GPCR Regulation of ATP Efflux from Astrocytes

Total Page:16

File Type:pdf, Size:1020Kb

GPCR Regulation of ATP Efflux from Astrocytes G PROTEIN-COUPLED RECEPTOR REGULATION OF ATP RELEASE FROM ASTROCYTES by ANDREW EDWARD BLUM Thesis advisor: Dr. George R. Dubyak Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Department of Physiology and Biophysics CASE WESTERN RESERVE UNIVERSITY May, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Dedication I am greatly indebted to my thesis advisor Dr. George Dubyak. Without his support, patience, and advice this work would not have been possible. I would also like to acknowledge Dr. Robert Schleimer and Dr. Walter Hubbard for their encouragement as I began my research career. My current and past thesis committee members Dr. Matthias Buck, Dr. Cathleen Carlin, Dr. Edward Greenfield, Dr. Ulrich Hopfer, Dr. Gary Landreth, Dr. Corey Smith, Dr. Jerry Silver have provided invaluable guidance and advice for which I am very grateful. A special thanks to all of the past and present members of the Dubyak lab who made the lab a home away from home. My gratitude extends to my friends and family members for their love and support. Finally, I would like to dedicate this thesis to my parents, David and Natalie Blum. 1 Table of Contents List of Tables 4 List of Figures 5 List of Abbreviations 8 Abstract 10 1. Introduction 1.1 ATP as an Extracellular signal 13 1.1.1 P2 Receptors and Extracellular ATP 13 1.1.2 Metabolism of Extracellular ATP 14 1.1.3 Compartmentalization of ATP release and 15 Issues of Experimental Measurement 1.2 Functions of ATP signaling in Astrocytes 16 1.2.1 Ca2+ wave Propagation 18 1.2.2 Response to Metabolic Changes and Ischemia 19 1.2.3 Cell Volume Homeostasis 20 1.3 G protein-Coupled Receptors and ATP Release 22 1.3.1 Protease-Activated Receptor (PAR) 23 1.3.2 Lysophosphatidic Acid Receptors (LPAR) 26 1.3.3 Muscarinic Receptors 28 1.3.4 Non G protein-Coupled Receptor Stimulated 28 ATP release 1.4 Pathways of ATP release 30 1.4.1 Conductive Pathways 31 1.4.1.1 Gap-junction Hemichannels 32 1.4.1.2 Maxi-Anion Channels 37 1.4.1.3 Volume-Sensitive Organic Anion Channels 40 1.4.2 Exocytosis 43 1.5 Aims of Study 45 2. Experimental Methods 59 3. Rho-Family GTPases Modulate Ca2+-Dependent ATP Release from Astrocytes ABSTRACT 75 INTRODUCTION 77 RESULTS 81 DISCUSSION 89 2 4. Extracellular Osmolarity Modulates G protein-Coupled Receptor Dependent ATP Release from 1321N1 Astrocytes ABSTRACT 116 INTRODUCTION 118 RESULTS 124 DISCUSSION 131 5. Multiple Pathways of ATP release from 1321N1 cells ABSTRACT 160 INTRODUCTION 161 RESULTS 163 DISCUSSION 165 6. Conclusions and Future Directions 184 References 200 3 Tables Table 1.1 Agonist Selectivity and Signaling Systems of the 47 P2 Nucleotide Receptors Table 1.2 Pharmacology of Candidate ATP release Channels 49 Table 4.1. Osmolarities and [NaCl] of basal salt solutions used in 141 ATP release experiments. 4 Figures Figure 1.1 Structure of adenine nucleotide. 51 Figure 1.2 Pharmacologic inhibitors of Connexin Hemichannels, 53 Pannexin Hemichannels, VSOAC, and maxi-anion channels Figure 1.3 Release of ATP to Extracellular Compartments. 55 Figure 1.4 Autocrine / Paracrine ATP mediated Ca2+ wave. 57 Figure 3.1 PAR1 mediated ATP release is sensitive to 100 BAPTA and ToxB. Figure 3.2 Rho-GTPase activity is correlated with thrombin 101 induced ATP release. Figure 3.3 Inhibition of ROCKI/II and MLCK does not affect 103 thrombin induced ATP release. Figure 3.4 Effects of ToxB and BAPTA-loading on ATP release 105 from 1321N1 astrocytes in response to LPA and Carbachol. Figure 3.5 Rho-GTPase activity is correlated with LPA- but not 107 carbachol- induced ATP release. Figure 3.6 Neither toxin treatment nor BAPTA affect 109 extracellular ATPase activity. Figure 3.7 ATP release is attenuated by brefeldin A and 111 carbenoxolone. Figure 3.8 CBX inhibition of thrombin-stimulated ATP release is 113 not correlated with changes in hemichannel activity or PAR1 signaling. Figure 4.1 Kinetics of basal and thrombin-stimulated ATP 143 release from 1321N1 astrocytes in isotonic or hypertonic media. Figure 4.2 Basal and thrombin-stimulated ATP release from 145 1321N1 astrocytes is inversely correlated with extracellular osmolarity. 