Whether your perspective is to guarantee your products are free of contaminants or you are screening for harmful contaminants in a wide variety of consumer products, Agilent Tech- nologies provides the tools you need to detect and measure these and other harmful contaminants. > Search entire document Agilent 1290 Infinity LC with Agilent Poroshell columns for simultaneous determination of eight organic UV filters in under two minutes Application Note Consumer Products Authors Siji Joseph Agilent Technologies India Pvt. Ltd. mAU Amino benzoic acid Bangalore, India 2 Oxybenzone 1.5 4-Methyl benzylidene camphor Dioxybenzone Avobenzone Michael Woodman 1 Octyl methoxycinnamate 0.5 Octocrylene Agilent Technologies, Inc. Octyl salicylate 2850 Centerville Road 0 0 0.5 1 1.5 2 min Wilmington DE 19808 USA Abstract Levels of UV filters in personal care products are regulated by the FDA and European Pharmacopeia (EP). Liquid chromatographic (LC) methods are widely accepted analyt- ical techniques for the qualitative and quantitative analysis of these UV filters. Most of these traditional LC methods require about 25–50 minutes. In this Application Note, the Agilent 1290 Infinity LC, in combination with Agilent Poroshell columns, were used for development of a short, sensitive, robust and well resolved separation of eight FDA/EP approved active UV filter ingredients in 99 seconds.
    [Show full text]
  • Isolation of Anthocyanins by High-Speed Countercurrent
    ition & F tr oo u d N f S č o c Veli kovska et al., J Nutr Food Sci 2013, 3:6 l i e a n n c r e DOI: 10.4172/2155-9600.1000243 u s o J Journal of Nutrition & Food Sciences ISSN: 2155-9600 Research Article Open Access Isolation of Anthocyanins by High-Speed Countercurrent Chromatography and Application of the Color Activity Concept to Different Varieties of Red Grape Pomace from Macedonia Sanja Kostadinović Veličkovska1*, Hamed Mirhosseini2 and Elena Bogeva3 1Faculty of Agriculture, University “Goce Delčev”, Krste Misirkov bb, 2000 Štip, Macedonia 2Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Sri Serdang, 43400 UPM Serdang, Selangor, Malaysia 3Experimental laboratory of wines and wine-making, Elenov winery, Demir Kapija, Macedonia Abstract Anthocyanins of Macedonian grape pomace from three varieties “Pinot noir”, “Merlot” and “Vranec” were isolated by high speed countercurrent chromatography. After purification of the fractions by means of preparative high performance liquid chromatography the structures of isolated pigments were elucidated by electrospray ionization multiple mass spectrometry (ESI-MSn) and nuclear magnetic resonance (NMR) spectroscopy. The major anthocyanin malvidin-3-glucoside and the minor pigments delphinidin-3-glucoside, cyaniding-3-glucoside, petunidin-3-glucoside, and malvidin-3-p-coumarоyl-glucoside were isolated. The “Color activity concept” was applied and visual detection thresholds of isolated anthocyanins were determined. The results of the “color activity value” of the isolated pigments and their detection thresholds were in good agreement with the color shade of the different varieties of red grape pomace. Keywords: Red grape pomace; HSCCC; NMR; Anthocyanins; Color using NMR spectroscopy confirmed the structure of the most abundant activity concept pigments in plants [11-20].
    [Show full text]
  • L.) Leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1*
    www.nature.com/scientificreports OPEN Integrated transcriptomic and metabolomic data reveal the favonoid biosynthesis metabolic pathway in Perilla frutescens (L.) leaves Tao Jiang1,3, Kunyuan Guo2,3, Lingdi Liu1, Wei Tian1, Xiaoliang Xie1, Saiqun Wen1 & Chunxiu Wen1* Perilla frutescens (L.) is an important medicinal and edible plant in China with nutritional and medical uses. The extract from leaves of Perilla frutescens contains favonoids and volatile oils, which are mainly used in traditional Chinese medicine. In this study, we analyzed the transcriptomic and metabolomic data of the leaves of two Perilla frutescens varieties: JIZI 1 and JIZI 2. A total of 9277 diferentially expressed genes and 223 favonoid metabolites were identifed in these varieties. Chrysoeriol, apigenin, malvidin, cyanidin, kaempferol, and their derivatives were abundant in the leaves of Perilla frutescens, which were more than 70% of total favonoid contents. A total of 77 unigenes encoding 15 enzymes were identifed as candidate genes involved in favonoid biosynthesis in the leaves of Perilla frutescens. High expression of the CHS gene enhances the accumulation of favonoids in the leaves of Perilla frutescens. Our results provide valuable information on the favonoid metabolites and candidate genes involved in the favonoid biosynthesis pathways in the leaves of Perilla frutescens. Perilla frutescens (L.), which is a self-compatible annual herb, belongs to the family Lamiaceae. Tis species has been widely cultivated in China, Japan, and Korea for centuries. Perilla frutescens is an important medicinal and edible plant in China with medical and nutritional uses 1. Its leaves can be utilized as a transitional medicinal herb, as a vegetable, and as a spice, and its seeds can be processed into foods and nutritional edible oils 2.
