Foliicolous Lichens of the World

Total Page:16

File Type:pdf, Size:1020Kb

Foliicolous Lichens of the World REPTILES de la RESERVA JAMA-COAQUE, Manabi, Ecuador Ryan L. Lynch1,2, Ross Maynard1, Paul S. Hamilton1, and Biodiversity PEEK1* 1 1.The Biodiversity Group & 2.Third Millennium Alliance/ Grupo Ecológico Jama-Coaque *Biodiversity PEEK: Yuli Morales (YM), Jomar Vaca (JV), Uver Vaca (UV), Dexi Vite (DV), and Marcelo Marquez (MM) Contact: [email protected] [757] Versión 1: 05/2016 1 Bothrops asper 2 Bothrops asper 3 Bothriechis schlegelii 4 Bothriechis schlegelii VIPERIDAE - Venenosa VIPERIDAE - Venenosa VIPERIDAE - Venenosa VIPERIDAE - Venenosa 5 Micrurus dumerilii 6 Micrurus mipartitus 7 Micrurus mipartitus 8 Boa constrictor ELAPIDAE - Venenosa ELAPIDAE - Venenosa ELAPIDAE - Venenosa BOIDAE 9 Boa constrictor 10 Clelia clelia 11 Clelia clelia 12 Mastigodryas reticulatus BOIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 13 Mastigodryas reticulatus 14 Coniophanes dromiciformis 15 Coniophanes dromiciformis 16 Coniophanes fissidens COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 17 Coniophanes fissidens 18 Dipsas andiana 19 Dipsas andiana 20 Dipsas gracilis COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE REPTILES de la RESERVA JAMA-COAQUE, Manabi, Ecuador Ryan L. Lynch1,2, Ross Maynard1, Paul S. Hamilton1, and Biodiversity PEEK1* 2 1.The Biodiversity Group & 2.Third Millennium Alliance/ Grupo Ecológico Jama-Coaque *Biodiversity PEEK: Yuli Morales (YM), Jomar Vaca (JV), Uver Vaca (UV), Dexi Vite (DV), and Marcelo Marquez (MM) Contact: [email protected] [757] Versión 1: 05/2016 21 Dipsas gracilis 22 Sibon nebulatus 23 Sibon nebulatus 24 Leptodeira septentrionalis COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 25 Leptodeira septentrionalis 26 Mastigodryas pulchriceps 27 Mastigodryas pulchriceps 28 Oxyrhopus petola COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 29 Oxyrhopus petola 30 Oxyrhopus petola 31 Oxybelis brevirostris 32 Oxybelis brevirostris COLUBRIDAE COLUBRIDAE (MM) COLUBRIDAE COLUBRIDAE 33 Pliocercus euryzonus 34 Pliocercus euryzonus 35 Imantodes cenchoa 36 Imantodes cenchoa COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 37 Spilotes cf pullatus 38 Spilotes cf pullatus 39 Phrynonax shropshirei 40 Phrynonax shropshirei COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE REPTILES de la RESERVA JAMA-COAQUE, Manabi, Ecuador Ryan L. Lynch1,2, Ross Maynard1, Paul S. Hamilton1, and Biodiversity PEEK1* 3 1.The Biodiversity Group & 2.Third Millennium Alliance/ Grupo Ecológico Jama-Coaque *Biodiversity PEEK: Yuli Morales (YM), Jomar Vaca (JV), Uver