5 Figure 4.3 Concentration-response relationships for 147 thrombin-stimulated ATP release and Ca2+ mobilization in isotonic, hypotonic, or hypertonic media. Figure 4.4 Concentration-response relationships for 149 thrombin-stimulated ATP release 1321N1 cells preincubated for 30 min in isotonic, hypotonic, or hypertonic media. Figure 4.5 Differential inhibitory effects of BAPTA and 151 Clostridial Toxin B on ATP release stimulated by thrombin versus strong hypotonic stress. Figure 4.6 Concentration-inhibition relationships for the effects of 153 dideoxyforskolin or carbenoxolone on ATP release by thrombin versus strong hypotonic stress. Figure 4.7 Concentration-inhibition relationships for the effects of 155 probenicid on ATP release by thrombin versus strong hypotonic stress. Figure 4.8 The maxi-anion channel inhibitor Gd3+ does not inhibit 157 thrombin-dependent or hypotonic stress induced ATP release from 1321N1 astrocytes. Figure 5.1 Transient ATP release induced by Thrombin and 170 Hypotonic Stress Contrasts with Sustained ATP release elicited by LDS. Figure 5.2 Reduced Temperature inhibits LDS, but not 172 thrombin-dependent or hypotonic stress induced ATP release from 1321N1 astrocytes. Figure 5.3 1321N1 astrocytes express pannexin 1 and 174 Connexin 43 mRNA. Figure 5.4 CBX blocks ATP release in response to thrombin, 176 hypotonic stress, or LDS. Figure 5.5 FFA blocks ATP release in response to thrombin, 178 hypotonic stress, or LDS. Figure 5.6 PB blocks ATP release in response to thrombin, 178 but not in response to hypotonic stress, or LDS. Figure 5.7 Gadolinium does not affect ATP release in 182 response to thrombin, hypotonic stress, or LDS. 6 Figure 6.1 Hypothetical scheme of the intracellular signaling 194 pathways contributing to GPCR-induced and osmotically-dependent activation of the putative volume-sensitive organic anion channel (VSOAC) pathway. Figure 6.2 Intracellular Ca2+ mobilization, but not PKC 196 activation elicits ATP release from 1321N1 astrocytes. Figure 6.3 Hypotonic stress, but not thrombin elicits 198 ATP release from HEK-293 cells. 7 ABBREVIATIONS ACh Acetylcholine ADA Adenosine deaminase ADP Adenosine-5’-diphosphate ATP Adenosine-5’-triphosphate AMP Adenosine-5’-monophosphate AMPK AMP-activated protein kinase AVD Apoptotic volume decrease BAPTA 1,2-bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid βγ-meATP Beta, gamma-methyleneATP BSS Basal saline solution cAMP Cyclic AMP or 3'-5'-cyclic adenosine monophosphate CBX Carbenoxolone CNS Central nervous system CSD Cortical spreading depression DAG Diacylglycerol DCPIB 4-(2-butyl-6,7-dichloro-2-cyclopentylindan-1-on-5-yl)oxybutyric acid ddF 1,9-dideoxyforskolin DIDS 4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid ecto-NDPK Ecto-nucleotide diphosphokinase EDG Epidermal differentiation gene FAK Focal adhesion kinase FFA Flufenamic acid GDP Guanosine diphosphate GEF Guanine nucleotide exchange factor GRK G-protein receptor kinase GPCR G protein-coupled receptor GPN Glycylphenylalanine 2-napthylamide GST Glutathione S-transferase GTP Guanosine triphosphate IP3 Inositol triphosphate LDS Low divalent solution LPA Lysophosphatidic acid LPAR Lysophosphatidic acid receptors MAPK Mitogen-activated protein kinase MMP Matrix metalloprotease NMDA N-methyl-D-aspartic acid NPP Ecto-nucleotide pyrophosphatase/phophodiesterase NPPB 5-Nitro-2-(3-phenylpropylamino)benzoic acid NTPD Ecto-nucleotide 5’-triphosphate diphosphohydrolase PAR Protease activated receptor Pi Inorganic phosphate PI3K Phosphoinositide 3-kinases PKC Protein kinase C PLA Phospholipase A 8 PLC Phospholipase C PMA Phorbol myristate acetate PPi Pyrophosphate PTX Pertussis toxin RLU Relative light unit RVD Regulatory volume decrease RVI Regulatory volume increase ROCK Rho-associated coiled-coil-forming protein kinase ROS Reactive oxygen specie RT Room temperature (20-22oC) RT-PCR Reverse transcriptase-polymerase chain reaction SITS 4-Acetamido-4′-isothiocyanato-2,2′-stilbenedisulfonic acid SNAP Soluble NSF attachment protein SNARE Soluble