    [Show full text]
  • A Combined Experimental and Computational Study of Chrysanthemin As a Pigment for Dye-Sensitized Solar Cells
    molecules Article A Combined Experimental and Computational Study of Chrysanthemin as a Pigment for Dye-Sensitized Solar Cells Atoumane Ndiaye 1,2 , Alle Dioum 1, Corneliu I. Oprea 2 , Anca Dumbrava 3,* , Jeanina Lungu 2, Adrian Georgescu 2, Florin Moscalu 2, Mihai A. Gîr¸tu 2,* , Aboubaker Chedikh Beye 1 and Issakha Youm 1,* 1 Department of Physics, Cheikh Anta Diop University of Dakar, 5005 Dakar-Fann, Senegal; [email protected] (A.N.); [email protected] (A.D.); [email protected] (A.C.B.) 2 Department of Physics, Ovidius University of Constanta, 900527 Constanta, Romania; [email protected] (C.I.O.); [email protected] (J.L.); [email protected] (A.G.); fl[email protected] (F.M.) 3 Department of Chemistry and Chemical Engineering, Ovidius University of Constanta, 900527 Constanta, Romania * Correspondence: [email protected] (A.D.); [email protected] (M.A.G.); [email protected] (I.Y.) Abstract: The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin Citation: Ndiaye, A.; Dioum, A.; and the extracts with various pH values were tested in DSSCs.
    [Show full text]
  • Plant Phenolics: Bioavailability As a Key Determinant of Their Potential Health-Promoting Applications
    antioxidants Review Plant Phenolics: Bioavailability as a Key Determinant of Their Potential Health-Promoting Applications Patricia Cosme , Ana B. Rodríguez, Javier Espino * and María Garrido * Neuroimmunophysiology and Chrononutrition Research Group, Department of Physiology, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain; [email protected] (P.C.); [email protected] (A.B.R.) * Correspondence: [email protected] (J.E.); [email protected] (M.G.); Tel.: +34-92-428-9796 (J.E. & M.G.) Received: 22 October 2020; Accepted: 7 December 2020; Published: 12 December 2020 Abstract: Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom that can be categorized as flavonoids and non-flavonoids. Interest in phenolic compounds has dramatically increased during the last decade due to their biological effects and promising therapeutic applications. In this review, we discuss the importance of phenolic compounds’ bioavailability to accomplish their physiological functions, and highlight main factors affecting such parameter throughout metabolism of phenolics, from absorption to excretion. Besides, we give an updated overview of the health benefits of phenolic compounds, which are mainly linked to both their direct (e.g., free-radical scavenging ability) and indirect (e.g., by stimulating activity of antioxidant enzymes) antioxidant properties. Such antioxidant actions reportedly help them to prevent chronic and oxidative stress-related disorders such as cancer, cardiovascular and neurodegenerative diseases, among others. Last, we comment on development of cutting-edge delivery systems intended to improve bioavailability and enhance stability of phenolic compounds in the human body. Keywords: antioxidant activity; bioavailability; flavonoids; health benefits; phenolic compounds 1. Introduction Phenolic compounds are secondary metabolites widely spread throughout the plant kingdom with around 8000 different phenolic structures [1].
    [Show full text]
  • Complex Ligands with Different Copigmentation Status
    In: Anthocyanins: Structure, Biosynthesis and Health Benefits ISBN: 978-1-62257-329-5 Editor: Noboru Motohashi © 2012 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 12 COMPARATIVE HUMAN IN VITRO AND IN VIVO BIOAVAILABILITY INVESTIGATION OF BILBERRY ANTHOCYANINS IN DIFFERENT COMPLEX LIGANDS WITH DIFFERENT COPIGMENTATION STATUS Thomas Eidenberger*, Manuel Selg and Sigrid Fuerst Upper Austrian University of Applied Sciences, Faculty of Natural and Environmental Sciences, Wels, Austria ABSTRACT The colorful anthocyanins are well recognized members of the bioflavonoid phytochemicals. Anthocyanins have gained much attention as the food ingredients with health-promoting functions for recent years. Bilberries have been particularly known as one of the richest sources of anthocyanins. The physiological effects of anthocyanins in humans are dependent on the absorption after ingestion. Clinical studies have demonstrated that the bioavailability of anthocyanins is very low and highly variable because of their instability in physiological absorption conditions. The targets for the development of new anthocyanin products are improved absorption and reduced absorption variability. One way to achieve these targets is an increase of the stability of anthocyanins under physiological conditions.
