Brueseke, M.E., W.K. Hart & M.T. Heizler, Diverse Mid-Miocene Silicic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RESULTS CONFIRM EXTENSION to Mcdermitt RESOURCE
ASX RELEASE 5 March 2021 ASX: JRL RESULTS CONFIRM EXTENSION TO McDERMITT RESOURCE Assay results from MDRC012 confirm substantial thickness and continuity of lithium mineralisation from surface Remaining four drillhole results expected by mid-March 2021 Jindalee Resources Limited ( Jindalee , the Company ) is pleased to announce that assay results have now been received for 11 holes of the 15-hole program completed late in 2020 at the Company’s 100% owned McDermitt Lithium Project (US). The latest results for MDRC012 confirm substantial widths of lithium mineralisation from surface in the SE portion of the deposit including : 58.0m @ 1611 ppm Li from 1.5m including 12.2m @ 2617ppm Li 27.4m @ 1477 ppm Li from 88.9m Results from MDRC012, located approximately 500m SE of the nearest hole (MDRC011), support significant intercepts recently announced by Jindalee 5 with drilling successfully confirming and extending the geology and grade continuity of the lithium mineralisation at McDermitt (Figure 1). The density of drilling is expected to be adequate to extend the current Inferred Mineral Resource 1 and Exploration Target Range 1 and convert existing Inferred Mineral Resources to Indicated status ahead of a possible Scoping Study. Figure 1 – Schematic section showing significant intercepts through the McDermitt Project. McDermitt Lithium Project – Background In late 2019 Jindalee announced an Inferred Mineral Resource of 150Mt @ 2,000ppm Li (0.43% Li 2O) at 1,750ppm Li cut-off 1 had been estimated at McDermitt (refer Table 1, below): Cut Off Mass Grade Contained LCE (ppm Li) (Mt) (ppm Li) (Mt) 1,750 150 2,000 1.6 Table 1 – Summary of the maiden Inferred Mineral Resource The Mineral Resource was estimated using a cut-off grade of 1,750ppm Li, which is considered appropriate in the context of similar projects and based on an assessment of the likelihood of future economic extraction as required by the JORC (2012) Code. -
National Mining District, Nevada
DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 601 OF THE NATIONAL MINING DISTRICT, NEVADA BY WALDEMAR LINDGREN WASHINGTON GOVERNMENT PRINTING OFFICE 1915 CONTENTS. Preface, by F. L. Eansome................................................. 5 Location and field work..................................................... 7 Santa Rosa Range......................................................... 7 « Topography........................................................... 7 Climate and vegetation................................................ 10 Geology............................................. i ................ 10 Mineral deposits........................................................ 12 Principal divisions................................................. 12 Older mineral deposits............................................. 12 Tertiary mineral deposits........................................... 14 Metal production of Santa Rosa Range.................................. 16 Literature of Santa Rosa Range......................................... 17 National mining district.................................................... 18 Situation.............................................................. 18 History................................................................ 19 Prospecting and mining............................................. 19 Leasing........................................................... 20 General geology.............:.......................................... 21 The rocks............................................................ -
The Historic Winnemucca to the Sea Highway “Gateway to the Pacific Northwest”