NSF attachment protein receptor TRAP Thrombin receptor activating peptide TRBD Rhotekin Rho-binding domain VDAC Voltage-dependant anion channel VRAC Volume-regulated anion channel VSOAC Volume-sensitive organic anion channel VSOR Volume-sensitive outwardly rectifying anion channels 9 G Protein-Coupled Receptor Regulation of ATP Release from Astrocytes Abstract By ANDREW EDWARD BLUM Extracellular nucleotides contribute to a complex autocrine / paracrine signaling network in most tissues by activating members of the P2 receptor family. While stimulated ATP release has been demonstrated in a variety of mammalian cells, how ATP is released remains poorly understood. This dissertation illustrates the ability of G protein-Coupled Receptor (GPCR) activation
Recommended publications
  • The Hypotensive Effect of Activated Apelin Receptor Is Correlated with Β
    This is the accepted (postprint) version of the following article: Besserer-Offroy É, et al. (2018), Pharmacol Res. doi: 10.1016/j.phrs.2018.02.032, which has been accepted and published in its final form at https://www.sciencedirect.com/science/article/pii/S1043661817313804 The hypotensive effect of activated apelin receptor is correlated with β-arrestin recruitment Élie Besserer-Offroya,c,ORCID ID, Patrick Bérubéa,c, Jérôme Côtéa,c, Alexandre Murzaa,c, Jean-Michel Longpréa,c, Robert Dumainea, Olivier Lesurb,c, Mannix Auger-Messierb,ORCID ID, Richard Leduca,c,ORCID ID, Éric Marsaulta,c,*,ORCID ID, Philippe Sarreta,c* Affiliations a Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 b Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 c Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, CANADA J1H 5N4 e-mail addresses [email protected] (ÉBO); [email protected] (PB); [email protected] (JC); [email protected] (AM); Jean- [email protected] (JML); [email protected] (RD); [email protected] (OL); [email protected] (MAM); [email protected] (RL); [email protected] (EM); [email protected] (PS) © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ This is the accepted (postprint) version of the following article: Besserer-Offroy É, et al. (2018), Pharmacol Res. doi: 10.1016/j.phrs.2018.02.032, which has been accepted and published in its final form at https://www.sciencedirect.com/science/article/pii/S1043661817313804 Corresponding Authors *To whom correspondence should be addressed: Philippe Sarret, Ph.D.; [email protected]; Tel.
    [Show full text]
  • Mechanistic and Structural Studies of Pannexin Channels
    MECHANISTIC AND STRUCTURAL STUDIES OF PANNEXIN CHANNELS A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Kevin Ronald Michalski August 2018 © 2018 Kevin Ronald Michalski MECHANISTIC AND STRUCTURAL STUDIES OF PANNEXIN CHANNELS Kevin Ronald Michalski, Ph.D Cornell University 2018 Pannexin channels are a family of recently discovered membrane proteins found in nearly every tissue of the human body. These channels have been classified as large ‘pore forming’ proteins which, when activated, create a passageway through the cell membrane through which ions and molecules transit. Current literature suggests that the actual pannexin channel is formed from a hexameric arrangement of individual monomeric pannexin subunits, resulting in a central permeation pathway for conducting ions. Opening of pannexin channels can be accomplished through several mechanisms. During apoptosis, for example, cleavage of the pannexin C-terminal domain results in a constitutively open channel through which ATP is released. However, curiously, pannexins have also been known to be activated by a variety of other stimuli such as cellular depolarization, exposure to signaling ions like Ca2+ and K+, and interacting with various other membrane receptors like members of the ATP- sensing P2X and P2Y family. How can pannexin channels sense and respond to such a diverse array of stimuli, and what is the fundamental ‘gating process’ that defines channel opening? Here, we use electrophysiology to study the activation of pannexin-1 (Panx1). We used a protein chimera approach to identify that the first extracellular domain of Panx1 is critical for inhibitor action.