    [Show full text]
  • Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization
    J. AMER. Soc. HORT. Sci. 130(5):711-715. 2005. Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization Nicholi Vorsa Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019 James J. Polashock1 USDA—ARS Fruit Lab, 125A Lake Oswego Road, Chatsworth, NJ 08019 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, Vaccinium oxycoccus, antioxidant, bioavailability, flavonoid ABSTRACT. The flavonoids of american cranberry (Vaccinium macrocarpon Alt.) are documented to be beneficial for hu- man health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contribu- tors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins. Flavonoids are considered to be secondary metabolites, which The cultivated american cranberry (V. macrocarpon) is recog- have been associated with roles in ultraviolet protection, plant nized for its brilliant red fruit due to an abundance of anthocyanins sexual reproduction, pollinator attraction, symbiotic plant—microbe in the fruit epidermal tissues.
    [Show full text]
  • Determination of Major Anthocyanin
    02_benmeziane_05b-tomazic 13/10/16 13:03 Page125 DETERMINATION OF MAJOR ANTHOCYANIN PIGMENTS AND FLAVONOLS IN RED GRAPE SKIN OF SOME TABLE GRAPE VARIETIES ( VITIS VINIFERA SP.) BY HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY–PHOTODIODE ARRAY DETECTION (HPLC-DAD) Farida BENMEZIANE 1* , Yves CADOT 2, Rachid DJAMAI 3 and Lynda DJERMOUN 4 1: Department of Agronomy, University of El-Tarf, PB 73, El-Tarf 36000, Algeria 2: Institut de Recherche en Horticulture et Semences UMR1345 (INRA / Agrocampus-Ouest / Université d’Angers), 42 rue Georges Morel BP 60057, 49071 Beaucouzé Cedex, France 3: Department of Biology, University of Badji-Mokhtar, Annaba, PB 12, Annaba 23000, Algeria 4: University A. Mira of Bejaia, Faculty of Sciences of Nature and Life, Department of Food Science, 3BS Laboratory, Bejaia 06000, Algeria Abstract Aim : The aim of this study was the investigation of the anthocyanin and flavonol content in grape skin extracts. Five prevalent anthocyanin-types and four flavonol-types were determined in the skin of three red table grape varieties widely cultivated in El- Tarf (Algeria). Methods and results : The identification of the compounds was performed by HPLC-DAD based on C-18 reversed phase column separation. Results from HPLC analysis showed that malvidin and petunidin-3- O-glucoside were the major anthocyanin glucoside, whereas quercetin-3- O-glucoside was the major flavonol among the four identified. Conclusion : The content of anthocyanins and flavonols in the grape skin of three grapevine ( Vitis vinifera ) varieties exhibits notable differences among the cultivars studied, confirming their importance in the varietal characterization. The highest concentrations of total anthocyanins and flavonols corresponded to the Gros noir variety.
    [Show full text]
  • Could Purple Tomatoes Help Us Be Healthier?
    Caroline Wood Could purple tomatoes Key words genetic engineering cancer help us be healthier? superfoods ne of the greatest global health challenges just three crops – rice, wheat and maize – provide an BMI (body mass we face is the obesity epidemic. In 2014, estimated 60% of the world’s energy intake. Yet as index) is mass (in Othe World Health Organisation (WHO) our dietary repertoire has shrunk, levels of obesity kg) / height (in m) estimated that worldwide 39% of adults over 18 and its associated diseases have rapidly climbed. squared years were overweight (with a BMI of 25+) and 13% In fact, a lack of fruit and vegetables is ranked as were obese (with a BMI of 30+). This has led to a the second highest risk factor for cancer in men, dramatic surge in the levels of non-communicable and the fifth highest in women in the UK Figure( 2). diseases such as type II diabetes, cardiovascular This is thought to be because plants produce many heart disease (CVD) and certain cancers. We’ve all products as part of their natural metabolism that heard that certain ‘superfoods’ contain compounds are beneficial for our health. that can help combat these diseases, but these are often expensive and not accessible to everyone. If only everyday foods could be engineered to have these enhanced health effects… but thanks to genetic engineering, scientists have started to do just that, giving us purple tomatoes! Our changing diet Andrew Davis, John Innes Centre When humans lived as hunter-gatherers, we would have consumed a much wider range of fruit and vegetables, whereas today our diets are heavily Figure 1 A comparison between what our hunter-gatherer ancestors may have ! based on cereal crops (Figure 1).
    [Show full text]