Official Record139 Eng.Pdf (‎6.539Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Official Record139 Eng.Pdf (‎6.539Mb) OFFICIAL RECORDS OF THE WORLD HEALTH ORGANIZATION No. 139 THE WORK OF WHO 1964 ANNUAL REPORT OF THE DIRECTOR -GENERAL TO THE WORLD HEALTH ASSEMBLY AND TO THE UNITED NATIONS The Financial Report, 1 January -31 December 1964, whichconstitutes a supplementtothisvolume,is published separately as OfficialRecords No. 142. WORLD HEALTH ORGANIZATION GENEVA March 1965 The following abbreviations are used in the Official Records of the World Health Organization: ACABQ - Advisory Committee on Administrative and Budgetary Questions ACC - Administrative Committee on Co- ordination CCTA - Commission for Technical Co- operation in Africa CIOMS - Council for International Organizations of Medical Sciences ECA - Economic Commission for Africa ECAFE - Economic Commission for Asia and the Far East ECE Economic Commission for Europe ECLA - Economic Commission for Latin America EPTA - Expanded Programme of Technical Assistance FAO - Food and Agriculture Organization IAEA - International Atomic Energy Agency ICAO - International Civil Aviation Organization ILO - International Labour Organisation (Office) IMCO - Inter -Governmental Maritime Consultative Organization ITU - International Telecommunication Union MESA - Malaria Eradication Special Account OIHP - Office International d'Hygiène Publique PAHO - Pan American Health Organization PASB - Pan American Sanitary Bureau TAB - Technical Assistance Board TAC - Technical Assistance Committee UNESCO - United Nations Educational, Scientific and Cultural Organization UNICEF - United Nations Children's Fund UNRWA - United Nations Relief and Works Agency for Palestine Refugees in the Near East UNSCEAR - United Nations Scientific Committee on the Effects of Atomic Radiation WFUNA - World Federation of United Nations Associations WMO - World Meteorological Organization © World Health Organization 1965 Publications of the World Health Organization enjoy copyright protection in accordance with the provisions of Protocol 2 of the Universal Copyright Convention.Nevertheless governmental agencies or learned and professional societies may reproduce data or excerpts or illustrations from them without requesting an authorization from the World Health Organization. For rights of reproduction or translation of WHO publications in toto, application should be made to the Division of Editorial and Reference Services, World Health Organization, Geneva, Switzerland.The World Health Organization welcomes such applications. PRINTED IN SWITZERLAND - II - CONTENTS Page Introduction v PART I - GENERAL REVIEW Chapter1. Malaria Eradication 3 Chapter2. Communicable Diseases Tuberculosis - Endemic Treponematoses and Venereal Infections - Veterinary Public Health - Virus Diseases - Parasitic Diseases - Bacterial Diseases - Leprosy - International Quarantine 6 Chapter3. Environmental Health Community Water Supply - Wastes Disposal - Environmental Pollution Sanitation Services and Housing - Environmental Biology - Vector Control and Insecticide Resistance 27 Chapter4. Public Health Services Public Health Administration - National Health Planning - Organization of Medical Care - Health Laboratory Services - Nursing - Health Education - Maternal and Child Health 35 Chapter5. Health Protection and Promotion Cancer - Cardiovascular Diseases - Dental Health - Human Genetics - Mental Health - Nutrition - Radiation and Isotopes - Social and Occupational Health. 42 Chapter6. Education and Training 51 Chapter7. Medical Research 55 Chapter8. Health Statistics 57 Chapter9. Biology and Pharmacology Pharmacology and Toxicology - Biological Standardization - Immunology - Pharmaceuticals 59 Chapter 10.Publications and Reference Services 63 Chapter 11.Public Information 65 Chapter 12.Constitutional, Financial and Administrative Developments Constitutional and Legal - The Financial Position - Administration 67 Chapter 13.Co- operation with other Organizations 71 PART II - THE REGIONS Chapter 14.African Region 79 Chapter 15.Region of the Americas 86 Chapter 16.South -East Asia Region 97 Chapter 17.European Region 103 Chapter 18.Eastern Mediterranean Region 108 Chapter 19.Western Pacific Region 116 65424 PART III - PROJECT LIST Page