Vaca (UV), Dexi Vite (DV), and Marcelo Marquez (MM) Contact: [email protected] [757] Versión 1: 05/2016 41 Tantilla supracincta 42 Tantilla supracincta 43 Rhinobothryum bovallii 44 Rhinobothryum bovallii COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 45 Stenorrhina degenhardtii 46 Stenorrhina degenhardtii 47 Atractus cf. occidentalis 48 Atractus cf. occidentalis COLUBRIDAE COLUBRIDAE COLUBRIDAE COLUBRIDAE 49 Tantilla melanocephala 50 Tantilla melanocephala 51 Alopoglossus festae 52 Alopoglossus festae COLUBRIDAE COLUBRIDAE GYMNOPHTHALMIDAE GYMNOPHTHALMIDAE 53 Echinosaura horrida 54 Echinosaura horrida 55 Anadia rhombifera 56 Anadia rhombifera GYMNOPHTHALMIDAE GYMNOPHTHALMIDAE GYMNOPHTHALMIDAE GYMNOPHTHALMIDAE 57 Ptychoglossus cf.gorgonae 58 Ptychoglossus cf.gorgonae 59 Ameiva septemlineata 60 Ameiva septemlineata GYMNOPHTHALMIDAE GYMNOPHTHALMIDAE IGUANIDAE IGUANIDAE REPTILES de la RESERVA JAMA-COAQUE, Manabi, Ecuador Ryan L. Lynch1,2, Ross Maynard1, Paul S. Hamilton1, and Biodiversity PEEK1* 4 1.The Biodiversity Group & 2.Third Millennium Alliance/ Grupo Ecológico Jama-Coaque *Biodiversity PEEK: Yuli Morales (YM), Jomar Vaca (JV), Uver Vaca (UV), Dexi Vite (DV), and Marcelo Marquez (MM) Contact: [email protected] [757] Versión 1: 05/2016 61 Anolis biporcatus 62 Anolis biporcatus 63 Anolis fraseri 64 Anolis peraccae IGUANIDAE IGUANIDAE (JV) IGUANIDAE (UV) IGUANIDAE 65 Anolis peraccae 66 Anolis princeps 67 Anolis binotatus 68 Anolis binotatus IGUANIDAE IGUANIDAE IGUANIDAE IGUANIDAE 69 Anolis lyra 70 Anolis lyra 71 Iguana iguana 72 Iguana iguana IGUANIDAE IGUANIDAE IGUANIDAE IGUANIDAE (DV) 73 Enyalioides heterolepis 74 Enyalioides heterolepis 75 Enyalioides heterolepis 76 Enyalioides oshaughnessyi IGUANIDAE IGUANIDAE IGUANIDAE IGUANIDAE 77 Enyalioides oshaughnessyi 78 Stenocercus iridescens 79 Stenocercus iridescens 80 Lepidoblepharis buchwaldi IGUANIDAE IGUANIDAE IGUANIDAE SPHAERODACTYLIDAE REPTILES de la RESERVA JAMA-COAQUE, Manabi, Ecuador Ryan L. Lynch1,2, Ross Maynard1, Paul S. Hamilton1, and Biodiversity PEEK1* 5 1.The Biodiversity Group & 2.Third Millennium Alliance/ Grupo Ecológico Jama-Coaque *Biodiversity PEEK: Yuli Morales (YM), Jomar Vaca (JV), Uver Vaca (UV), Dexi Vite (DV), and Marcelo Marquez (MM) Contact: [email protected] [757] Versión 1: 05/2016 81 Lepidoblepharis buchwaldi 82 Gonatodes caudiscutatus 83 Gonatodes caudiscutatus 84 Thecadactylus rapicauda SPHAERODACTYLIDAE SPHAERODACTYLIDAE SPHAERODACTYLIDAE PHYLLODACTYLIDAE 85 Rhinoclemmys annulata 86 Rhinoclemmys annulata 87 Amphisbaena varia 88 Amphisbaena varia GEOEMYDIDAE GEOEMYDIDAE (YM) AMPHISBAENIDAE AMPHISBAENIDAE .
