Benson Mahod Grove 2017.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Benson Mahod Grove 2017.Pdf Geology and 40Ar/39Ar geochronology of the mid-Miocene McDermitt volcanic field Geology and 40Ar/39Ar geochronology of the middle Miocene McDermitt volcanic field, Oregon and Nevada: Silicic volcanism associated with propagating flood basalt dikes at initiation of the Yellowstone hotspot Thomas R. Benson†, Gail A. Mahood, and Marty Grove Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA ABSTRACT that extends southwest from the northern volcanism. Notably, this includes detailed work McDermitt volcanic field, through McDer- on ca. 0–10 Ma rhyolites of the province where The middle Miocene McDermitt volcanic mitt caldera and the Santa Rosa–Calico cen- many calderas are exposed or inferred (e.g., field of southeastern Oregon and northern ter, to the northern Nevada Rift. A similar Christiansen, 2001; Morgan and McIntosh, Nevada is a caldera complex that is tempo- linear trend is observed ~75 km to the west, 2005; Ellis et al., 2012; Anders et al., 2014) rally and spatially associated with the earli- where the Hawks Valley–Lone Mountain and within the central and western Snake River est flood lavas of the Columbia River Basalt center and the calderas of the High Rock cal- Plain, where voluminous, hot, dry rhyolite erup- Group, the Steens Basalt. The topographi- dera complex define an ~N20°E trend radiat- tions occurred from ca. 15 to 10 Ma (e.g., Mc- cally prominent caldera west of McDermitt, ing south-southwest from Steens Mountain. Curry et al., 1997; Boroughs et al., 2005; Bon- Nevada, has commonly been considered the The temporal, spatial, and compositional nichsen et al., 2004, 2008; Branney et al., 2008). starting point for the time-transgressive Yel- patterns of rhyolitic magmatism along both Perhaps most important to the origin of the lowstone hotspot trend. In the original work trends are consistent with rapid southward Yellowstone–Snake River Plain system, how- defining the field, seven weakly to moderately propagation of flood basalt dike swarms as- ever, was the ca. 16.5–15 Ma rhyolite volcanism peralkaline rhyolitic ignimbrites were identi- sociated with emplacement of the Yellow- in Oregon, northern Nevada, and southwestern fied to have erupted from seven calderas over stone plume head. Idaho that occurred contemporaneous with the an interval of ~1 m.y. following emplacement voluminous eruption of the Columbia River of Steens Basalt flood lavas. Aided by 47 new INTRODUCTION and Steens flood basalts (Fig. 1). This relation- high-precision 40Ar/39Ar ages and extensive ship has prompted researchers to suggest that trace-element geochemistry, we refine the vol- The Yellowstone–Snake River Plain province initial silicic volcanism was associated with a canic stratigraphy to four major ignimbrites: is an ~600-km-long, time-transgressive locus mantle plume head centered roughly at Steens 16.468 ± 0.006 Ma (2σ) Tuff of Oregon Can- of explosive and effusive volcanism that was Mountain (e.g., Camp et al., 2003; Shervais and yon, 16.415 ± 0.007 Ma Tuff of Trout Creek initiated during the middle Miocene in eastern Hanan, 2008; Coble and Mahood, 2012; Fig. 1). Mountains, 16.328 ± 0.013 Ma Tuff of Long Oregon and northern Nevada coeval with the New field investigations coupled with high-pre- Ridge, and 15.556 ± 0.014 Ma Tuff of White- eruption of the Columbia River Basalt Group cision 40Ar/39Ar geochronology has enabled re- horse Creek. New geologic mapping has lavas. Magmatism has since steadily propagated searchers to more precisely define the sequence identified the sources of the two oldest ignim- northeastward toward Wyoming, where activ- of the largest silicic eruptions in this area, nota- brites at two newly delineated, overlapping ity has most recently occurred during the Qua- bly at High Rock caldera complex (Coble and calderas in the northern McDermitt volcanic ternary in Yellowstone National Park (Fig. 1). Mahood, 2016), Lake Owyhee volcanic field field: the ~20 × 24 km Fish Creek caldera, Various geodynamic models have been pro- (Nash and Perkins, 2012; Streck et al., 2015; formed on eruption of the Tuff of Oregon posed to explain