Projects in Operation in 1964 126 Africa 127 The Americas 137 South -East Asia 156 Europe 168 Eastern Mediterranean 178 Western Pacific 191 Inter -regional 201 ANNEXES 1. Members and Associate Members of the World Health Organization 211 2.Membership of the Executive Board 212 3. Expert Advisory Panels and Committees 213 4.Organizational Meetings and Meetings of Expert Committees and Advisory Groups 221 5. Tentative Schedule of WHO Organizational Meetings in 1965 225 6. Non -governmental Organizations in Official Relations with WHO 226 7. Regular Budget for 1964 227 8. Structure of the Headquarters Secretariat 228 9.Numbers and Distribution of the Staff 229 10. Composition of the Staff by Nationality 231 11. Status. of Malaria Eradication 232 12. Fellowships awarded, by Subject of Study and by Region 233 13. WHO Collaborative Research Projects 235 14.Research Grants for Training and Exchange 236 15. WHO International and Regional Reference Centres, and Institutions where they are located 237 MAP 1. WHO Regional Offices and the Areas they serve 78 The designations employed and the presentation of the materialin this publication do not imply the expression of any opinion whatsoever on the part of the Director -General of the World Health Organization concerning the legal status of any country or territory or of its authorities, or concerning the delimitation of its frontiers. - tv - INTRODUCTION SEVENTEEN years after the creation of the World Health Organization the control of communicable diseases isstill the most important health challenge facing mankind.For example, the quarantinable diseases, which many people think of as scourges of the past, are still daily realities.The incidence of plague is increasing in certain areas; cholera has taken the lives of thousands of people in recent years; smallpox continues to be a major hazard to all nations with the number of cases reported in Africa, Latin America and South -East Asia running into tens of thousands a year. Malaria is far from being eradicated. Tuberculosis remains one of the most widespread infectious diseases in both the developing and the developed parts of the world. There has been a definite up -surge in the incidence of syphilis and gonorrhoea.Yaws still constitutes a major public health hazard in many parts of the tropical and sub- tropical belts. Gastro- intestinal disorders are among the outstanding causes of morbidity, as well as of mortality, especially among infants and young children.In respect of some diseases for instance bilharziasis, filariasis and other helminthiases-progress is severely handicapped by lack of knowledge.In other cases, for example malaria eradication, international assistance in the financing and the organizing of campaigns has not yet reached the desired level. The most formidable obstacle to bringing communicable diseases under control, however, is that mast of the countries concerned do not yet have an adequately functioning public health service. The need for emphasis to be laid on the strengthening of health services became evident early in WHO's history.It was clear that the organization and administration of health services at both the local and national levels was an essential pre- condition for the lasting success of all public health activities. And indeed, quite a number of WHO programmes have been, and are being, carried out with this aim in view.The accumulated experience acquired has shown that while piecemeal and dispersed efforts are undeniably useful in breaking the vicious circle of disease, low productivity and poverty, the ultimate goal must be the establishment of permanent, well -staffed and effective health services. There is no doubt that this task can better be accomplished within the framework of national health plans conceived as an integral part of an overall scheme for the economic and social development of the country. It is against this background that the Organization's efforts in the field of national health planning over the last few years should be viewed. The task has not been an easy one. Statistics, an essential tool in all planning, are incomplete in most of the countries concerned.While this component of long -term programmes is being developed, one has to be satisfied with project proposals for dealing