Feb 2004 WINNEMUCCA to the SEA Highway The Historic Winnemucca to the Sea Highway “Gateway to the Pacific Northwest” John Ryczkowski The Winnemucca to the Sea highway was developed to establish a continu- ous, improved all-weather highway from US-40 (I-80) at Winnemucca, Nevada through Medford, Oregon and on to the Pacific coast at Crescent City, California. In the mid 1950’s there was no direct route west from Northern Nevada across South- ern Oregon and into California’s Redwood Empire. Community leaders from points along this proposed link formed the Winnemucca to the Sea Highway Association. The association worked with state and local governments to fund the design, con- struction and upgrade of the paved roadway for this east to west link across three states. The association had envisioned one highway number 140 applied to the complete route, as the parent major US highway was coast-to-coast US-40, the Victory Highway. Nevada and Oregon used state route 140 for their respective sections of the Winnemucca to the Sea Highway. But the renumbering or cosigning of federal highways was an obstacle that the Winnemucca to the Sea Association never did overcome, thus the hope of a continuous 140 designation for this link was never realized. Currently the traveler will follow seven different highway numbers from Winnemucca to Crescent City, they are US-95, state route-140, US-395, state Association brochure circa 1960’s route-62, Interstate-5, US-199 and US-101. Winnemucca, named after a local Paiute chief, has always been a crossroads town. -
Winnemucca District Proposed Resource Management Plan and Final Environmental Impact Statement DOI-BLM-NV-W000-2010-0001-EIS
BLM Winnemucca District Proposed Resource Management Plan and Final Environmental Impact Statement DOI-BLM-NV-W000-2010-0001-EIS Volume 2: Chapters 3, 4 Winnemucca District, Nevada District, Winnemucca August 2013 Winnemucca MISSION STATEMENT To sustain the health, diversity, and productivity of the public lands for the use and enjoyment of present and future generations. BLM/NV/WN/ES/13-11+1793 Volume 2 of 4 TABLE OF CONTENTS Section Page 3. AFFECTED ENVIRONMENT ............................................................................................. 3-1 3.1 Introduction ...................................................................................................... 3-1 3.2 Resources ....................................................................................................... 3-1 3.2.1 Air Quality ............................................................................................ 3-2 3.2.2 Geology ............................................................................................. 3-14 3.2.3 Soil Resources .................................................................................. 3-18 3.2.4 Water Resources ............................................................................... 3-22 3.2.5 Vegetation – General ......................................................................... 3-36 3.2.6 Vegetation – Forest/Woodland Products ........................................... 3-41 3.2.7 Vegetation – Invasive and Noxious Species ...................................... 3-42 3.2.8 Vegetation -
Nuclear Waste Technical Review Board (NWTRB) Meeting on Natural Analogs and Geochemical Analogs Research Project Field Trip to Mcdermitt Caldera and Virgin Valley
CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: Nuclear Waste Technical Review Board (NWTRB) Meeting on Natural Analogs and Geochemical Analogs Research Project Field Trip to McDermitt Caldera and Virgin Valley DATE/PLACE: April 16-17, and 18-19, 1991 Reno, McDermitt Caldera, and Virgin Valley, Nevada AUTHORS: William M. Murphy, English C. Pearcy, and Ronald T. Green DISTRIBUTION: J. Latz L. Kovach S. Boyanowski CNWRA Directors M. Silberberg CNWRA Element Managers J. Randall GS Technical Staff G. Birchard PA Technical Staff S. Mearse J. Funches S. Fortuna ->B. Stiltenpole S. Rowe D. Brooks W. Ott P6, / 91051401.32 910514 PDR WASTE -,1) ,(I-- k-- ý t WM'- II PDR LýPý P- '3UI A f_-XSeFk+' CENTER FOR NUCLEAR WASTE REGULATORY ANALYSES TRIP REPORT SUBJECT: Nuclear Waste Technical Review Board Meeting on Natural Analogs and Geochemical Analogs Research Project Field Trip to McDermitt Caldera and Virgin Valley DATE/PLACE: April 16-17, and 18-19, 1991 Reno, McDermitt Caldera, and Virgin Valley, Nevada PARTICIPANTS: At the TRB Meeting: William M. Murphy, English C. Pearcy (CNWRA); George Birchard, Bill Ott, Norman Eisenberg (NRC); The NWTRB and staff, and representatives of the State of Nevada, DOE, and the public; On the field trip: William M. Murphy, English C. Pearcy, Ronald T. Green, Bill Ott, and Steve Castor (Nevada Bureau of Mines) AUTHORS: William M. Murphy, English C. Pearcy, and Ronald T. Green BACKGROUND AND PURPOSE OF TRIP: The NWTRB meeting was announced on March 8, 1991 to discuss use of analogs in high-level waste disposal. The CNWRA was invited to present their natural analogs research program and the work at Peia Blanca. -