    [Show full text]
  • Dissection of Gtpase-Activating Proteins Reveals Functional Asymmetry in the COPI Coat of Budding Yeast Eric C
    © 2019. Published by The Company of Biologists Ltd | Journal of Cell Science (2019) 132, jcs232124. doi:10.1242/jcs.232124 RESEARCH ARTICLE Dissection of GTPase-activating proteins reveals functional asymmetry in the COPI coat of budding yeast Eric C. Arakel1, Martina Huranova2,3,*, Alejandro F. Estrada2,*, E-Ming Rau2, Anne Spang2,‡ and Blanche Schwappach1,4,‡ ABSTRACT The COPI coat is formed by an obligate heptamer – also termed – α β′ ε β γ δ ζ The Arf GTPase controls formation of the COPI vesicle coat. Recent coatomer consisting of , , , , , and subunits, and is recruited structural models of COPI revealed the positioning of two Arf1 en bloc to membranes (Hara-Kuge et al., 1994). Fundamentally, the molecules in contrasting molecular environments. Each of these COPI coat mediates the retrograde trafficking of proteins and lipids pockets for Arf1 is expected to also accommodate an Arf GTPase- from the Golgi to the ER, and within intra-Golgi compartments activating protein (ArfGAP). Structural evidence and protein (Arakel et al., 2016; Beck et al., 2009; Pellett et al., 2013; Spang and interactions observed between isolated domains indirectly suggest Schekman, 1998). Several reports have also implicated COPI in that each niche preferentially recruits one of the two ArfGAPs known endosomal recycling and regulation of lipid droplet homeostasis to affect COPI, i.e. Gcs1/ArfGAP1 and Glo3/ArfGAP2/3, although (Aniento et al., 1996; Beller et al., 2008; Xu et al., 2017). only partial structures are available. The functional role of the unique Activation of the small GTPase Arf1 and its subsequent non-catalytic domain of either ArfGAP has not been integrated into membrane anchoring by exchanging GDP with GTP through a the current COPI structural model.
    [Show full text]
  • Allosteric Activation of the Nitric Oxide Receptor Soluble Guanylate Cyclase
    RESEARCH ARTICLE Allosteric activation of the nitric oxide receptor soluble guanylate cyclase mapped by cryo-electron microscopy Benjamin G Horst1†, Adam L Yokom2,3†, Daniel J Rosenberg4,5, Kyle L Morris2,3‡, Michal Hammel4, James H Hurley2,3,4,5*, Michael A Marletta1,2,3* 1Department of Chemistry, University of California, Berkeley, Berkeley, United States; 2Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 3Graduate Group in Biophysics, University of California, Berkeley, Berkeley, United States; 4Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, United States; 5California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States Abstract Soluble guanylate cyclase (sGC) is the primary receptor for nitric oxide (NO) in mammalian nitric oxide signaling. We determined structures of full-length Manduca sexta sGC in both inactive and active states using cryo-electron microscopy. NO and the sGC-specific stimulator YC-1 induce a 71˚ rotation of the heme-binding b H-NOX and PAS domains. Repositioning of the b *For correspondence: H-NOX domain leads to a straightening of the coiled-coil domains, which, in turn, use the motion to [email protected] (JHH); move the catalytic domains into an active conformation. YC-1 binds directly between the b H-NOX [email protected] (MAM) domain and the two CC domains. The structural elongation of the particle observed in cryo-EM was †These authors contributed corroborated in solution using small angle X-ray scattering (SAXS). These structures delineate the equally to this work endpoints of the allosteric transition responsible for the major cyclic GMP-dependent physiological Present address: ‡MRC London effects of NO.