the space-time progression of Benson and Mahood, 2016), and McDermitt Canyon, and the ~20 × 26 km Pole Canyon volcanism, including the migration of the North volcanic field (Henry et al., 2016; this study). caldera, formed ~50 k.y. later on eruption American plate over the tail of a deep mantle The location and timing of the oldest rhyo- of the compositionally similar Tuff of Trout plume (e.g., Pierce and Morgan, 1992, 2009; lite eruptions in McDermitt volcanic field are Creek Mountains. Ring-fracture lavas of Camp and Ross, 2004; Smith et al., 2009; Xue of critical importance in developing a physical these two calderas lie outboard of those re- and Allen, 2010; Darold and Humphreys, 2013; model for the onset of Yellowstone–Snake River lated to the youngest caldera in the field, the Camp et al., 2015), or melting and extension in Plain volcanism because of the hypothesis that ~13 × 12 km Whitehorse caldera, which is en- response to convection within the upper man- formation of the McDermitt volcanic field was tirely nested within the Pole Canyon caldera. tle (e.g., Anderson, 1994; Christiansen et al., the initial manifestation of Snake River Plain The new mapping and chronology of the 2002; James et al., 2011; Fouch, 2012; Foulger volcanism (e.g., Pierce and Morgan, 1992, northern McDermitt volcanic field make et al., 2015). 2009; Branney et al., 2008; Leeman et al., 2008; clear that there is a linear ~N20°W trend of Characterization of the source locations and Shervais and Hanan, 2008; Ellis et al., 2012). In mafic, intermediate, and rhyolitic volcanism timing of major rhyolite eruptions along a linear this paper, we refine stratigraphic relationships trend has been critical to the development of the of regional ignimbrites and their relationships †trb@ stanford .edu hypotheses for the origin of Snake River Plain to the McDermitt volcanic field through field GSA Bulletin; September/October 2017; v. 129; no. 9/10; p. 1027–1051; https:// doi .org /10 .1130 /B31642 .1; 13 figures; 3 tables; Data Repository item 2017151; published online 23 June 2017. For permission to copy, contact [email protected] Geological Society of America Bulletin, v. 129, no. 9/10 1027 © 2017 Geological Society of America Benson et al. 124°W 120°W 116°W Y OREGON 120 km JdF map extent Lake Owyhee Monument Volcanic Field olcanoes V Basin and Chief Joseph Pacic Range CR IDAHO plate High La Cascade va Plains Trend Columbia River Basalt HH R Group lavas and dikes JB SW / LJ SC end Younger CRB Steens ? e River PlainTr Steens Mtn McDermitt Snak BB ? Yellowstone Steens Basalt Volcanic Field D HV Mid-Miocene TM Fig. 4 42°N rhyolitic centers M J High Rock V Lava centers B SR Caldera H ? NN Complex 4 S Calderas CC NEVADA ? R I 0.70 0.706 Figure 1. Regional map showing the distribution of mid-Miocene (ca. 17–15 Ma) volcanism in the Pacific Northwest (after Benson and Mahood, 2016). Extents of Columbia River Flood Basalt (CRB) Group members are split into Steens Basalt and younger members (Imnaha, Grande Ronde, Picture Gorge, Wanapum, Saddle Mountain) based on Reidel et al. (2013a), and generalized locations of feeder dikes are after Tolan et al. (1989), Camp et al. (2013), and Reidel et al. (2013b). Caldera locations are from this study, Rytuba and McKee (1984), Rytuba and Vander Meulen (1991), Benson and Mahood (2016), Coble and Mahood (2016), and Henry et al. (2016), and are labeled with the following symbols: V—Virgin Val- ley caldera, B—Badger Mountain caldera, H—Hanging Rock caldera, CC—Cottonwood Creek caldera, M—McDermitt caldera, R—Rooster Comb caldera, CR—proposed caldera at Castle Rock. Contem- poraneous lava centers are shown as yellow dots and are labeled with the following symbols: SC—Sil- ver City, LJ—Little Juniper Mountain, HH—Horsehead Mountain, JB—Jackass Butte, SW—Swamp Creek Rhyolite, TM—Twenty Mile Creek Rhyolite, BB—Bald Butte, D—Drum Hill, HV—Hawks Val- ley–Lone Mountain, S—Sleeper Rhyolite, SR—Santa Rosa–Calico, I—Ivanhoe, J—Jarbidge. Other symbols: Y—Yellowstone caldera, JdF—Juan de Fuca plate, NNR—northern Nevada Rift. Isopleths of 87 86 0.704 and 0.706 Sr/ Sri are after Benson and Mahood (2016, and references therein). mapping, geochemistry, and