A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada
GRC Transactions, Vol. 32, 2008 A Preliminary Structural Model for the Blue Mountain Geothermal Field, Humboldt County, Nevada James E. Faulds1 and Glenn Melosh2 1Nevada Bureau of Mines and Geology, University of Nevada, Reno, NV 2Nevada Geothermal Power, Vancouver, BC Keywords with subsurface temperatures approaching or exceeding 200°C. Blue Mountain, Nevada, structural control, normal fault, The fields are particularly abundant in northern Nevada and oblique slip, dilatant zone, Great Basin neighboring parts of northeast California and southern Oregon (Coolbaugh et al., 2002; Coolbaugh and Shevenell, 2004; Faulds et al., 2004). The lack of recent volcanism suggests that upper ABSTRACT crustal magmatism is not a source for most of the geothermal ac- The Blue Mountain geothermal field is a blind geothermal tivity in this region. Regional assessments of structural controls prospect (i.e., no surface hot springs) along the west flank of Blue show that N- to NE-striking faults (N0oE-N60oE) are the primary Mountain in southern Humboldt County, Nevada. Development controlling structure for ~75% of geothermal fields in Nevada, and wells in the system have high flow rates and temperatures above this control is strongest for higher temperature systems (Coolbaugh 190ºC at depths of ~600 to 1,070 m. Blue Mountain is a small et al., 2002; Faulds et al., 2004). In the northwestern Great Basin, ~8-km-long east-tilted fault block situated between the Eugene where the extension direction trends WNW, controlling faults Mountains and Slumbering Hills. The geothermal field occu- generally strike NNE, approximately orthogonal to the extension pies the intersection between a regional NNE- to ENE-striking, direction (e.g., Faulds et al., 2006). -
George W. Walker U.S. Geological Survey, Menlo Park, California 94025
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY URANIUM, THORIUM, AND OTHER METAL ASSOCIATIONS IN SILICIC VOLCANIC COMPLEXES OF THE NORTHERN BASIN AND RANGE A PRELIMINARY REPORT By George W. Walker U.S. Geological Survey, Menlo Park, California 94025 U.S. Geological Survey Open-File Report 81-1290 1981 This report is preliminary and has not been edited or reviewed for conformity with Geological Survey editoral standards and nomenclature. Table of Contents Page Introduct ion 1 Acknowledgments 2 Samples and analytical methods - 4 Discussion of data 24 Potassium-argon dates 25 Major-oxide chemistry 25 Minor-element chemistry 29 References cited 43 List of Figures Figure 1. Index to area covered in report 3 2. Map of northern Basin and Range and adjoining areas showing opposing age progressions by isochrons 26 3. Normative Q-or-ab plot 27 4. Plot of K20 values versus Si02 28 5. Uranium- and thorium-differentiation index diagram 30 6. Variation of uranium and thorium with barium plus strontium 31 7. Variation of uranium and thorium with fluorine 33 8. Variation of uranium and thorium with chlorine 34 9. Variation of cesium with uranium 35 10. Variation of uranium with rubidium 36 11. Variation in Rb/Sr with K20 37 12. Variation in Rb/Sr with Si02 39 13. Variation of uranium with thorium content 41 List of Tables Table 1. Chemical analyses, isotopic ratios, and norms of rhyolites, rhyodacites, and dacites less than 5 m.y. old 6 2. Chemical analyses, isotopic ratios, and norms of rhyolites, rhyodacites, and dacites 5-1 m.y. -
Cosmogenic 10Be Surface Exposure Dating and Numerical Modeling of Late Pleistocene Glaciers in Northwestern Nevada Abstract Intr