    [Show full text]
  • Rhodopsin-Cyclases for Photocontrol of Cgmp/Camp and 2.3 Å Structure of the Adenylyl Cyclase Domain
    ARTICLE DOI: 10.1038/s41467-018-04428-w OPEN Rhodopsin-cyclases for photocontrol of cGMP/cAMP and 2.3 Å structure of the adenylyl cyclase domain Ulrike Scheib1, Matthias Broser1, Oana M. Constantin 2, Shang Yang3, Shiqiang Gao3 Shatanik Mukherjee1, Katja Stehfest1, Georg Nagel3, Christine E. Gee 2 & Peter Hegemann1 1234567890():,; The cyclic nucleotides cAMP and cGMP are important second messengers that orchestrate fundamental cellular responses. Here, we present the characterization of the rhodopsin- guanylyl cyclase from Catenaria anguillulae (CaRhGC), which produces cGMP in response to green light with a light to dark activity ratio >1000. After light excitation the putative signaling state forms with τ = 31 ms and decays with τ = 570 ms. Mutations (up to 6) within the nucleotide binding site generate rhodopsin-adenylyl cyclases (CaRhACs) of which the double mutated YFP-CaRhAC (E497K/C566D) is the most suitable for rapid cAMP production in neurons. Furthermore, the crystal structure of the ligand-bound AC domain (2.25 Å) reveals detailed information about the nucleotide binding mode within this recently discovered class of enzyme rhodopsin. Both YFP-CaRhGC and YFP-CaRhAC are favorable optogenetic tools for non-invasive, cell-selective, and spatio-temporally precise modulation of cAMP/cGMP with light. 1 Institute for Biology, Experimental Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany. 2 Institute for Synaptic Physiology, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany. 3 Department of Biology, Institute for Molecular Plant Physiology and Biophysics, Biocenter, Julius-Maximilians-University of Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany. These authors contributed equally: Christine E.
    [Show full text]
  • Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: a High-Risk/High-Gain Endeavor
    biomolecules Review Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor Raf Van Campenhout 1 , Serge Muyldermans 2 , Mathieu Vinken 1,†, Nick Devoogdt 3,† and Timo W.M. De Groof 3,*,† 1 Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] (R.V.C.); [email protected] (M.V.) 2 Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium; [email protected] 3 In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-2-6291980 † These authors share equal seniorship. Abstract: Cell plasma membrane proteins are considered as gatekeepers of the cell and play a major role in regulating various processes. Transport proteins constitute a subclass of cell plasma membrane proteins enabling the exchange of molecules and ions between the extracellular environment and the cytosol. A plethora of human pathologies are associated with the altered expression or dysfunction of cell plasma membrane transport proteins, making them interesting therapeutic drug targets. However, the search for therapeutics is challenging, since many drug candidates targeting cell plasma membrane proteins fail in (pre)clinical testing due to inadequate selectivity, specificity, potency or stability. These latter characteristics are met by nanobodies, which potentially renders them eligible therapeutics targeting cell plasma membrane proteins. Therefore, a therapeutic nanobody-based strategy seems a valid approach to target and modulate the activity of cell plasma membrane Citation: Van Campenhout, R.; transport proteins.
    [Show full text]
  • Ubiquitination and Proteasomal Regulation of Pannexin 1 and Pannexin 3
    Ubiquitination and proteasomal regulation of Pannexin 1 and Pannexin 3 Anna Blinder A thesis submitted in partial fulfillment of the requirements for the Master’s degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa © Anna Blinder, Ottawa, Canada, 2020 ABSTRACT Pannexin 1 (PANX1) and Pannexin 3 (PANX3) are single-membrane channel glycoproteins that allow for communication between the cell and its environment to regulate cellular differentiation, proliferation, and apoptosis. Their expression is regulated through post-translational modifications, however, their regulation by ubiquitination and the ubiquitin proteasome pathway (UPP) has not been examined. Here, I show that PANX1 is monoubiquitinated and K48- and K63-polyubiquitinated, and PANX3 is polyubiquitinated. While treatment with MG132 altered the banding profile and subcellular distribution of both pannexins, data suggested that only PANX3 is degraded by the UPP. To study the purpose of PANX1 ubiquitination, a PANX1 mutant bearing nine lysine mutations was engineered. Results revealed increased cell surface expression of the mutant, suggesting that ubiquitination may regulate trafficking. I thus demonstrated for the first time that PANX1 and PANX3 are polyubiquitinated and differentially regulated by ubiquitin and by the proteasome, indicating distinct mechanisms that stringently regulate pannexin expression. II TABLE OF CONTENTS ABSTRACT ...............................................................................................................................................
