4 Th APS Workshop on Opportunities in Biological Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ivan Julian Dmochowski, Ph.D
Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 P: 215-898-6459; Email: [email protected] URL: http://dmochowskigroup.chem.upenn.edu/index.html Academic Appointments Professor of Chemistry, University of Pennsylvania, July, 2015 – Present Undergraduate Chair of Chemistry, University of Pennsylvania, Jan, 2015 – Present Associate Professor of Chemistry, University of Pennsylvania, 2010 – 2015 Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2010 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2016 Crano Award, Akron Section, American Chemical Society 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications 1 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order . Chem. Comm. (9) 1031- 1032, 1996. -
Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins
J. Am. Chem. SOC.1988, 110, 435-439 435 Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins Andrew W. Axup, Michael Albin, Stephen L. Mayo, Robert J. Crutchley,' and Harry B. Gray* Contribution No. 7588 from the Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91 125. Received May 8, I987 Abstract: An experimental investigation of the distance dependence of long-range electron transfer in zinc/ruthenium-modified myoglobins has been performed. The modified proteins were prepared by substitution of zinc mesoporphyrin IX diacid (ZnP) for the heme in each of four previously characterized pentaammineruthenium(II1) (a5Ru; a = NH,) derivatives of sperm whale myoglobin (Mb): a5Ru(His-48)Mb, aSRu(His-12)Mb, a5Ru(His-l 16)Mb, a5Ru(His-81)Mb. Electron transfer from the ZnP triplet excited state (,ZnP*) to Ru3+, 3ZnP*-Ru3t -+ ZnP+-Ru2+ (AEo - 0.8 V) was measured by time-resolved transient absorption spectroscopy: rate constants (kf)are 7.0 X lo4 (His-48), 1.0 X IO2 (His-12), 8.9 X 10' (His-1 16), and 8.5 X IO' (His-81) s-' at 25 OC. Activation enthalpies calculated from the temperature dependences of the electron-transfer rates over the range 5-40 OC are 1.7 i 1.6 (His-48), 4.7 i 0.9 (His-12), 5.4 i 0.4 (His-116), and 5.6 i 2.5 (His-81) kcal mol-'. Electron-transfer distances (d = closest ZnP edge to a5Ru(His) edge; angstroms) were calculated to fall in the following ranges: His-48, 11.8-16.6; His-12, 21.5-22.3; His-116, 19.8-20.4; His-81, 18.8-19.3. -
The Electronic Structure of Biomolecular Self-Assembled Monolayers" (2012)
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 The lecE tronic Structure of Biomolecular Self- Assembled Monolayers Matthaeus Anton Wolak University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Electrical and Computer Engineering Commons, and the Materials Science and Engineering Commons Scholar Commons Citation Wolak, Matthaeus Anton, "The Electronic Structure of Biomolecular Self-Assembled Monolayers" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4258 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Electronic Structure of Biomolecular Self-Assembled Monolayers by Matthaeus Wolak A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Rudy Schlaf, Ph.D. Vinay Gupta, Ph.D. Li-June Ming, Ph.D. Arash Takshi, Ph.D. Jing Wang, Ph.D. Date of Approval: June 13, 2012 Keywords: peptide nucleic acid, tetraphenylporphyrin, work function, charge injection barrier, interface dipole, XPS Copyright © 2012, Matthaeus Wolak DEDICATION I dedicate my dissertation to my girlfriend Emily Helmrich, and my parents Margarete and Anton Wolak, who supported me throughout the process and always had the right words of encouragement for me. I am very grateful to you and will always appreciate all that you have done for me. -
Ivan Julian Dmochowski, Ph.D
Ivan Julian Dmochowski, Ph.D. Department of Chemistry, University of Pennsylvania 231 South 34 th Street, Philadelphia, PA 19104-6323 URL: http://www.sas.upenn.edu/~ivandmo/ Phone: 215-898-6459; Fax: 215-898-2037 Email: [email protected] Academic Appointments Associate Professor of Chemistry, University of Pennsylvania, 2010 – Present Assistant Professor of Chemistry, University of Pennsylvania, 2003 – 2009 Education California Institute of Technology, Pasadena, CA Helen Hay Whitney Postdoctoral Scholar in Biophysics, Sept. 2000 – Dec. 2002 California Institute of Technology, Pasadena, CA Ph.D. in Chemistry, May 2000, 1995-00 Johannes Gutenberg Universität, Mainz, Germany Research Fellow in Chemistry, 1994-95 Harvard College, Cambridge, MA A.B. in Chemistry, Magna cum Laude, 1990-94 Selected Honors 2012 Awardee, McKnight Technological Innovations in Neuroscience 2011 Awardee, McGroddy Frontiers in Science, St. Joseph’s Univ. 2010 Invitee, National Academies Keck Futures Initiative Imaging Meeting 2007 Camille and Henry Dreyfus Teacher-Scholar Award 2005 NSF CAREER Award 2003 Camille and Henry Dreyfus New Faculty Award 2000 Herbert Newby McCoy Award, Caltech Chemistry Department 1990 United States Presidential Scholar Fellowships 2001-02 Helen Hay Whitney Postdoctoral Fellow 1999-00 N.I.H. Bioorganic/Bioinorganic Training Grant 1996-99 N.I.H. Biotechnology Training Grant Peer-Reviewed Publications: h-index = 21 (March, 2013) 1. J.A. Rego, S. Kumar, I.J. Dmochowski, H. Ringsdorf, Synthesis of novel mixed tail triphenylene discotic liquid crystals - The search for higher order. Chem. Comm. (9) 1031- 1032, 1996. 