with speck problems. Planning is the product of a creative state of mind and a mature approach to needs and the -V- ways to satisfy them. It calls for the ability to discern an order of priorities and therefore to renounce immediate possibilities for the sake of essential and lasting results.Thus a sustained educational process preparing those responsible for health planning in their respective countries is as necessary as the various types of technical training. Despite a gratifying amount of goodwill and, in some countries, even enthusiasm for this arduous task, it will be a long time before the developing areas can fully enjoy the advantages to be derived from national plans for economic and social development.Such schemes will have to incorporate the country's efforts towards improvement of human resources, the increase of economic opportunities by raising the general levels of health, and the expansion of facilities for technical education and training. Meanwhile, however, some promising advances can be recorded.The ever -growing interest of countries in this fundamental aspect of
Recommended publications
  • Technical Information
    Technical Information Antibiotic Assay Medium No.1 (Seed Agar) Product Code : DM1003 Application: - Antibiotic Assay Medium No.1 (Seed Agar) is used in the microbiological assay of beta-lactam and other antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 6.000 or detecting faecal coliforms drinking in water waste water, seawater and foods samples by MPN Method. Casein enzymic hydrolysate 4.000 Yeast extract 3.000 Beef extract 1.500 Dextrose 1.000 Agar 15.000 Final pH (at 25°C) 6.6±0.2 **Formula adjusted, standardized to suit performance parameters Principle & Interpretation The potency of an antibiotic can be determined by chemical, physical and biological methods. An assay is performed to determine the ability of an antibiotic to kill or inhibit the growth of living microorganisms. Biological tests offer the most convenient m eans of performing an assay (1), since a reduction in the antimicrobial activity of a specific antibiotic reveals changes that is not usually displayed by chemical methods (2). Antibacterial susceptibility testing may be performed by either dilution (turbidimetric) or diffusion methods. The choice o f methodology is based on many factors, including ease of performance, flexibility and use of automated or semi-automated devices for both identification and susceptibility testing (3). Grove and Randall have elucidated antibiotic assays and media in their comprehensive treatise on antibiotic assays (4). Antibiotic Assay Medium No.1 is used in the microbiological assay of ß-lactam and other antibiotics. These media are prepared according to the specifications detailed in various pharmacopoeias (2-6) and by the FDA (7).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,662.400 B2 Smith Et Al
    USOO9662400B2 (12) United States Patent (10) Patent No.: US 9,662.400 B2 Smith et al. (45) Date of Patent: *May 30, 2017 (54) METHODS FOR PRODUCING A (2013.01); C08B 37/003 (2013.01); C08L 5/08 BODEGRADABLE CHITOSAN (2013.01); A6 IK 38/00 (2013.01); A61 L COMPOSITION AND USES THEREOF 2300/404 (2013.01) (58) Field of Classification Search (71) Applicant: University of Memphis Research CPC ...... A61K 47/36; A61K 31/00; A61K 9/7007; Foundation, Memphis, TN (US) A61K 9/0024; A61 L 15/28: A61L 27/20; A61L 27/58: A61L 31/042; C08B 37/003 (72) Inventors: James Keaton Smith, Memphis, TN USPC ................................ 514/23, 40, 777; 536/20 (US); Ashley C. Parker, Memphis, TN See application file for complete search history. (US); Jessica A. Jennings, Memphis, (56) References Cited TN (US); Benjamin T. Reves, Memphis, TN (US); Warren O. U.S. PATENT DOCUMENTS Haggard, Bartlett, TN (US) 4,895,724. A * 1/1990 Cardinal .............. A61K9/0024 424,278.1 (73) Assignee: The University of Memphis Research 5,541,233 A 7/1996 Roenigk Foundation, Memphis, TN (US) 5,958,443 A 9/1999 Viegas et al. 6,699,287 B2 3/2004 Son et al. (*) Notice: Subject to any disclaimer, the term of this 6,989,157 B2 1/2006 Gillis et al. patent is extended or adjusted under 35 7,371.403 B2 5/2008 McCarthy et al. 2003, OO15825 A1 1/2003 Sugie et al. U.S.C. 154(b) by 0 days. 2003/0206958 A1 11/2003 Cattaneo et al.