    [Show full text]
  • Cryo-EM Structure of the Volume-Regulated Anion Channel
    bioRxiv preprint doi: https://doi.org/10.1101/331207; this version posted May 25, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Cryo-EM structure of the volume-regulated anion channel LRRC8 Go Kasuya1*, Takanori Nakane1†*, Takeshi Yokoyama2*, Yanyan Jia3, Masato Inoue4, Kengo Watanabe4, Ryoki Nakamura1, Tomohiro Nishizawa1, Tsukasa Kusakizako1, Akihisa Tsutsumi5, Haruaki Yanagisawa5, Naoshi Dohmae6, Motoyuki Hattori7, Hidenori Ichijo4, Zhiqiang Yan3, Masahide Kikkawa5, Mikako Shirouzu2, Ryuichiro Ishitani1, Osamu Nureki1‡ 1Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; 2Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa 230-0045, Japan; 3State Key Laboratory of Medical Neurobiology, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China; 4Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; 5Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; 6RIKEN, Global Research Cluster, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan; 7State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, 2005 Songhu Road, Yangpu District, Shanghai 200438, China.
    [Show full text]
  • Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision
    International Journal of Molecular Sciences Article Pannexin 1 Transgenic Mice: Human Diseases and Sleep-Wake Function Revision Nariman Battulin 1,* , Vladimir M. Kovalzon 2,3 , Alexey Korablev 1, Irina Serova 1, Oxana O. Kiryukhina 3,4, Marta G. Pechkova 4, Kirill A. Bogotskoy 4, Olga S. Tarasova 4 and Yuri Panchin 3,5 1 Laboratory of Developmental Genetics, Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; [email protected] (A.K.); [email protected] (I.S.) 2 Laboratory of Mammal Behavior and Behavioral Ecology, Severtsov Institute Ecology and Evolution, Russian Academy of Sciences, 119071 Moscow, Russia; [email protected] 3 Laboratory for the Study of Information Processes at the Cellular and Molecular Levels, Institute for Information Transmission Problems, Russian Academy of Sciences, 119333 Moscow, Russia; [email protected] (O.O.K.); [email protected] (Y.P.) 4 Department of Human and Animal Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia; [email protected] (M.G.P.); [email protected] (K.A.B.); [email protected] (O.S.T.) 5 Department of Mathematical Methods in Biology, Belozersky Institute, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia * Correspondence: [email protected] Abstract: In humans and other vertebrates pannexin protein family was discovered by homology to invertebrate gap junction proteins. Several biological functions were attributed to three vertebrate pannexins members. Six clinically significant independent variants of the PANX1 gene lead to Citation: Battulin, N.; Kovalzon, human infertility and oocyte development defects, and the Arg217His variant was associated with V.M.; Korablev, A.; Serova, I.; pronounced symptoms of primary ovarian failure, severe intellectual disability, sensorineural hearing Kiryukhina, O.O.; Pechkova, M.G.; loss, and kyphosis.
    [Show full text]
  • Pannexin 1 and Adipose Tissue Samantha Elizabeth Adamson Fort
    Pannexin 1 and Adipose Tissue Samantha Elizabeth Adamson Fort Seybert, WV BA, Princeton University, 2006 MS, University of Virginia, 2013 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Pharmacology University of Virginia August, 2015 Norbert Leitinger, Ph.D. (Advisor) Doug Bayliss, Ph.D. Thurl Harris, Ph.D. Coleen McNamara, MD Bimal Desai, Ph.D. 2 Copyright Page 3 ABSTRACT Defective glucose uptake in adipocytes leads to impaired metabolic homeostasis and insulin resistance, hallmarks of type 2 diabetes. Extracellular ATP-derived nucleotides and nucleosides are important regulators of adipocyte function, but the pathway for controlled ATP release from adipocytes is unknown. Here, we investigated whether Pannexin 1 (Panx1) channels control ATP release from adipocytes and contribute to metabolic homeostasis. Our studies show that adipocytes express functional Pannexin 1 (Panx1) channels that can be activated to release ATP by known mechanisms including alpha adrenergic stimulation and caspase-mediated C-terminal cleavage during apoptosis. Further, we identify insulin as a novel activator of Panx1 channels. Pharmacologic inhibition or selective genetic deletion of Panx1 from adipocytes decreased insulin-induced glucose uptake in vitro and in vivo and exacerbated diet-induced insulin resistance in mice. In obese humans, Panx1 expression in adipose tissue is increased and correlates with the degree of insulin resistance. Although in other systems extracellular ATP has been shown to be chemotactic for immune cells such as macrophages, we observed no difference in the level of macrophage infiltration or inflammation in adipose tissue of diet- induced obese, insulin resistant AdipPanx1 KO mice, (mice in which Panx1 was selectively deleted in adipocytes).