high-precision scale in northern McDermitt volcanic field, 40Ar/39Ar Geochronology 40Ar/39Ar geochronology. These new data allow field-checking and remapping contacts previ- us to delineate three overlapping calderas in the ously mapped in published 7.5′ quadrangles Of ~300 samples collected in McDermitt northern McDermitt volcanic field. The distri- (Rytuba et al., 1982a–1982g; Rytuba and Curtis, volcanic field and the surrounding region for bution of volcanic activity in this nested caldera 1983; Rytuba et al., 1983a, 1983b; Peterson this study, 47 whole-rock rhyolite lava and ig- complex and in the southern McDermitt vol- and Tegtmeyer, 1987; Minor and Wager, 1989; nimbrite samples were selected for 40Ar/39Ar canic field and in the surrounding region leads Minor et al., 1989a–1989c). Standard methods analysis. All ages reported here are based on us to new insights into the petrogenetic pro- used for the geochemical, electron microscopy, analyses of samples included within a single cesses involved during impingement of a mantle and volume estimate calculations are described irradiation, in order to maximize the ability plume on continental lithosphere. in Appendix A of the GSA Data Repository file.1 to analytically resolve ages of closely spaced Important new details of the 40Ar/39Ar methods, eruptive units. Details of the sample prepara- METHODS which bear on the precision and accuracy of the tion and irradiation procedures are provided reported ages, are summarized next.
Recommended publications
  • New Wildfire in Trout Creek Mountains Area
    Contact: Tara Martinak (541) 573-4400 Release No. OR-BU-12-23 July 25, 2012, 9:00 a.m. NEW WILDFIRE IN TROUT CREEK MOUNTAINS HINES, Ore. – Two random lightning strikes in southeast Oregon late Tuesday afternoon ignited a new wildfire near Red Mountain in the Trout Creek Mountains area. The “Water Tower” fire received quick attention from engine crews soon after its start and reportedly laid down until sporadic winds brought the fire back to life around 11:00 p.m. This morning, crews estimate the fire to be approximately 3-500 acres. At least three area ranches with structures are within the fire vicinity though not immediately threatened. Livestock grazing allotments, inaccessible terrain, private inholdings and Sage Grouse core habitat are also concerns. With high fuel loads of grass and brush from two seasons of productive growth and low winter snow pack, fire spread could be rapid and intense in this area. Longer burn periods and elevated fire intensity extending after sunrise can also be expected. Five Single Engine Air Tankers, three helicopters, numerous engines and dozers will support the suppression operation throughout the day. Heavy air tankers have been ordered for availability if needed. Updated information on the Water Tower fire will be released as conditions change and improve. The High Desert Type 3 Incident Management (Toney) is assigned to the Water Tower fire. The Miller Homestead fire, which started Sunday, July 8, is currently estimated at 95 percent contained. Dry peat soils in the Malheur National Wildlife Refuge continue to burn below the surface, presenting a unique challenge for firefighters.
    [Show full text]
  • Structural Geology of the Cat Mountain Rhyolite in the Northern Tucson Mountains, Pima County, Arizona
    Structural geology of the Cat Mountain rhyolite in the northern Tucson Mountains, Pima County, Arizona Item Type text; Thesis-Reproduction (electronic) Authors Knight, Louis Harold, 1943- Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 12:31:24 Link to Item http://hdl.handle.net/10150/551931 STRUCTURAL GEOLOGY OF THE CAT MOUNTAIN RHYOLITE IN THE NORTHERN TUCSON MOUNTAINS, PIMA COUNTY, ARIZONA Ly Louis H. Knight, Jr. A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOLOGY In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 196? STATEMENT BY AUTHOR This thesis has been submitted in partial fulfill­ ment of the requirements for an advanced degree at the University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknow­ ledgement of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgement the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.