    [Show full text]
  • Antibiotic Assay Medium No. 3 (Assay Broth) Is Used for Microbiological Assay of Antibiotics. M042
    HiMedia Laboratories Technical Data Antibiotic Assay Medium No. 3 (Assay Broth) is used for M042 microbiological assay of antibiotics. Antibiotic Assay Medium No. 3 (Assay Broth) is used for microbiological assay of antibiotics. Composition** Ingredients Gms / Litre Peptic digest of animal tissue (Peptone) 5.000 Beef extract 1.500 Yeast extract 1.500 Dextrose 1.000 Sodium chloride 3.500 Dipotassium phosphate 3.680 Potassium dihydrogen phosphate 1.320 Final pH ( at 25°C) 7.0±0.2 **Formula adjusted, standardized to suit performance parameters Directions Suspend 17.5 grams in 1000 ml distilled water. Heat if necessary to dissolve the medium completely. Sterilize by autoclaving at 15 lbs pressure (121°C) for 15 minutes. Advice:Recommended for the Microbiological assay of Amikacin, Bacitracin, Capreomycin, Chlortetracycline,Chloramphenicol,Cycloserine,Demeclocycline,Dihydrostreptomycin, Doxycycline, Gentamicin, Gramicidin, Kanamycin, Methacycline, Neomycin, Novobiocin, Oxytetracycline, Rolitetracycline, Streptomycin, Tetracycline, Tobramycin, Trolendomycin and Tylosin according to official methods . Principle And Interpretation Antibiotic Assay Medium is used in the performance of antibiotic assays. Grove and Randall have elucidated those antibiotic assays and media in their comprehensive treatise on antibiotic assays (1). Antibiotic Assay Medium No. 3 (Assay Broth) is used in the microbiological assay of different antibiotics in pharmaceutical and food products by the turbidimetric method. Ripperre et al reported that turbidimetric methods for determining the potency of antibiotics are inherently more accurate and more precise than agar diffusion procedures (2). Turbidimetric antibiotic assay is based on the change or inhibition of growth of a test microorganims in a liquid medium containing a uniform concentration of an antibiotic. After incubation of the test organism in the working dilutions of the antibiotics, the amount of growth is determined by measuring the light transmittance using spectrophotometer.
    [Show full text]
  • Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy Using Machine Learning
    Prediction of Premature Termination Codon Suppressing Compounds for Treatment of Duchenne Muscular Dystrophy using Machine Learning Kate Wang et al. Supplemental Table S1. Drugs selected by Pharmacophore-based, ML-based and DL- based search in the FDA-approved drugs database Pharmacophore WEKA TF 1-Palmitoyl-2-oleoyl-sn-glycero-3- 5-O-phosphono-alpha-D- (phospho-rac-(1-glycerol)) ribofuranosyl diphosphate Acarbose Amikacin Acetylcarnitine Acetarsol Arbutamine Acetylcholine Adenosine Aldehydo-N-Acetyl-D- Benserazide Acyclovir Glucosamine Bisoprolol Adefovir dipivoxil Alendronic acid Brivudine Alfentanil Alginic acid Cefamandole Alitretinoin alpha-Arbutin Cefdinir Azithromycin Amikacin Cefixime Balsalazide Amiloride Cefonicid Bethanechol Arbutin Ceforanide Bicalutamide Ascorbic acid calcium salt Cefotetan Calcium glubionate Auranofin Ceftibuten Cangrelor Azacitidine Ceftolozane Capecitabine Benserazide Cerivastatin Carbamoylcholine Besifloxacin Chlortetracycline Carisoprodol beta-L-fructofuranose Cilastatin Chlorobutanol Bictegravir Citicoline Cidofovir Bismuth subgallate Cladribine Clodronic acid Bleomycin Clarithromycin Colistimethate Bortezomib Clindamycin Cyclandelate Bromotheophylline Clofarabine Dexpanthenol Calcium threonate Cromoglicic acid Edoxudine Capecitabine Demeclocycline Elbasvir Capreomycin Diaminopropanol tetraacetic acid Erdosteine Carbidopa Diazolidinylurea Ethchlorvynol Carbocisteine Dibekacin Ethinamate Carboplatin Dinoprostone Famotidine Cefotetan Dipyridamole Fidaxomicin Chlormerodrin Doripenem Flavin adenine dinucleotide
    [Show full text]
  • Application of Various Chemotherapeutic Agents in Experimental Bovine Anaplasmosis S.K
    APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS S.K. Sharma, D.P. Banerjee, O.P. Gautam To cite this version: S.K. Sharma, D.P. Banerjee, O.P. Gautam. APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS. Annales de Recherches Vétérinaires, INRA Editions, 1977, 8 (3), pp.307-313. hal-00900943 HAL Id: hal-00900943 https://hal.archives-ouvertes.fr/hal-00900943 Submitted on 1 Jan 1977 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. APPLICATION OF VARIOUS CHEMOTHERAPEUTIC AGENTS IN EXPERIMENTAL BOVINE ANAPLASMOSIS S.K. SHARMA, D.P. BANERJEE O.P. GAUTAM Department of Veterinary Medicine, College of Veterinary Sciences, Haryana Agricultural University, Hlssar-125004, Haryana, India ’ Résumé UTILISATION DE DIVERS AGENTS CHIMIOTHERAPEUTIQUES AU COURS DE L’ANAPLAS- MOSE BOVINE EXPERIMENTALE. ― Un essai de traitement a été réalisé avec différents agents ehimiothérapeutiques, sur des cas cliniques ou des porteurs inapparents d’ana- plasmose bovine expérimentale. La Dithiosemicarbazone (associée à l’Oxytétracycline), le Chloramphénicol et la Rolitétracycline ont très efficacement entraîné la guérison clinique et l’élimination des agents pathogènes. L’imidocarb a entraîné la guérison clinique sans supprimer complètement les microorganismes.