Recommended publications
  • Snakes of the Siwalik Group (Miocene of Pakistan): Systematics and Relationship to Environmental Change
    Palaeontologia Electronica http://palaeo-electronica.org SNAKES OF THE SIWALIK GROUP (MIOCENE OF PAKISTAN): SYSTEMATICS AND RELATIONSHIP TO ENVIRONMENTAL CHANGE Jason J. Head ABSTRACT The lower and middle Siwalik Group of the Potwar Plateau, Pakistan (Miocene, approximately 18 to 3.5 Ma) is a continuous fluvial sequence that preserves a dense fossil record of snakes. The record consists of approximately 1,500 vertebrae derived from surface-collection and screen-washing of bulk matrix. This record represents 12 identifiable taxa and morphotypes, including Python sp., Acrochordus dehmi, Ganso- phis potwarensis gen. et sp. nov., Bungarus sp., Chotaophis padhriensis, gen. et sp. nov., and Sivaophis downsi gen. et sp. nov. The record is dominated by Acrochordus dehmi, a fully-aquatic taxon, but diversity increases among terrestrial and semi-aquatic taxa beginning at approximately 10 Ma, roughly coeval with proxy data indicating the inception of the Asian monsoons and increasing seasonality on the Potwar Plateau. Taxonomic differences between the Siwalik Group and coeval European faunas indi- cate that South Asia was a distinct biogeographic theater from Europe by the middle Miocene. Differences between the Siwalik Group and extant snake faunas indicate sig- nificant environmental changes on the Plateau after the last fossil snake occurrences in the Siwalik section. Jason J. Head. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, Washington, DC 20013-7012, USA. [email protected] School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom. KEY WORDS: Snakes, faunal change, Siwalik Group, Miocene, Acrochordus. PE Article Number: 8.1.18A Copyright: Society of Vertebrate Paleontology May 2005 Submission: 3 August 2004.
    [Show full text]
  • Bibliography and Scientific Name Index to Amphibians
    lb BIBLIOGRAPHY AND SCIENTIFIC NAME INDEX TO AMPHIBIANS AND REPTILES IN THE PUBLICATIONS OF THE BIOLOGICAL SOCIETY OF WASHINGTON BULLETIN 1-8, 1918-1988 AND PROCEEDINGS 1-100, 1882-1987 fi pp ERNEST A. LINER Houma, Louisiana SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE NO. 92 1992 SMITHSONIAN HERPETOLOGICAL INFORMATION SERVICE The SHIS series publishes and distributes translations, bibliographies, indices, and similar items judged useful to individuals interested in the biology of amphibians and reptiles, but unlikely to be published in the normal technical journals. Single copies are distributed free to interested individuals. Libraries, herpetological associations, and research laboratories are invited to exchange their publications with the Division of Amphibians and Reptiles. We wish to encourage individuals to share their bibliographies, translations, etc. with other herpetologists through the SHIS series. If you have such items please contact George Zug for instructions on preparation and submission. Contributors receive 50 free copies. Please address all requests for copies and inquiries to George Zug, Division of Amphibians and Reptiles, National Museum of Natural History, Smithsonian Institution, Washington DC 20560 USA. Please include a self-addressed mailing label with requests. INTRODUCTION The present alphabetical listing by author (s) covers all papers bearing on herpetology that have appeared in Volume 1-100, 1882-1987, of the Proceedings of the Biological Society of Washington and the four numbers of the Bulletin series concerning reference to amphibians and reptiles. From Volume 1 through 82 (in part) , the articles were issued as separates with only the volume number, page numbers and year printed on each. Articles in Volume 82 (in part) through 89 were issued with volume number, article number, page numbers and year.