    [Show full text]
  • The Native Trouts of the Genus Salmo of Western North America
    CItiEt'SW XHPYTD: RSOTLAITYWUAS 4 Monograph of ha, TEMPI, AZ The Native Trouts of the Genus Salmo Of Western North America Robert J. Behnke "9! August 1979 z 141, ' 4,W \ " • ,1■\t 1,es. • . • • This_report was funded by USDA, Forest Service Fish and Wildlife Service , Bureau of Land Management FORE WARD This monograph was prepared by Dr. Robert J. Behnke under contract funded by the U.S. Fish and Wildlife Service, the Bureau of Land Management, and the U.S. Forest Service. Region 2 of the Forest Service was assigned the lead in coordinating this effort for the Forest Service. Each agency assumed the responsibility for reproducing and distributing the monograph according to their needs. Appreciation is extended to the Bureau of Land Management, Denver Service Center, for assistance in publication. Mr. Richard Moore, Region 2, served as Forest Service Coordinator. Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. Rocky Mountain Region September, 1980 Inquiries about this publication should be directed to the Regional Forester, 11177 West 8th Avenue, P.O. Box 25127, Lakewood, Colorado 80225. it TABLE OF CONTENTS Page Preface ..................................................................................................................................................................... Introduction ..................................................................................................................................................................
    [Show full text]
  • DOGAMI Open-File Report O-16-06
    Metallic and Industrial Mineral Resource Potential of Southern and Eastern Oregon: Report to the Oregon Legislature APPENDIX B: RELEVANT PUBLISHED MINERAL INVENTORIES AND STUDIES PREVIOUSLY COMPLETED BY DOGAMI This list includes relevant published DOGAMI mineral inventories and studies. It is not a complete publication list. For all DOGAMI publications, visit the DOGAMI Publications Center, Links here will take readers to PDF or .zip formatted files or to web pages. Bulletins B-003 1938 The geology of part of the Wallowa Moun- B-016 1940 Field identification of minerals for Oregon tains, by C. P. Ross. prospectors and collectors, by Ray C. B-004 1938 Quicksilver in Oregon, by C. N. Schuette. Treasher. B-005 1938 Geological report on part of the Clarno Ba- B-017 1942 Manganese in Oregon, by F. W. Libbey, John sin, Wheeler and Wasco Counties, Oregon, Eliot Allen, Ray C. Treasher, and H. K. Lancas- by Donald K. Mackay. ter. B-006 1938 Preliminary report of some of the refractory B-019 1939 Dredging of farmland in Oregon, by F. W. Lib- clays of western Oregon, by Hewitt Wilson bey. and Ray C. Treasher. B-020 1940 Analyses and other properties of Oregon B-007 1938 The gem minerals of Oregon, by Dr. H. C. coals as related to their utilization, by H.F. Dake. Yancey and M. R. Geer. B-008 1938 An investigation of the feasibility of a steel B-023 1942 An investigation of the reported occurrence plant in the Lower Columbia River area near of tin at Juniper Ridge, Oregon, by H.
    [Show full text]
  • Repeated Caldera Collapse and Ignimbrite Emplacement at a Peralkaline Volcano Nina Jordan, Silvio G
    Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, Michael Branney, Stéphane Scaillet To cite this version: Nina Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William Mcintosh, et al.. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano. Journal of Volcanology and Geothermal Research, Elsevier, 2018, 349, pp.47-73. 10.1016/j.jvolgeores.2017.09.013. insu-01618160 HAL Id: insu-01618160 https://hal-insu.archives-ouvertes.fr/insu-01618160 Submitted on 17 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano Nina J. Jordan, Silvio G. Rotolo, Rebecca Williams, Fabio Speranza, William C. McIntosh, Michael J. Branney, Stéphane Scaillet PII: S0377-0273(17)30078-1 DOI: doi:10.1016/j.jvolgeores.2017.09.013 Reference: VOLGEO 6196 To appear in: Journal of Volcanology and Geothermal Research Received date: 31 January 2017 Revised date: 1 September 2017 Accepted date: 17 September 2017 Please cite this article as: Nina J.
