Recovery of Lithium from a Montmorillonite-Type Clay
Total Page:16
File Type:pdf, Size:1020Kb
/RIIS967 Bureau of Mines Report of Investigations/1985 Recovery of Lithium From a Montmorillonite-Type Clay By R. H. Lien UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 8967 Recovery of Lithium From a Montmorillonite-Type Clay By R. H. Lien With an A ppendix on Process Economics by D. A. Kramer UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF M INES Robert C. Horton, Director Library of Congress Cataloging in Publication Data: Lien, R, H Recovery of lithium from a montmorillonite-type clay. (Report of investigation s; 8967) Bibliography: p. 15-16. Supt. of Docs. no.: [28.23:8967. 1. Lithium-Metallurgy . 2. Leaching. 3. I~oastin g (Metallu rgy). 4. Monrmorillonite·McDermitt Cald e ra Complex (Nev. and Ore.). r. Kramer, Deborah A. [I. Title. Ill. Series: Report of inves ti gations (United States. Bureau of Min es) ; 8967. TN23.U43 [TN799.L57] 622s r669'. 725] 85-600040 CONTENTS Abstract .................. 1 Introduction ••••••••••••••• 2 Process description •••••••••••••••••••••••••••••••• 3 Ma te rials ....•..•••.................•.......••.........................•....... 4 PRU equipment •.••.•....................•.....••....•.•••.....•....•.•...•...... 5 Ope~ating conditions and test results •••••••••••••••••••••••••••••••• 9 Feed preparation ............................................................ 9 Roas ting .•....••......•....•.........•.......•................•............•. 9 Roas ting mechanism .................•.............•......................... 9 Batch tests .......................................................... 8 ••••• 9 Continuous roast te s t s ............. 10 Leaching .....•..............•..•......•..............•.........••.. 11 Solids content and wash water recycle ••••••.•.••••••••••••••••••••••••• 11 Calcine particle size and leach time ••••••••••••••••••••••••••••••••••••••• 11 Summary of leach tes t results •••••••••••••••••••••••••••••••••••••••••••••• 12 Evaporation ............................................................... 12 Product precipitation •••••••••••••••••••••••••••••••••••••••••••••••••••••• 13 Crys tallization .........•.......................................... 13 Overall lithium recovery .•...........................................•....... 14 Material balance and economic evaluation •••••••••••••••••••••••••••••••••.••••• 15 Discussion .......................................................•..... " ...... 15 References ..................•.................................................. 15 Appendix A.--Material balance for PRU test •••••••••••••••••••.••••••••••••••••• 17 Appendix B.--Process economics •••••••••••••••••••••••••••••••••.••••••••••••••• 20 ILLUSTRATIONS 1 • Location of McDermitt caldera ........•................................... 3 2. Generalized process flowsheet ........................................... 4 3. Ball mill ............................................................... 5 4. Drum pelletizer ..•...........................•................. 5 5. Direct-fired rotary roaster ••••••••••••••••••••••••••••••• 6 6. Leach tank ..•••...............................................•.......... 7 7. PRU eq ui pmen t ............•............................................... 8 B-1. Feed preparation section ••••••••••••••••••••••••••••••••••••••••••••••••• 24 B-2. Roasting section ........................................................ 24 B-3. Leaching section ..........•.............................................. 25 B-4. Evaporation section .....................................•................ 25 B-5. Lithium recovery section .............••... ............................ 26 B-6. Crystallization section •••••••••••••••••••••• 26 TABLES 1. Composi tion of McDermi t t clay .....................•...................... 4 2. Effect of charge composition on lithium extraction under static conditions.............................................................. 10 3. Effect of roasting temperature on lithium extraction under static conditions.............................................................. 10 4. Effect of charge composition and roast temperature on lithium extraction under dynamic conditions ...............•.•.............................. 11 5. Effect of solids content and wash watet recycle on lithium extraction •••• 11 ii TABLES--Continued 6. Effect of calcine particle size on lithium extraction •••••••••••••••••••• 12 7. Effect of leach time on lithium extraction ••••••••••••••••••••••••••••••• 12 8. Effect of calcine particle size and leach time on filtrate rates ••••••••• 12 9. Results of product purification tests using simulated solutions •••••••••• 14 A-I. Feed preparation ....... • ..•. • . • • • • •••• . • . •.• •. • • ••• . ....