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Redalyc.Comparative Studies of Supraocular Lepidosis in Squamata
    Multequina ISSN: 0327-9375 [email protected] Instituto Argentino de Investigaciones de las Zonas Áridas Argentina Cei, José M. Comparative studies of supraocular lepidosis in squamata (reptilia) and its relationships with an evolutionary taxonomy Multequina, núm. 16, 2007, pp. 1-52 Instituto Argentino de Investigaciones de las Zonas Áridas Mendoza, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=42801601 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ISSN 0327-9375 COMPARATIVE STUDIES OF SUPRAOCULAR LEPIDOSIS IN SQUAMATA (REPTILIA) AND ITS RELATIONSHIPS WITH AN EVOLUTIONARY TAXONOMY ESTUDIOS COMPARATIVOS DE LA LEPIDOSIS SUPRA-OCULAR EN SQUAMATA (REPTILIA) Y SU RELACIÓN CON LA TAXONOMÍA EVOLUCIONARIA JOSÉ M. CEI † las subfamilias Leiosaurinae y RESUMEN Enyaliinae. Siempre en Iguania Observaciones morfológicas Pleurodonta se evidencian ejemplos previas sobre un gran número de como los inconfundibles patrones de especies permiten establecer una escamas supraoculares de correspondencia entre la Opluridae, Leucocephalidae, peculiaridad de los patrones Polychrotidae, Tropiduridae. A nivel sistemáticos de las escamas específico la interdependencia en supraoculares de Squamata y la Iguanidae de los géneros Iguana, posición evolutiva de cada taxón Cercosaura, Brachylophus,
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • <I>Alopoglossus Atriventris
    HERPETOLOGICAL JOURNAL 17: 269–272, 2007 digenean Mesocoelium monas in Prionodactylus Short Note eigenmanni, also from Brazil. The purpose of this paper is to present an initial helminth list for Alopoglossus angulatus and A. atriventris. Parasite communities of two Nineteen Alopoglossus angulatus (mean snout–vent length [SVL] = 42.1±13.4 mm, range 24–60 mm) and 16 A. lizard species, Alopoglossus atriventris (SVL = 36.9±9.2 mm, range 21–48 mm) were angulatus and Alopoglossus borrowed from the herpetology collection of the Sam No- ble Oklahoma Museum of Natural History (OMNH) and atriventris, from Brazil and examined for helminths. Stomachs from these lizards had previously been removed and were not available for this Ecuador study. Collection localities are as follows. Alopoglossus angulatus: 14 (OMNH 36931–36944) from Acre state, Bra- Stephen R. Goldberg1, Charles R. zil 1996; one (OMNH 37125) from Amazonas state, Brazil Bursey2 & Laurie J. Vitt3 1997; one (OMNH 37337) from Rondônia state, Brazil 1998; three (OMNH 36440–36442) from Sucumbíos prov- 1Department of Biology, Whittier College, California, USA ince, Ecuador 1994. Alopoglossus atriventris: eight 2Department of Biology, Pennsylvania State University, USA (OMNH 36945–36952) from Acre state, Brazil 1996; four 3Sam Noble Oklahoma Museum of Natural History and (OMNH 37126–37129) from Amazonas state, Brazil 1997; Zoology Department, University of Oklahoma, USA two (OMNH 37637–37638) from Amazonas state, Brazil 1998; two (OMNH 36438–36439) from Sucumbíos prov- Alopoglossus angulatus and A. atriventris from Brazil ince, Ecuador 1994. These lizards had originally been fixed and Ecuador were examined for endoparasites. in 10% formalin and stored in 70% ethanol.