    [Show full text]
  • Compositional Zoning of the Bishop Tuff
    JOURNAL OF PETROLOGY VOLUME 48 NUMBER 5 PAGES 951^999 2007 doi:10.1093/petrology/egm007 Compositional Zoning of the Bishop Tuff WES HILDRETH1* AND COLIN J. N. WILSON2 1US GEOLOGICAL SURVEY, MS-910, MENLO PARK, CA 94025, USA 2SCHOOL OF GEOGRAPHY, GEOLOGY AND ENVIRONMENTAL SCIENCE, UNIVERSITY OF AUCKLAND, PB 92019 AUCKLAND MAIL CENTRE, AUCKLAND 1142, NEW ZEALAND Downloaded from https://academic.oup.com/petrology/article/48/5/951/1472295 by guest on 29 September 2021 RECEIVED JANUARY 7, 2006; ACCEPTED FEBRUARY 13, 2007 ADVANCE ACCESS PUBLICATION MARCH 29, 2007 Compositional data for 4400 pumice clasts, organized according to and the roofward decline in liquidus temperature of the zoned melt, eruptive sequence, crystal content, and texture, provide new perspec- prevented significant crystallization against the roof, consistent with tives on eruption and pre-eruptive evolution of the4600 km3 of zoned dominance of crystal-poor magma early in the eruption and lack of rhyolitic magma ejected as the BishopTuff during formation of Long any roof-rind fragments among the Bishop ejecta, before or after onset Valley caldera. Proportions and compositions of different pumice of caldera collapse. A model of secular incremental zoning is types are given for each ignimbrite package and for the intercalated advanced wherein numerous batches of crystal-poor melt were plinian pumice-fall layers that erupted synchronously. Although released from a mush zone (many kilometers thick) that floored the withdrawal of the zoned magma was less systematic than previously accumulating rhyolitic melt-rich body. Each batch rose to its own realized, the overall sequence displays trends toward greater propor- appropriate level in the melt-buoyancy gradient, which was self- tions of less evolved pumice, more crystals (0Á5^24 wt %), and sustaining against wholesale convective re-homogenization, while higher FeTi-oxide temperatures (714^8188C).
    [Show full text]
  • Representativeness Assessment of Research Natural Areas on National Forest System Lands in Idaho
    USDA United States Department of Representativeness Assessment of Agriculture Forest Service Research Natural Areas on Rocky Mountain Research Station National Forest System Lands General Technical Report RMRS-GTR-45 in Idaho March 2000 Steven K. Rust Abstract Rust, Steven K. 2000. Representativeness assessment of research natural areas on National Forest System lands in Idaho. Gen. Tech. Rep. RMRS-GTR-45. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 129 p. A representativeness assessment of National Forest System (N FS) Research Natural Areas in ldaho summarizes information on the status of the natural area network and priorities for identification of new Research Natural Areas. Natural distribution and abundance of plant associations is compared to the representation of plant associations within natural areas. Natural distribution and abundance is estimated using modeled potential natural vegetation, published classification and inventory data, and Heritage plant community element occur- rence data. Minimum criteria are applied to select only viable, high quality plant association occurrences. In assigning natural area selection priorities, decision rules are applied to encompass consideration of the adequacy and viability of representation. Selected for analysis were 1,024 plant association occurrences within 21 4 natural areas (including 115 NFS Research Natural Areas). Of the 1,566 combinations of association within ecological sections, 28 percent require additional data for further analysis; 8, 40, and 12 percent, respectively, are ranked from high to low conservation priority; 13 percent are fully represented. Patterns in natural area needs vary between ecological section. The result provides an operational prioritization of Research Natural Area needs at landscape and subregional scales.
