The Case of Plant-Insect Pollinating Networks
Total Page:16
File Type:pdf, Size:1020Kb
Universidade dos Açores Doutoramento em Gestão Interdisciplinar da Paisagem Biodiversity conservation in island protected areas: the case of plant-insect pollinating networks Orientador: Professor Doutor Paulo Alexandre Vieira Borges Co- orientador: Professor Doutor François Rigal Doutoranda: Ana Luísa Coderniz Picanço Angra do Heroísmo 2018 “Biological diversity must be treated more seriously as a global resource, to be indexed, used, and above all, preserved. (…) The biological diversity most threatened is also the least explored, and there is no prospect at the moment that the scientific task will be completed before a large fraction of the species vanish.” E. O. Wilson (1988) Biodiversity (p. 3, 3) “The role of scientists is to collect data and transform them into understanding. (…) However, going from data to understanding is a multi-step process.” Schimel (2012) Writing Science (p. 11) Agradecimentos O trabalho desenvolvido para a realização desta tese, não teria sido possível sem a preciosa ajuda de muitas, muitas pessoas, às quais quero dizer obrigada. Em primeiro lugar, ao Prof. Paulo Alexandre Vieira Borges, não só pelo empenho e dedicação como orientador, como também pela fé, confiança e optimismo que depositou em mim ao longo do doutoramento. E, ao meu co- orientador Dr. François Rigal: -“Incroyable, c’est déjà fini. C’été seulement possible grâce à toi aussi. Un grand et gros merci beaucoup”. Aos colaboradores e co-autores Dr. Artur Gil, Dr. Pedro Cardoso, Dr. Thomas J. Matthews, Prof. Jens M. Olesen muito obrigada por todos os vossos contributos, desde o simples comentário ou opinião até à análise mais complexa, permitiram-me realizar esta tese. Aos investigadores Dr. Virgílio Vieira e Dr. Matthias Jentzsch, no auxílio da identificação de morfoespécies de lepidópteros e da espécie Xanthandrus azorensis, respectivamente. À FRUTER, mais concretamente à Sra. Conceição Carvalho e ao Serviço Desenvolvimento Agrário da Ilha Terceira, o Sr. Eng. Jorge Martins pela disponibilização dos dados que permitiram efectuar a análise económica apresentada no Capítulo 4. A todos os elementos do Grupo da Biodiversidade dos Açores, mas em especial à Enésima Mendonça, ao Luís Barcelos, ao Reinaldo Pimentel, à Carla Rego, ao Mário Boeiro, à Débora Henriques, ao Rui Nunes, ao Rui Carvalho, ao Orlando Guerreiro, à Teresa Ferreira, à Rita Godinho, à Isabel Amorim, à Prof. Rosalina Gabriel, ao Prof. Rui Elias e ao Fernando Pereira (aka Pardal), desde os simples momentos de partilha, ao auxílio na identificação de espécies, no domínio do sistema de informação geográfica até à colaboração nas saídas de campo, todos os contributos para a minha formação “avançada” foram de grande valor. Em último, mas não menos importante à minha família, pai Valeriano e mãe Iva, por implantarem o “bichinho da curiosidade”, ao meu marido Bruno e filho Miguel, aos meus irmãos e cunhadas pelo apoio ao longo deste caminho. Esta dissertação foi desenvolvida no âmbito do projecto de doutoramento - M3.1.2/F/031/2011 financiado pelo Fundo Regional da Ciência e Tecnologia, Secretaria Regional do Mar, Ciência e Tecnologia do Governo Regional dos Açores. Table of Contents Abstract 1 Resumo 3 Chapter 1. General introduction 1.1. Conservation biology 5 1.2. Pollination: concept, importance and example of 7 an ecosystem service 1.3. Insect pollinators: a general description 9 1.4. Species diversity and abundance distribution 11 1.5. Ecological networks: plant-insect interactions 12 1.6. Thesis outline: aims and research questions 18 Chapter 2. Impact of land-use change on flower-visiting insect communities on an oceanic island 2.1. Abstract 21 2.2. Introduction 22 2.3. Methods 24 2.4. Results 32 2.5. Discussion 42 2.6. Conclusions 44 Chapter 3. Structural patterns of small, simple and homogeneous pollinating communities 3.1. Abstract 46 3.2. Introduction 46 3.3. Methods 49 3.4. Results 52 3.5. Discussion 58 Chapter 4. Pollination services mapping and economic valuation from insect communities: a case study in the Azores (Terceira Island) 4.1. Abstract 62 4.2. Introduction 62 4.3. Methods 65 4.4. Results 71 4.5. Discussion and Conclusions 81 Chapter 5. Area Prioritization for Insect Pollinator Communities on an oceanic island 5.1. Abstract 85 5.2. Introduction 85 5.3. Material and methods 88 5.4. Results 92 5.5. Discussion 99 Chapter 6. General discussion and conclusions 103 References 110 Appendix A 140 Appendix B 144 Appendix C 155 Appendix D 159 Index of Figures Chapter 1 Figure 1.1 9 Diagram illustrating flower’s structure and types of pollination (from Partap, 1999). Figure 1.2 10 Examples of insects from Hymnoptera, Lepidoptera, Diptera and Coleoptera orders. Upper left photo Lasioglossum villosulum by Julie