•............•... 17 A- 2. Ro a st .•••..••••.••••.••.....•..••....•••••.••..••.••.. " ..•••••••.• •••• ••• 17 A-3. Le a c h •••••••••••••• •• •••••••••••••••••••••••••••••••••••••••••••••••••••• 18 A-4 . Eva par a t ion ••• ••••• •• ••••• •• • • ••••• •••• ••• •• •• ••• •••••••••..••••......•.• 18 A-S. Product precipitation •••••••••••••••••••••••••••••••••••••••••••••••••••• 19 A-6. Crys tallization ......................................................... 19 B-I. Composition of McDermitt clay (dry basis) • •••••••• • •••••••••••••••••••••• 20 B-2. Estimated capital cost .................................................. 21 B-3. Estimated annual operating cost •••••••••••••••••••••••••••••••••••••••••• 23 B-4. Raw material and utility requirements •••••••••••••••••••••••••••••••••••• 23 UNIT OF MEASURE ABBREVIATIONS USED IN THIS REPORT °c degree Celsius L/ (m 2 ·h) liter per square meter per hour em centimeter lb pound d/yr day pey year M thousand ft foot m3 cubic meter g/L gram per liter mi mile gal gallon min minute h hour mL milliliter h/d hour per day MM million hp horsepower mm-diam millimeter-diameter in inch pet percent kg kilogram psi pound per square inch km kilometer ton/d short ton per day kW kilowatt W watt kW·h kilowatt hour wt pet weight percent L liter yr year L/kg liter per kilogram RECOVERY OF LITHIUM fROM A MONTMORILLONITE.TYPE CLAY By R. H. Lien 1 With an Appendix on Process Economics by D. A. I<ramer ABSTRACT The Bureau of Mines investigated a roast-leach process for recovering a marketable lithium product from a montmorillonite-type clay deposit located on the Nevada-Oregon border. The clay sample treated in the investigation contained 0.6 wt pct Li. The lithium recovery process consisted of several unit operations. The lithium silicate compounds in the clay were converted to Li 2S04 by roasting a pelletized mixture of clay, limestone, and gypsum at 900 0 C in a direct-gas-fired rotary roaster. Water--leaching the calcine at 40 pct solids extracted the Li 2S04 • Lithium recovery from the leach solu tion involved concentrating the solution by evaporation, adding Na2C03 to the concentrated solution to precipitate Li 2C0 3 • and filtering the slurry to obtain the product. The product filtrate was recycled to the evaporator following a crystallization step. About 80 pct of the lith-· ium in the clay was recovered as 99-pct-pure Li 2C0 3 • Process operating costs were estimated at $2.1 2/lb Li 2C0 3 produced; the current Li2C03 selling price is $1.48/lb. Raw materials accounted for 30 pct of the total operating cost. 'Chemical engineer, Salt Lake City Research Center, Bureau of Mines , Salt Lake City, UT. 2 INTRODUCTION The Bureau of Mines investigated sev impact on lithium reserves after the year eral processes for recovering lithium 2000. 3 from a clay deposit located on the Forecasts of lithium shortages prompted Nevada-Oregon border. Development of a the U.S. Geological Survey (USGS), under process to recover lithium from this non a cooperative agreement with the Depart conventional, domestic resource would ment of Energy, to search for alternative help meet the Bureau's goal of developing domestic lithium resources_ The USGS technology to help the Nation maintain identified a large deposit of lithium an adequate minerals base for future eco bearing clay in the McDermitt caldera nomic and strategic needs. complex on the Nevada-Oregon border (fig. The United States, the world's largest 1). The caldera complex, one of the producer and consumer of lithium miner largest in the world, comprises five als and chemicals, is self-sufficient in overlapping and nested calderas (circu lithium. Nearly all the Nation's lithium lar volcanic depressions). The principal is recovered from spodumene deposits in clay deposit area measures 42 km long by North Carolina and subsurface brines in 18 km wide. Nevada. The lithium-bearing clays are found The largest end use for lithium is primarily along the edge of the caldera in aluminum potlines. In the aluminum in a crescent extending from the north cells, Li 2C0 3 is added to reduce elec eastern corner to the southwestern sec tricity consumption and fluorine emis tion. Lithium concentration in the clay sions. The ceramics, air conditioning, is 0.1 to 0.36 pct in the northern depos grease, synthetic rubber, and pharma its and 0.1 to 0.65 pct in the southern ceutical industries also use lithium area. chemicals. Recently, lithium has gained These clay deposits can be considered a importance in areas such as (1) low potential resource because of high lith density aluminum-lithium aircraft alloys, ium content in individual beds. Also, (2) lightweight batteries for use in the beds have very little overburden. electric automobiles and utility load The amount of lithium in the caldera has leveling