1 2. J.J. Wilker, I.J. Dmochowski, J.H. Dawson, J.R. Winkler, H.B. Gray, Substrates for rapid delivery of electrons and holes to buried active sites in proteins . -
6Th IC4N Book of Abstracts
IC4N SPONSORS 2019 BOOK OF ABSTRACTS 6th International Conference from Nanoparticles & Nanomaterials to Nanodevices & Nanosystems Edited by: Efstathios I. Meletis CORFU, GREECE • JUNE 30 – JULY 3 This work is licensed under a Creative Commons Attribution 4.0 International License. (https://creativecommons.org/licenses/by/4.0/) It can be accessed in the University of Texas at Arlington’s institutional repository, ResearchCommons, at: http://hdl.handle.net/10106/28271 Publication Design and Formatting by Brittany Griffiths Cover Design by Brittany Griffiths Published and made openly accessible by: University of Texas at Arlington Libraries 702 Planetarium Pl. Arlington, TX 76019 Published in 2019 ISBN 978-0-9898878-6-1 Mavs Open Press 2019 University of Texas at Arlington BOOK OF ABSTRACTS 6th IC4N • 2019 Table of Contents xiii Foreword xv Conference Symposia Plenary Lecture xviii Radical Molecular Nanotechnology Sir Fraser Stoddart Keynote Lectures xx Artificial Magnetic Atoms Björgvin Hjörvarsson, Vassilios Kapaklis xxi Chemistry and Devices from Halide Perovskites Semiconductors Mercouri G. Kanatzidis Conference Abstracts 2 Impact of Nanoparticles on Amyloid Peptide and Protein Aggregation T. John, H.J. Risselada, B. Abel 3 Mechanistics of Spectrum Manipulation, Energy and Electron Transfer Reaction in Hybrid Materials Maria Abrahamsson, Elin Sundin, Deise Barbosa de Mattos, Mark Johnstone, Ambra Dreos, Henrik Sundén 4 From Carbon-Rich Molecules to Carbon-Rich Materials Igor Alabugin 5 Preparation and Characterization of Nanostructured AgNiO Thin Films A. Stamatelatos, N. Kanistras, D. I. Anyfantis, E. Violatzi, D. Geralis, S. Grammatikopoulos, M. Tsarmpopoulou, M.M. Sigalas, P. Poulopoulos 6 Responsive Self-Assembled Peptide Biomaterials and Applications Chrysanthi Pinelopi Apostolidou, Anna Mitraki i ii TABLE OF CONTENTS 7 Coexistence of Ferroelectricity and Two-Dimensional Electron Gas at an Oxide Interface A. -
View / Download 3.9 Mb
A Symphony of Charge Transfer Theory, Conductive DNA Junction Modeling and Chemical Library Design by Yuqi Zhang Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Supervisor ___________________________ Katherine Franz ___________________________ Jie Liu ___________________________ Weitao Yang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2016 i v ABSTRACT A Symphony of Charge Transfer Theory, Conductive DNA Junction Modeling and Chemical Library Design by Yuqi Zhang Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Supervisor ___________________________ Katherine Franz ___________________________ Jie Liu ___________________________ Weitao Yang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2016 i v Copyright by Yuqi Zhang 2016 Abstract Biological electron transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multi-step hopping. Yet, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecule and its medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative. -
Forty-First DOE Solar Photochemistry P.I. Meeting
Proceedings of the Forty-First DOE Solar Photochemistry P.I. Meeting Gaithersburg Marriott Washingtonian Center Gaithersburg, Maryland June 3-5, 2019 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy FOREWORD The 41st Department of Energy Solar Photochemistry Principal Investigators’ Meeting, sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, is being held June 3-5, 2019 at the Washingtonian Marriott in Gaithersburg, Maryland. These proceedings include the meeting agenda, abstracts of the formal presentations and posters, and a list of participants. The Solar Photochemistry Program supports fundamental, molecular-level research on solar energy capture and conversion in the condensed phase and at interfaces. This conference is the annual meeting of the grantees who conduct research with