A. Weissman (from Weissman et al., 2017), upper right photo Pieris brassicae azorensis by Paulo A. V. Borges (from Azorean Biodiversity Portal), down left photo Stomorhina lunata by Paulo A. V. Borges (from Azorean Biodiversity Portal) and down right photo Anaspis proteus by Paulo A. V. Borges (from Azorean Biodiversity Portal). Figure 1.3 13 Example of a bipartite graph. Figure 1.4 20 A schematic insight of doctoral thesis approach and contents. Chapter 2 Figure 2.1 26 Land-use distribution map of Terceira Island with the selected sampling sites as black dots: NatFor (natural forests), SemiPast (semi-natural pastures), NatVeg (naturalized vegetation areas), ExoFor (exotic forests), IntPast (intensively managed pastures) (cartographic information from DROTRH (2008) and Gaspar (2007), see also Gaspar et al. (2011)). Figure 2.2 34 Species accumulation curves for several non-parametric estimators and for singletons and doubletons of the different habitat types. The observed species accumulation curve (Obs), abundance-based estimators Chao 1 and Jackknife 1 (Jack 1ab), species collected once (singletons, S1), species collected twice (doubletons, S2). Figure 2.3 35 Slopes of species accumulation curves for non-parametric abundance-based estimators Chao 1 and Jackknife 1 (Jack 1ab) of the different habitat types: NatFor (natural forests), NatVeg (naturalized vegetation areas), ExoFor (exotic forests), SemiPast (semi-natural pastures), IntPast (intensive pastures). Figure 2.4 36 Species diversity metrics of flower-visiting insects across the different habitat types. (a)Mean abundance, (b) mean species richness, (c) Shannon-Wiener H´, (d) Pielou’s Evenness J´ and (e) Inverse Berger-Parker 1/Dominance. For species richness (b), habitat types accompanied by a different letter are significantly different from each other (post hoc tests; P < 0.05). NatFor (natural forests), NatVeg (naturalized vegetation areas), ExoFor (exotic forests), SemiPast (semi-natural pastures), and IntPast (intensively managed pastures). Figure 2.5 38 Two-dimensional ordination solution using non-metric multidimensional scaling (NMDS) with the β diversity measures βtotal (a) and βrepl (b) for flower-visiting insects. Dots indicate transects while lines delimit the smallest polygon that encloses all transects for a given habitat. The stress value of NMDS was 0.17 and 0.18 for βtotal and βrepl respectively. NatFor (natural forest), NatVeg (naturalized vegetation areas), ExoFor (exotic forest), SemiPast (semi-natural pasture), and IntPast (intensively managed pasture). Figure 2.6 39 Correlations between species composition (β diversity) of flower-visiting insects and plants across the 50 transects. Correlations were performed with βtotal (a) βrepl (b) and βrich (c). Spearman correlation coefficient and its associated p-values of the Mantel test are given on the top of each panel. NatFor (natural forest), NatVeg (naturalized vegetation areas), ExoFor (exotic forest), SemiPast (semi-natural pasture) and IntPast (intensively managed pasture). Figure 2.7 41 Species abundance distribution (SADs) histograms for flower-visiting insects, with predicted values of the gambin model (black dots), for all habitats, (a), natural forest (b), naturalized vegetation (c), exotic forest (d) semi-natural pasture (e), and intensively managed pasture (f). The following binning system was used: bin 1 corresponds to the number of species with 1 individual per species, bin 2 corresponds to the number of species with 2-3 individuals per species, bin 3 corresponds to the number of species with 4-7 individuals per species, etc. (see Gray et al., 2006 and Matthews et al., 2014). Chapter 3 Figure 3.1 55 Bipartite graphs for quantitative pollination network of insects and plants, for the five habitats pooled together and for the each habitat separately. Insect species are shown as rectangles at the top and plant species at the bottom. Lines connecting upper and lower boxes represent interactions between pollinator insects and plant species, and line thickness is scaled to the number of interactions. Figure 3.2 56 The phylogenetic tree for the 54 species of insects collected in the present study with the four or orders in different colours. The names of the species are given at the tips. Figure 3.3 57 Linear regressions between log incidence link and log pollinator abundance. Regressions: a, correspond to natural forests; b, to naturalized vegetation areas; c, to exotic forests; d, to semi-natural pastures and e, to intensive pastures. Figure 3.4 59 Rank abundance distribution of the plant-insect interactions: (a) linkage level and (b) linkage density, for the different habitat types: NatFor (natural forests), NatVeg (naturalized vegetation areas), ExoFor (exotic forests), SemiPast (semi-natural pastures), IntPast (intensive