Proceedings Volume:2018 Lake Bonneville Geologic Conference and Short Course COSMOGENIC 10BE SURFACE EXPOSURE DATING AND NUMERICAL MODELING OF LATE PLEISTOCENE GLACIERS IN NORTHWESTERN NEVADA Kaitlyn Fleming1 and Benjamin Laabs2 1Environmental and Conservation Program, North Dakota State University, Fargo, ND 58102; 2Department of Geosciences, North Dakota State University, Fargo, ND 58102 Corresponding author (Fleming): [email protected] ABSTRACT The Great Basin region of the southwestern United States features a rich geologic record of Pleistocene climate change. This study focuses on the glacial record in the Pine Forest and Santa Rosa Ranges in northwestern Nevada west of the Pleistocene Lake Bonneville basin. Preliminary cosmogenic exposure ages in these two ranges are consistent with observations elsewhere in the Great Basin where glacier maxima (or near maxima) and lake highstands in the northwestern Great Basin occurred at ~18–17 ka. Here, we apply numerical modeling of glaciers in both ranges to limit the range of temperature and precipitation combinations accompanying glacier maxima. Numerical model experiments simulating maximum ice extent in the Pine For- est Range and near maximum ice extent in the Santa Rosa Range yield differing results. If precipitation in the Pine Forest Range was similar to modern during a glacial maximum at 21–20 ka, then temperature depressions during this time were -9 to -8°C. If precipitation in the Santa Rosa Range was similar to modern at 18–17 ka, then temperature ranges were -6 to -5°C. Temperature-precipitation combinations for the Pine Forest Range compare favorably with results of model applications to other mountains in the northern Great Basin. -
Quaternary Fault and Fold Database of the United States
Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Santa Rosa Range fault system, Owyhee River section (Class A) No. 1508a Last Review Date: 2017-06-13 citation for this record: Personius, S.F., Adams, K., and Sawyer, T.L., compilers, 2002, Fault number 1508a, Santa Rosa Range fault system, Owyhee River section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 02:50 PM. Synopsis General: This long fault zone consists of two parts, a northern, northeast-striking zone of distributed faulting, and a north-striking southern part marked by nearly continuous range-bounding and piedmont faults; the latter part forms an escarpment between the western margin of the Santa Rosa Range and the eastern margin of the Quinn River Valley in northern Nevada and southeastern Oregon. The Santa Rosa Range is a major east-tilted fault block and the adjacent Quinn River Valley is a graben filled with thousands of meters of Tertiary-Quaternary fill. The Santa Rosa Range fault system is herein divided into three sections, from north to south, the Owyhee River, Quinn River, and Santa Rosa Peak sections, based on fault geometry and recency of fault movement. At the northern end of the system, faults in the Owyhee River section form a broad zone of northeast-striking, down-to-the-northwest and down-to-the-southeast fault scarps in Miocene to Pleistocene volcanic rocks. -
Jewell Letter on Withdrawal Signed MERGED.Pdf
Nevada Office of the Governor BIOLOGICAL AND MINERAL VALIDATION FOR THE NEVADA PROPOSED ALTERNATIVE MINERAL WITHDRAWAL AREA BACKGROUND On September 25, 2015, Secretary of Interior Sally Jewell segregated and proposed withdrawal of more than 2.7 million acres in BLM-designated Sagebrush Focal Areas (SFA) in Nevada from the 1872 Mining Act. An Environmental Impact Statement (EIS) is currently being prepared by the Bureau of Land Management (BLM) to analyze the environmental and economic effects of the SFA Mineral Withdrawal on the entire ten million acres proposed for withdrawal west-wide. On January 15, 2016 during the EIS public scoping period, Nevada Governor Brian Sandoval responded to the withdrawal notice by pointing out that mineral withdrawal would not address the highest and most severe risks to the greater sage-grouse and emphasized that no amount of mineral withdrawal was justified or appropriate at this time. Realizing that the BLM would likely proceed with the withdrawal, Nevada offered an alternative mineral withdrawal boundary (Nevada Alternative) that proposed to: Exclude areas with High Mineral Potential, areas with active mineral exploration activity and historic and known mineral resources within the SFA Mineral Withdrawal Area, and Add areas with exceedingly better sage-grouse habitat and connectivity with documented sage- grouse populations. During subsequent meetings between Governor Sandoval and Secretary Jewell, Secretary Jewell requested additional information to support Nevada’s proposed alternative. Governor Sandoval tasked the Nevada Department of Wildlife (NDOW) and the Nevada Division of Minerals (NDOM) to work together to gather the information and compile existing data and records, which are summarized below, to further describe and justify the recommendations for Nevada’s proposal. -