    [Show full text]
  • EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use
    Ref. Ares(2019)6843167 - 05/11/2019 31 October 2019 EMA/CVMP/158366/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 37(4) of Regulation (EU) 2019/6 on veterinary medicinal products – Criteria for the designation of antimicrobials to be reserved for treatment of certain infections in humans Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Introduction On 6 February 2019, the European Commission sent a request to the European Medicines Agency (EMA) for a report on the criteria for the designation of antimicrobials to be reserved for the treatment of certain infections in humans in order to preserve the efficacy of those antimicrobials. The Agency was requested to provide a report by 31 October 2019 containing recommendations to the Commission as to which criteria should be used to determine those antimicrobials to be reserved for treatment of certain infections in humans (this is also referred to as ‘criteria for designating antimicrobials for human use’, ‘restricting antimicrobials to human use’, or ‘reserved for human use only’). The Committee for Medicinal Products for Veterinary Use (CVMP) formed an expert group to prepare the scientific report. The group was composed of seven experts selected from the European network of experts, on the basis of recommendations from the national competent authorities, one expert nominated from European Food Safety Authority (EFSA), one expert nominated by European Centre for Disease Prevention and Control (ECDC), one expert with expertise on human infectious diseases, and two Agency staff members with expertise on development of antimicrobial resistance .
    [Show full text]
  • Of Significant in Vitro Antagonism Between Penicillin, Cephalothin, and Rolitetracycline FRANZ D
    ANTIMICROBIAL AGENTS AND CHEmoTHzRAPY, Nov. 1976, p. 802-808 Vol. 10, No. 5 Copyright © 1976 American Society for Microbiology Printed in U.S.A. Combination of Bacteriostatic and Bactericidal Drugs: Lack of Significant In Vitro Antagonism Between Penicillin, Cephalothin, and Rolitetracycline FRANZ D. DASCHNERI Children Hospital, Division ofAntimicrobial Therapy, University ofMunich, 8 Munich 2, Germany Received for publication 16 April 1976 Although it is generally believed that bactericidal and bacteriostatic drugs should not be combined in vivo, in vitro experiments using the checkerboard dilution technique revealed no antagonism between penicillin/cephalothin and rolitetracycline but rather additive or synergistic activity of either drug combi- nation in 40 to 50% of20 Escherichia coli and 14 Staphylococcus aureus strains. Slight antagonism occurred only between 3 and 8 h after combining penicillin/ cephalothin and rolitetracycline in either bacteriostatic or bactericidal concen- trations, but not after 24 h of incubation, nor was antagonism found with combinations of these drugs in bacteriostatic concentrations. Neither bacterio- static nor bactericidal activity of penicillin/cephalothin and rolitetracycline was inhibited by pretreatment of one E. coli strain with bacteriostatic rolitetracyc- line or bacteriostatic penicillin/cephalothin concentrations. Penicillin and ceph- alothin could exert a bactericidal effect after 2-h exposure of theE. coli strain to bacteriostatic rolitetracycline concentrations. Combined action of subinhibitory penicillin and rolitetracycline concentrations resulted in more pronounced inhi- bition of growth than either drug alone. The higher activity of penicillin/ cephalothin in combination with rolitetracycline on some E. coli and S. aureus strains might be due to a better access of rolitetracycline into bacterial cells whose cell walls have been weakened by cell wall-active, bactericidal drugs.