    [Show full text]
  • CITY of ST. CATHARINES a By-Law to Amend By-Law No. 95-212 Entitled
    ' CITY OF ST. CATHARINES A By-law to amend By-law No. 95-212 entitled "A By-law to regulate the keeping of animals." AND WHEREAS by giving the required public notice and holding a public meeting, the City of St. Catharines has complied with the statutory notices required , and notice of the said by-law was posted to the City of St. Catharines website on September 10, 2013, and the public meeting was held on September 23, 2013; WHEREAS section 11 (2) of the Municipal Act provides authority for lower-tier municipalities to pass by-laws respecting health, safety and well-being of persons; AND WHEREAS section 103 of the Municipal Act provides authority for municipalities to pass by-laws to regulate or prohibit with respect to animals being at large; AND NOW THEREFORE THE COUNCIL OF THE CORPORATION OF THE CITY OF ST. CATHARINES enacts as follows: 1. That By-law No. 95-212, as amended, is hereby further amended by deleting the words "Any venomous Reptilia (such as venomous snakes and lizards)" in Schedule "A" and Schedule "B" thereof and replacing with the following: "All Reptilia as follows: (a) all Helodermatidae (e.g. gila monster and Mexican bearded lizard); (b) all front-fanged venomous snakes, even if devenomized, including, but not limited to: (i) all Viperidae (e.g. viper, pit viper), (ii) all Elapidae (e.g. cobra, mamba, krait, coral snake), (iii) all Atractaspididae (e.g. African burrowing asp), (iv) all Hydrophiidae (e.g. sea snake), and 2 (v) all Laticaudidae (e.g. sea krait); (c) all venomous, mid- or rear-fanged , Duvernoy-glanded
    [Show full text]
  • Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, Morphology and the Great American Interchange
    Molecular Phylogenetics and Evolution 43 (2007) 1076–1095 www.elsevier.com/locate/ympev Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange a, b c a Klaus-Peter KoepXi ¤, Matthew E. Gompper , Eduardo Eizirik , Cheuk-Chung Ho , Leif Linden a, Jesus E. Maldonado d, Robert K. Wayne a a Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA b Department of Fisheries and Wildlife Sciences, University of Missouri, Colombia, MO 65211, USA c Faculdade de Biociencias, PUCRS, Av. Ipiranga, 6681, Predio 12, Porto Alegre, RS 90619-900, Brazil d Smithsonian Institution, NMNH/NZP—Genetic Program, 3001 Connecticut Avenue NW, Washington, DC 20008, USA Received 10 June 2006; revised 22 September 2006; accepted 2 October 2006 Available online 11 October 2006 Abstract The Procyonidae (Mammalia: Carnivora) have played a central role in resolving the controversial systematics of the giant and red pandas, but phylogenetic relationships of species within the family itself have received much less attention. Cladistic analyses of morpho- logical characters conducted during the last two decades have resulted in topologies that group ecologically and morphologically similar taxa together. SpeciWcally, the highly arboreal and frugivorous kinkajou (Potos Xavus) and olingos (Bassaricyon) deWne one clade, whereas the more terrestrial and omnivorous coatis (Nasua), raccoons (Procyon), and ringtails (Bassariscus) deWne another clade, with the similar-sized Nasua and Procyon joined as sister taxa in this latter group. These relationships, however, have not been tested with molecu- lar sequence data. We examined procyonid phylogenetics based on combined data from nine nuclear and two mitochondrial gene seg- ments totaling 6534 bp.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Class: Amphibia Amphibians Order
    CLASS: AMPHIBIA AMPHIBIANS ANNIELLIDAE (Legless Lizards & Allies) CLASS: AMPHIBIA AMPHIBIANS Anniella (Legless Lizards) ORDER: ANURA FROGS AND TOADS ___Silvery Legless Lizard .......................... DS,RI,UR – uD ORDER: ANURA FROGS AND TOADS BUFONIDAE (True Toad Family) BUFONIDAE (True Toad Family) ___Southern Alligator Lizard ............................ RI,DE – fD Bufo (True Toads) Suborder: SERPENTES SNAKES Bufo (True Toads) ___California (Western) Toad.............. AQ,DS,RI,UR – cN ___California (Western) Toad ............. AQ,DS,RI,UR – cN ANNIELLIDAE (Legless Lizards & Allies) Anniella ___Red-spotted Toad ...................................... AQ,DS - cN BOIDAE (Boas & Pythons) ___Red-spotted Toad ...................................... AQ,DS - cN (Legless Lizards) Charina (Rosy & Rubber Boas) ___Silvery Legless Lizard .......................... DS,RI,UR – uD HYLIDAE (Chorus Frog and Treefrog Family) ___Rosy Boa ............................................ DS,CH,RO – fN HYLIDAE (Chorus Frog and Treefrog Family) Pseudacris (Chorus Frogs) Pseudacris (Chorus Frogs) Suborder: SERPENTES SNAKES ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN COLUBRIDAE (Colubrid Snakes) ___California Chorus Frog ............ AQ,DS,RI,DE,RO – cN ___Pacific Chorus Frog ....................... AQ,DS,RI,DE – cN Arizona (Glossy Snakes) ___Pacific Chorus Frog ........................AQ,DS,RI,DE – cN BOIDAE (Boas & Pythons) ___Glossy Snake ........................................... DS,SA – cN Charina (Rosy & Rubber Boas) RANIDAE (True Frog Family)