    [Show full text]
  • Quicksilver Deposits in the Steens and Pueblo Mountains Southern Oregon
    UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 931-J QUICKSILVER DEPOSITS IN THE STEENS AND PUEBLO MOUNTAINS SOUTHERN OREGON BY CLYDE P. ROSS Strategic Minerals Investigations, 1941 (Pages 227-258) UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON : 1942 For sale by the Superintendent of Documents, Washington, D. C. ------- Price 40 cents CONTENTS Page Abstract.................................................. 227 Introduction.............................................. 227 Location.............................................. 227 Scope of the report................................... 229 Acknowledgments....................................... 229 Topography................................................ 230 Geology................................................... 232 Pre-Tertiary rocks.................................... 232 Age............................................... 232 Tertiary volcanic rocks............................... 232 Age............................................... 235 Older alluvium........................................ 236 Quaternary alluvium................................... 237 Structure............................................. 237 Quicksilver deposits...................................... 240 Mineralogy............................................. 240 The lodes............................................. 244 Origin................................................ 246 Outlook..............................................
    [Show full text]
  • RESULTS CONFIRM EXTENSION to Mcdermitt RESOURCE
    ASX RELEASE 5 March 2021 ASX: JRL RESULTS CONFIRM EXTENSION TO McDERMITT RESOURCE Assay results from MDRC012 confirm substantial thickness and continuity of lithium mineralisation from surface Remaining four drillhole results expected by mid-March 2021 Jindalee Resources Limited ( Jindalee , the Company ) is pleased to announce that assay results have now been received for 11 holes of the 15-hole program completed late in 2020 at the Company’s 100% owned McDermitt Lithium Project (US). The latest results for MDRC012 confirm substantial widths of lithium mineralisation from surface in the SE portion of the deposit including : 58.0m @ 1611 ppm Li from 1.5m including 12.2m @ 2617ppm Li 27.4m @ 1477 ppm Li from 88.9m Results from MDRC012, located approximately 500m SE of the nearest hole (MDRC011), support significant intercepts recently announced by Jindalee 5 with drilling successfully confirming and extending the geology and grade continuity of the lithium mineralisation at McDermitt (Figure 1). The density of drilling is expected to be adequate to extend the current Inferred Mineral Resource 1 and Exploration Target Range 1 and convert existing Inferred Mineral Resources to Indicated status ahead of a possible Scoping Study. Figure 1 – Schematic section showing significant intercepts through the McDermitt Project. McDermitt Lithium Project – Background In late 2019 Jindalee announced an Inferred Mineral Resource of 150Mt @ 2,000ppm Li (0.43% Li 2O) at 1,750ppm Li cut-off 1 had been estimated at McDermitt (refer Table 1, below): Cut Off Mass Grade Contained LCE (ppm Li) (Mt) (ppm Li) (Mt) 1,750 150 2,000 1.6 Table 1 – Summary of the maiden Inferred Mineral Resource The Mineral Resource was estimated using a cut-off grade of 1,750ppm Li, which is considered appropriate in the context of similar projects and based on an assessment of the likelihood of future economic extraction as required by the JORC (2012) Code.
    [Show full text]
  • Wilderness Study Areas
    I ___- .-ll..l .“..l..““l.--..- I. _.^.___” _^.__.._._ - ._____.-.-.. ------ FEDERAL LAND M.ANAGEMENT Status and Uses of Wilderness Study Areas I 150156 RESTRICTED--Not to be released outside the General Accounting Wice unless specifically approved by the Office of Congressional Relations. ssBO4’8 RELEASED ---- ---. - (;Ao/li:( ‘I:I)-!L~-l~~lL - United States General Accounting OfTice GAO Washington, D.C. 20548 Resources, Community, and Economic Development Division B-262989 September 23,1993 The Honorable Bruce F. Vento Chairman, Subcommittee on National Parks, Forests, and Public Lands Committee on Natural Resources House of Representatives Dear Mr. Chairman: Concerned about alleged degradation of areas being considered for possible inclusion in the National Wilderness Preservation System (wilderness study areas), you requested that we provide you with information on the types and effects of activities in these study areas. As agreed with your office, we gathered information on areas managed by two agencies: the Department of the Interior’s Bureau of Land Management (BLN) and the Department of Agriculture’s Forest Service. Specifically, this report provides information on (1) legislative guidance and the agency policies governing wilderness study area management, (2) the various activities and uses occurring in the agencies’ study areas, (3) the ways these activities and uses affect the areas, and (4) agency actions to monitor and restrict these uses and to repair damage resulting from them. Appendixes I and II provide data on the number, acreage, and locations of wilderness study areas managed by BLM and the Forest Service, as well as data on the types of uses occurring in the areas.