    [Show full text]
  • Characterization and in Vitro Release Studies of Tetracycline and Rolitetracycline Imobilized on Anionic Collagen Membranes
    Materials Research, Vol. 12, No. 1, 69-74, 2009 © 2009 Characterization and in vitro Release Studies of Tetracycline and Rolitetracycline Imobilized on Anionic Collagen Membranes Gilberto Goissisa*, Maria Helena de Sousab* aDepartamento de Produção, Biotech Biomédica Produtos Médicos e Odontológicos Ltda. Rua Santos Dumont, 800, Vila Celina, 13566-445 São Carlos - SP, Brazil bFaculdade Farmácia, Campus de Jatai, Universidade Federal de Goiás – UFG, Jatai - GO, Brazil Received: June 20, 2008; Revised: January 6, 2009 This work reports the covalent immobilization of tetracycline and rolitetracycline over anionic collagen membranes and the drug release studies as an effort to develop a two stage drug release based on diffusion (fast release) and on the rate of membrane biodegradation (slow release). Independent from casting conditions antibiotics incorporated by dispersion were released in the range from 80 to 100% within 7 hours in concentrations significantly higher than those described for the prevention of bacterial growth. Antibiotic release within this period was predominantly diffusion controlled. Covalent immobilization by a modified azide procedure occurred with preservation of collagen structure independently from pH of casting and reaction conditions. Its expected that anionic collagen membranes with dispersed and covalently bound rolitetracycline or tetracycline, in association with conventional therapy, may significantly reduce membrane induced infections observed post-implantation, one of the major problem associated with periodontal ligaments reconstruction by the Guided Tissue Regeneration procedure. Keywords: antibiotic, immobilization, covalent, release, collagen, membranes 1. Introduction Sustained drug release technology1 is being applied from protein this purpose formulations include tetracycline fibber, doxycycline hormones such as insulin for the treatment of diabetes2 to antibiotics polymer, chlorhexidine chip, minocycline ointment and metronida- for the prevention or minimization of bacterial infection3-5.
    [Show full text]
  • European Surveillance of Healthcare-Associated Infections in Intensive Care Units
    TECHNICAL DOCUMENT European surveillance of healthcare-associated infections in intensive care units HAI-Net ICU protocol Protocol version 1.02 www.ecdc.europa.eu ECDC TECHNICAL DOCUMENT European surveillance of healthcare- associated infections in intensive care units HAI-Net ICU protocol, version 1.02 This technical document of the European Centre for Disease Prevention and Control (ECDC) was coordinated by Carl Suetens. In accordance with the Staff Regulations for Officials and Conditions of Employment of Other Servants of the European Union and the ECDC Independence Policy, ECDC staff members shall not, in the performance of their duties, deal with a matter in which, directly or indirectly, they have any personal interest such as to impair their independence. This is version 1.02 of the HAI-Net ICU protocol. Differences between versions 1.01 (December 2010) and 1.02 are purely editorial. Suggested citation: European Centre for Disease Prevention and Control. European surveillance of healthcare- associated infections in intensive care units – HAI-Net ICU protocol, version 1.02. Stockholm: ECDC; 2015. Stockholm, March 2015 ISBN 978-92-9193-627-4 doi 10.2900/371526 Catalogue number TQ-04-15-186-EN-N © European Centre for Disease Prevention and Control, 2015 Reproduction is authorised, provided the source is acknowledged. TECHNICAL DOCUMENT HAI-Net ICU protocol, version 1.02 Table of contents Abbreviations ...............................................................................................................................................