support from this Program. The gathering is intended to facilitate the exchange of ideas and foster collaboration among these researchers. The meeting this year features an invited presentation by Harry Atwater, Director of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is the Department of Energy’s Fuels from Sunlight Energy Innovation Hub, a multi-investigator research and development center that was established in 2010 and renewed in 2015. Its mission is currently focused on creating a scientific foundation for the solar-driven conversion of carbon dioxide into renewable transportation fuels. Prof. Atwater will tell us about recent JCAP discoveries and research accomplishments. I would like to express my thanks to Justin Johnson who continues to spend part of his time as a detailee for the Solar Photochemistry Program, assisting with numerous critical behind-the- scenes tasks. -
Thirty-Fourth DOE Solar Photochemistry Research Conference
Proceedings of the Solar Photo Thirty-Fourth Chemistry DOE Solar Photochemistry Research Conference Catalysis acceptors active site H2S S Mo H2 2S S antennae The Westin Annapolis, Annapolis, Maryland, June 3-6, 2012 Sponsored by: Chemical Sciences, Geosciences, and Biosciences Division U.S. Department of Energy Cover Graphics The cover figures are taken from the abstracts of this meeting. The symbol for catalysis (upper right corner) is a 147-atom Au nanoparticle decorated with Pt (Crooks et al., p. 88). In the middle section, from the left, the first figure is a representation of detection of single sulfur atoms at the edge of industry style MoS2 crystals (Kisielowski et al., p. 187). The second figure shows how 13C-labeled single wall carbon nanotubes modify vibrational energies (Blackburn et al., p. 116). The figure on the right is an idealized heterometallic modular system for water oxidation (Verani et al., p. 53). The bottom figure shows the structure of a new family redox shuttle for dye-sensitized solar cells (Hupp, p. 143). Program and Abstracts 34th Solar Photochemistry Program Research Meeting The Westin Annapolis Annapolis, Maryland June 3–6, 2012 Chemical Sciences, Geosciences, and Biosciences Division Office of Basic Energy Sciences Office of Science U.S. Department of Energy This document was produced under contract number DE-AC05-06OR23100 between the U.S. Department of Energy and Oak Ridge Associated Universities. The research grants and contracts described in this document are supported by the U.S. DOE Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences and Biosciences Division. Foreword The 34th Department of Energy Solar Photochemistry Research Meeting, sponsored by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, is being held June 3–6, 2010, at the Westin Annapolis Hotel in Annapolis, Maryland. -
ICPP-10 Scientific Program
scientific program Organized by Society of Porphyrins and Phthalocyanines (SPP) Scope of the Conference All aspects of porphyrins, phthalocyanines and related macrocycles will be discussed in the form of Plenary Lectures, Oral and Poster presentations over the full five-day period of the meeting. Five scientists will be honored by Lifetime Achievement Awards in 2018 and three JPP/SPP Young Investigator Awards will also be presented at the meeting. In addition, the John Shelnutt Young Investigator Award will be presented again in 2018. All awards will be accompanied by highlighted award lectures. Co-chairs Dirk M. Guldi Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen, Germany Norbert Jux Friedrich-Alexander Universität Erlangen-Nürnberg 91058 Erlangen, Germany SPP website https://spp-jpp.org ICPP-10 website http://www.icpp-spp.org All rights reserved. No part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher. No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of product liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. Copyright © 2018 Society of Porphyrins & Phthalocyanines | Journal of Porphyrins and Phthalocyanines SPP Office | ICMUB | Université Bourgogne Franche Comté 9 avenue Alain Savary. BP 47870 21078 DIJON Cedex FRANCE arranged by day Sunday July 1, 2018 - PM . 1 Monday July 2, 2018 - AM . 2 Monday July 2, 2018 - PM . 12 Tuesday July 3, 2018 - AM . -
Nonadiabatic Control for Quantum Information Processing And