The Fate of the Juan De Fuca Plate: Implications for a Yellowstone Plume Head
The Fate of the Juan de Fuca Plate: Implications for a Yellowstone Plume Head Mei Xue Richard M. Allen Department of Earth and Planetary Science, University of California-Berkeley Submitted to EPSL March 22, 2007 Modified April 4, 2007 Revised Sept 24, 2007 Accepted Sept 29, 2007 Corresponding author: Richard Allen, [email protected], tel 510-642-1275, fax 510- 643-5811, Dept Earth and Planetary Science, University of California Berkeley, 307 McCone Hall, Berkeley, CA 94720-4767, USA 1 Abstract Beneath the Pacific Northwest the Juan de Fuca plate, a remnant of the Farallon plate, continues subducting beneath the North American continent. To the east of the Cascadia subduction zone lies the Yellowstone hotspot track. The origins of this track can be traced back to the voluminous basaltic outpourings in the Columbia Plateau around 17 Ma. If these basalts are the result of a large melting anomaly rising through the mantle to the base of the North America continent, such as a mantle plume head, the anomaly would need to punch through the subducting Juan de Fuca slab. Here, we use teleseismic body wave travel time tomography to investigate the fate of the subducted slab and its possible interaction with a plume head. Our dataset is derived from the Oregon Array for Teleseismic Study (OATS) deployment in Oregon and all other available seismic data in this region. We image the subducted Juan de Fuca plate in the mantle east of the Cascades beneath Oregon, where the slab has not been imaged before, to a depth of 400 km but no deeper. -
Yellowstone Plume Head: Postulated Tectonic Relations to the Vancouver Slab, Continental Boundaries, and Climate
Pierce and others—Yellowstone Plume Head: Postulated Tectonic Relations 5 Yellowstone Plume Head: Postulated Tectonic Relations to the Vancouver Slab, Continental Boundaries, and Climate Kenneth L. Pierce,1 Lisa A. Morgan,2 and Richard W. Saltus2 ABSTRACT and 0.706 line in intermediate crust, and the area of cen- tral and southern Nevada east of the 0.706 line in Pre- We trace the Yellowstone hotspot track back to an cambrian continental crust. Geophysical modeling is con- apparent inception centered near the Oregon-Nevada sistent with a dense crust north of the Nevada-Oregon border. We and others have concluded this is the locus of border and an asthenospheric low-density body that ex- a starting plume or plume head. Consideration of this tends several hundred kilometers south and north of the plume-head model leads us to discuss the following three Nevada-Oregon boundary. A reconstruction of the initial implications. contact of the plume head with the lithosphere suggests (1) The apparent center of the relic plume head is about relatively thin lithosphere at 17 Ma beneath Oregon and 250 km west of the location where both the trends of the Washington, which would favor the spreading of the younger hotspot track and the inferred plate motions plume northward in this direction, more decompression would place the hotspot at 16 Ma. A possible explanation melting in this “thinspot” area, and the eruption of basalt for this discrepancy is the westward deflection of the through dense, oceanic lithosphere. Thus, preferential plume up the bottom of the inclined Vancouver slab. Plate extrusion of flood basalts north of the plume center may tectonic reconstructions and an intermediate dip for the be the result of differences in the pre-plume lithosphere, Vancouver slab indicate a plume head would have inter- and not the location of the center of the plume head.