    [Show full text]
  • Antibiotics and Antibiotic Resistance
    This is a free sample of content from Antibiotics and Antibiotic Resistance. Click here for more information on how to buy the book. Index A Antifolates. See also specific drugs AAC(60)-Ib-cr, 185 novel compounds, 378–379 ACHN-975 overview, 373–374 clinical studies, 163–164 resistance mechanisms medicinal chemistry, 166 sulfamethoxazole, 378 structure, 162 trimethoprim, 374–378 AcrAB-TolC, 180 Apramycin, structure, 230 AcrD, 236 Arbekacin, 237–238 AdeRS, 257 Avibactam, structure, 38 AFN-1252 Azithromycin mechanism of action, 148, 153 resistance, 291, 295 resistance, 153 structure, 272 structure, 149 Aztreonam, structure, 36 AIM-1, 74 Amicoumacin A, 222 Amikacin B indications, 240 BaeSR, 257 structure, 230 BAL30072, 36 synthesis, 4 BB-78495, 162 Aminoglycosides. See also specific drugs BC-3205, 341, 344 historical perspective, 229–230 BC-7013, 341, 344 indications, 239–241 b-Lactamase. See also specific enzymes mechanism of action, 232 classification novel drugs, 237 class A, 67–71 pharmacodynamics, 238–239 class B, 69–74 pharmacokinetics, 238–239 class C, 69, 74 resistance mechanisms class D, 70, 74–77 aminoglycoside-modifying enzymes evolution of antibiotic resistance, 4 acetyltransferases, 233–235 historical perspective, 67 nucleotidyltransferases, 235 inhibitors phosphotransferases, 235 overview, 37–39 efflux-mediated resistance, 236 structures, 38 molecular epidemiology, 236–237 nomenclature, 67 overview, 17, 233 b-Lactams. See also specific classes and antibiotics ribosomal RNA modifications, 235–236 Enterococcus faecium–resistancemechanisms,
    [Show full text]
  • New Classification Framework of Tetracyclines And
    Cornell University Library Arxiv.org/quantitative-biology/biomolecules New Classification Framework and Structure-Activity- Relationship (SAR) of Tetracycline-Structure-Based Drugs Domenico Fuoco, Pharm.D., Ph.D BioTech Consultant; Member of Italian National Order of Chemists and Italian Chemical Society in Rome, Italy By studying the literature about Tetracyclines (TCs), it becomes clearly evident that TCs are very dynamic molecules. In some cases, their structure-activity-relationship (SAR) are known, especially against bacteria, while against other targets, they are virtually unknown. In other diverse yields of research, such as neurology, oncology and virology the utility and activity of the tetracyclines are being discovered and are also emerging as new technological fronts. The first aim of this paper is classify the compounds already used in therapy and prepare the schematic structure in which include the next generation of TCs. The aim of this work is introduce a new framework for the classification of old and new TCs, using a medicinal chemistry approach to the structure of that drugs. A fully documented Structure-Activity-Relationship (SAR) is presented with the analysis data of antibacterial and nonantibacterial (antifungal, antiviral and anticancer) tetracyclines. Lipophilicity of functional groups and conformations interchangeably are determining rules in biological activities of TCs. Upper peripheral modification region Introduction The number of articles published on tetracycline drugs reached the threshold of 50,000 papers since 1948. Over the last 10 years, technological fields are emerging in bacteriology and cellular physiology of eukaryotic cells. However, Lower peripheral non modifiable region chemical mechanisms of tetracyclines are not completely understood as for their action in human cells and to this day, no (Q)SAR model Figure 1.
    [Show full text]
  • Summary Report on Antimicrobials Dispensed in Public Hospitals
    Summary Report on Antimicrobials Dispensed in Public Hospitals Year 2014 - 2016 Infection Control Branch Centre for Health Protection Department of Health October 2019 (Version as at 08 October 2019) Summary Report on Antimicrobial Dispensed CONTENTS in Public Hospitals (2014 - 2016) Contents Executive Summary i 1 Introduction 1 2 Background 1 2.1 Healthcare system of Hong Kong ......................... 2 3 Data Sources and Methodology 2 3.1 Data sources .................................... 2 3.2 Methodology ................................... 3 3.3 Antimicrobial names ............................... 4 4 Results 5 4.1 Overall annual dispensed quantities and percentage changes in all HA services . 5 4.1.1 Five most dispensed antimicrobial groups in all HA services . 5 4.1.2 Ten most dispensed antimicrobials in all HA services . 6 4.2 Overall annual dispensed quantities and percentage changes in HA non-inpatient service ....................................... 8 4.2.1 Five most dispensed antimicrobial groups in HA non-inpatient service . 10 4.2.2 Ten most dispensed antimicrobials in HA non-inpatient service . 10 4.2.3 Antimicrobial dispensed in HA non-inpatient service, stratified by service type ................................ 11 4.3 Overall annual dispensed quantities and percentage changes in HA inpatient service ....................................... 12 4.3.1 Five most dispensed antimicrobial groups in HA inpatient service . 13 4.3.2 Ten most dispensed antimicrobials in HA inpatient service . 14 4.3.3 Ten most dispensed antimicrobials in HA inpatient service, stratified by specialty ................................. 15 4.4 Overall annual dispensed quantities and percentage change of locally-important broad-spectrum antimicrobials in all HA services . 16 4.4.1 Locally-important broad-spectrum antimicrobial dispensed in HA inpatient service, stratified by specialty .
    [Show full text]