    [Show full text]
  • The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications
    life Review The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners, and Physiological/Pathophysiological Implications Ravshan Z. Sabirov 1,2,*, Md. Rafiqul Islam 1,3, Toshiaki Okada 1,4, Petr G. Merzlyak 1,2 , Ranokhon S. Kurbannazarova 1,2, Nargiza A. Tsiferova 1,2 and Yasunobu Okada 1,5,6,* 1 Division of Cell Signaling, National Institute for Physiological Sciences (NIPS), Okazaki 444-8787, Japan; rafi[email protected] (M.R.I.); [email protected] (T.O.); [email protected] (P.G.M.); [email protected] (R.S.K.); [email protected] (N.A.T.) 2 Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan 3 Department of Biochemistry and Molecular Biology, Jagannath University, Dhaka 1100, Bangladesh 4 Veneno Technologies Co. Ltd., Tsukuba 305-0031, Japan 5 Department of Physiology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan 6 Department of Physiology, School of Medicine, Aichi Medical University, Nagakute 480-1195, Japan * Correspondence: [email protected] (R.Z.S.); [email protected] (Y.O.); Tel.: +81-46-858-1501 (Y.O.); Fax: +81-46-858-1542 (Y.O.) Abstract: The Maxi-Cl phenotype accounts for the majority (app. 60%) of reports on the large- conductance maxi-anion channels (MACs) and has been detected in almost every type of cell, including placenta, endothelium, lymphocyte, cardiac myocyte, neuron, and glial cells, and in cells originating from humans to frogs. A unitary conductance of 300–400 pS, linear current-to- Citation: Sabirov, R.Z.; Islam, M..R.; voltage relationship, relatively high anion-to-cation selectivity, bell-shaped voltage dependency, Okada, T.; Merzlyak, P.G.; and sensitivity to extracellular gadolinium are biophysical and pharmacological hallmarks of the Kurbannazarova, R.S.; Tsiferova, Maxi-Cl channel.
    [Show full text]
  • Activation of Pannexin 1 Channels by ATP Through P2Y Receptors and by Cytoplasmic Calcium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 239–244 Activation of pannexin 1 channels by ATP through P2Y receptors and by cytoplasmic calcium Silviu Locovei, Junjie Wang, Gerhard Dahl* Department of Physiology and Biophysics, University of Miami, School of Medicine, P.O. Box 016430, 1600 NW 10th Avenue, Miami, FL 33136, USA Received 28 September 2005; accepted 1 December 2005 Available online 12 December 2005 Edited by Maurice Montal in astrocytes of Cx43 null mice propagate at the same speed as Abstract The ability for long-range communication through intercellular calcium waves is inherent to cells of many tissues. in wild type cells, where Cx43 is the major gap junction protein A dual propagation mode for these waves includes passage of [15,16]. IP3 through gap junctions as well as an extracellular pathway A series of mysteries shroud the extracellular wave propaga- involving ATP. The wave can be regenerative and include tion scheme. What molecules sense a stimulus such as mechan- ATP-induced ATP release via an unknown mechanism. Here, ical stress? What links the stimulus to ATP release from the we show that pannexin 1 channels can be activated by extracel- cell? What is the ATP release mechanism in the stimulated cell? lular ATP acting through purinergic receptors of the P2Y group Does the same ATP release mechanism operate in the non- as well as by cytoplasmic calcium. Based on its properties, stimulated cells? If so, how is ATP release in the non-stimu- including ATP permeability, pannexin 1 may be involved in both lated cell activated? initiation and propagation of calcium waves.
    [Show full text]