UNIVERSITY OF CALGARY Nonadiabatic Control for Quantum Information Processing and Biological Electron Transfer by Nathan S. Babcock A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS AND ASTRONOMY CALGARY, ALBERTA April, 2015 c Nathan S. Babcock 2015 Abstract In this Thesis, I investigate two disparate topics in the fields of quantum information processing and macromolecular biochemistry, inter-related by the underlying physics of nonadiabatic electronic transitions (i.e., the breakdown of the Born-Oppenheimer ap- proximation). The main body of the Thesis is divided into two Parts. In Part I, I describe my proposal for a two-qubit quantum logic gate to be implemented based on qubits stored using the total orbital angular momentum states of ultracold neutral atoms. I carry out numerical analyses to evaluate gate fidelity over a range of gate speeds, and I derive a simple criterion to ensure adiabatic gate operation. I propose a scheme to significantly improve the gate's fidelity without decreasing its speed. I contribute to the development of a \loophole-free" Bell inequality test based on the use of this gate by carrying out an order-of-magnitude feasibility analysis to assess whether the test is viable given realistic technological limitations. In Part II, I investigate electron transfer reaction experiments performed on native and mutant forms of the MADH{amicyanin redox complex derived from P. denitrificans. I implement molecular dynamics simulations of native and mutant forms of the solvated MADH{amicyanin complex. I analyze the resulting nuclear coordinate trajectories, both geometrically and in terms of electronic redox coupling. -
2018 Program Book (PDF)
BMES Officers PRESIDENT Lori Setton, PhD Washington University in St. Louis 8201 Corporate Drive | Suite 1125 INCOMING PRESIDENT Landover, Maryland 20785-2224 Dawn Elliott, PhD 301.459.1999 | phone • 301.459.2444 | fax University of Delaware www.bmes.org SECRETARY John White, PhD Boston University TREASURER BMES Staff Ben Noe Medtronic Edward L. Schilling, III Terry Young Executive Director Director Career PUBLICATIONS BOARD CHAIR Programs and Meetings Kristina Ropella, PhD Doug Beizer Marquette University Communications Director Elizabeth Richards Student Affairs Manager FINANCE COMMITTEE CHAIR Michele Ciapa, MPH, CHES Jane Grande-Allen, PhD Education Director Lori Saskiewicz Rice University Registrar Valerie A. Kolmaister Operations and Katherine Quintanilla BMES Board of Directors Finance Director Receptionist/Administrative Assistant 2015—2018 DIRECTORS Jenn Novesky Guillermo Ameer, ScD Director of Membership Northwestern University Development and Media Contact Corporate Partnerships Todd Giorgio, PhD Doug Beizer Vanderbilt University Debra Tucker, CMP [email protected] Denise Forkey, MSBME Annual Meeting Director 410.814.9564 Medical Device Development Solutions Marjolein van der Meulen, PhD Cornell University Future BMES Annual Meetings October 16—19, 2019 2016—2019 DIRECTORS Philadelphia, Pennsylvania Catherine Klapperich, PhD Boston University October 14—17, 2020 San Diego, California Sara Muldoon, B.S. Abbott, Inc. October 6—9, 2021 Brenda Ogle, PhD Orlando, Florida University of Minnesota—Twin Cities Beth Winkelstein, PhD Social -
Node-Pore Sensing: a Robust, High Dynamic Range Method for Multi-Parametric Screening of Biological Samples
Node-Pore Sensing: A Robust, High Dynamic Range Method for Multi-Parametric Screening of Biological Samples By Karthik Ratna Balakrishnan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Mechanical Engineering in the Graduate Division of the University of California, Berkeley A Dissertation Submitted for Partial Satisfaction Committee in charge: Professor Lydia L. Sohn, Chair Professor Amy E. Herr Professor Dorian Liepmann Fall 2014 Node-Pore Sensing: A Robust, High Dynamic Range Method for Multi-Parametric Screening of Biological Samples Copyright 2014 By Karthik Ratna Balakrishnan 1 Abstract Node-Pore Sensing: A Robust, High Dynamic Range Method for Multi-Parametric Screening of Biological Samples by Karthik Ratna Balakrishnan Doctor of Philosophy in Engineering - Mechanical Engineering University of California, Berkeley Professor Lydia L. Sohn, Chair Resistive-pulse sensing is a technique that allows for measurements of particles in a solution. The underlying principle relies on measuring the electrical resistance across a small pore connecting two reservoirs filled with fluid. As an insulating particle enters the pore, the particle displaces the conducting fluid, leading to an increase in the resistance measured. Pulse magnitude and width reveal information about the particle in transit. The size of the pulse magnitude corresponds to the size of the particle, while the width of the pulse represents the length of time the particle takes to transit the pore. We show that resistive pulse sensing can be used in combination with protein functionalization to achieve surface marker screening of small sample sizes. We analyze single satellite cells from muscle fibers of mice.