    [Show full text]
  • Reptiles & Amphibians of Kirindy
    REPTILES & AMPHIBIANS OF KIRINDY KIRINDY FOREST is a dry deciduous forest covering about 12,000 ha and is managed by the Centre National de Formation, dʹEtudes et de Recherche en Environnement et Foresterie (CNFEREF). Dry deciduous forests are among the world’s most threatened ecosystems, and in Madagascar they have been reduced to 3 per cent of their original extent. Located in Central Menabe, Kirindy forms part of a conservation priority area and contains several locally endemic animal and plant species. Kirindy supports seven species of lemur and Madagascarʹs largest predator, the fossa. Kirindy’s plants are equally notable and include two species of baobab, as well as the Malagasy endemic hazomalany tree (Hazomalania voyroni). Ninety‐nine per cent of Madagascar’s known amphibians and 95% of Madagascar’s reptiles are endemic. Kirindy Forest has around 50 species of reptiles, including 7 species of chameleons and 11 species of snakes. This guide describes the common amphibians and reptiles that you are likely to see during your stay in Kirindy forest and gives some field notes to help towards their identification. The guide is specifically for use on TBA’s educational courses and not for commercial purposes. This guide would not have been possible without the photos and expertise of Marius Burger. Please note this guide is a work in progress. Further contributions of new photos, ids and descriptions to this guide are appreciated. This document was developed during Tropical Biology Association field courses in Kirindy. It was written by Rosie Trevelyan and designed by Brigid Barry, Bonnie Metherell and Monica Frisch.
    [Show full text]
  • Reptile Diversity in an Amazing Tropical Environment: the West Indies - L
    TROPICAL BIOLOGY AND CONSERVATION MANAGEMENT - Vol. VIII - Reptile Diversity In An Amazing Tropical Environment: The West Indies - L. Rodriguez Schettino REPTILE DIVERSITY IN AN AMAZING TROPICAL ENVIRONMENT: THE WEST INDIES L. Rodriguez Schettino Department of Zoology, Institute of Ecology and Systematics, Cuba To the memory of Ernest E. Williams and Austin Stanley Rand Keywords: Reptiles, West Indies, geographic distribution, morphological and ecological diversity, ecomorphology, threatens, conservation, Cuba Contents 1. Introduction 2. Reptile diversity 2.1. Morphology 2.2.Habitat 3. West Indian reptiles 3.1. Greater Antilles 3.2. Lesser Antilles 3.3. Bahamas 3.4. Cuba (as a study case) 3.4.1. The Species 3.4.2. Geographic and Ecological Distribution 3.4.3. Ecomorphology 3.4.4. Threats and Conservation 4. Conclusions Acknowledgments Glossary Bibliography Biographical Sketch Summary The main features that differentiate “reptiles” from amphibians are their dry scaled tegument andUNESCO their shelled amniotic eggs. In– modern EOLSS studies, birds are classified under the higher category named “Reptilia”, but the term “reptiles” used here does not include birds. One can externally identify at least, three groups of reptiles: turtles, crocodiles, and lizards and snakes. However, all of these three groups are made up by many species that are differentSAMPLE in some morphological characters CHAPTERS like number of scales, color, size, presence or absence of limbs. Also, the habitat use is quite variable; there are reptiles living in almost all the habitats of the Earth, but the majority of the species are only found in the tropical regions of the world. The West Indies is a region of special interest because of its tropical climate, the high number of species living on the islands, the high level of endemism, the high population densities of many species, and the recognized adaptive radiation that has occurred there in some genera, such as Anolis, Sphaerodactylus, and Tropidophis.
    [Show full text]