    [Show full text]
  • Quicksilver Deposits of Steens Mountain and Pueblo Mountains Southeast Oregon
    Quicksilver Deposits of Steens Mountain and Pueblo Mountains Southeast Oregon GEOLOGICAL SURVEY BULLETIN 995-B A CONTRIBUTION TO ECONOMIC GEOLOGY QUICKSILVER DEPOSITS OF STEENS MOUNTAIN AND PUEBLO MOUNTAINS, SOUTHEAST OREGON By HOWEL WILLIAMS and ROBERT R. The object of this survey was to examine the quicksilver deposits with the hope of locating large tonnages of low-grade ore. The deposits occur in the south-central part of Harney County and are more than 100 miles from either Burns, Oreg., or Winuemucca, Nev., the nearest towns. The region is sparsely settled by stockmen; Fields, Denio, and Andrews are the only settlements. The range consisting of Steens Mountain and Pueblo Mountains is a dissected fault block, 90 miles long in a north-south direction and as much as 25 miles wide, tilted gently to the west. Pre-Tertiary rnetarnorphic and plutonic rocks occur at the southern end, but most of the block consists of Pliocene volcanic rocks. The major boundary faults on the east side of the range are concealed by alluvium. Minor northwestward-trending faults branch from them, their throws diminish­ ing toward the crest of the range; other minor fractures occur near, and parallel to, the mountain front. The quicksilver lodes were formed in and along these subsidiary fractures. The lodes occur in a more or less continuous belt just west of the eastern front of the range. They are steeply dipping and arranged in subparallel clusters, commonly standing out as resistant siliceous ribs against the softer kaolinized rocks that flank them. The lodes were formed in two hydrothermal stages, the first producing the reeflike masses of chalcedony and quartz with their halos of limonitic and calcitic clays and the second introducing silica and barite along with sulfides of iron, copper, and mercury.
    [Show full text]
  • Brueseke, M.E., W.K. Hart & M.T. Heizler, Diverse Mid-Miocene Silicic
    Bull Volcanol DOI 10.1007/s00445-007-0142-5 RESEARCH ARTICLE Diverse mid-Miocene silicic volcanism associated with the Yellowstone–Newberry thermal anomaly Matthew E. Brueseke & William K. Hart & Matthew T. Heizler Received: 1 February 2005 /Accepted: 8 March 2007 # Springer-Verlag 2007 Abstract The Santa Rosa–Calico volcanic field (SC) of primarily focused along its eastern and western margins. At northern Nevada is a complex, multi-vent mid-Miocene least five texturally distinct silicic units are found in the eruptive complex that formed in response to regional western Santa Rosa–Calico volcanic field, including abun- lithospheric extension and flood basalt volcanism. Santa dant lava flows, near vent deposits, and shallow intrusive Rosa–Calico volcanism initiated at ∼16.7 Ma, concurrent bodies. Similar physical features are found in the eastern with regional Steens–Columbia River flood basalt activity portion of the volcanic field where four physically distinct and is characterized by a complete compositional spectrum units are present. The western and eastern Santa Rosa– of basalt through high-silica rhyolite. To better understand Calico units are characterized by abundant macro- and the relationships between upwelling mafic magmatism, microscopic disequilibrium textures, reflecting a complex coeval extension, and magmatic system development on petrogenetic history. Additionally, unlike other mid-Mio- the Oregon Plateau we have conducted the first compre- cene Oregon Plateau volcanic fields (e.g. McDermitt), the hensive study of Santa Rosa–Calico silicic volcanism. Santa Rosa–Calico volcanic field is characterized by a Detailed stratigraphic-based field sampling and mapping paucity of caldera-forming volcanism. Only the Cold illustrate that silicic activity in this volcanic field was Springs tuff, which crops out across the central portion of the volcanic field, was caldera-derived.
    [Show full text]