Consistent Pitch Height Forms: a Commentary on Daniel Muzzulini's Contribution Isaac Newton's Microtonal Approach To
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Sonata, Its Form and Meaning As Exemplified in the Piano Sonatas by Mozart
THE SONATA, ITS FORM AND MEANING AS EXEMPLIFIED IN THE PIANO SONATAS BY MOZART. MOZART. Portrait drawn by Dora Stock when Mozart visited Dresden in 1789. Original now in the possession of the Bibliothek Peters. THE SONATA ITS FORM AND MEANING AS EXEMPLIFIED IN THE PIANO SONATAS BY MOZART A DESCRIPTIVE ANALYSIS BY F. HELENA MARKS WITH MCSICAL EXAMPLES LONDON WILLIAM REEVES, 83 CHARING CROSS ROAD, W.C.2. Publisher of Works on Music. BROUDE BROS. Music NEW YORK Presented to the LIBRARY of the UNIVERSITY OF TORONTO from the Library of DR. ARTHUR PLETTNER AND ISA MCILWRAITH PLETTNER Crescent, London, S.W.16. Printed by The New Temple Press, Norbury PREFACE. undertaking the present work, the writer's intention originally was IN to offer to the student of musical form an analysis of the whole of Mozart's Pianoforte Sonatas, and to deal with the subject on lines some- what similar to those followed by Dr. Harding in his volume on Beet- hoven. A very little thought, however, convinced her that, though students would doubtless welcome such a book of reference, still, were the scope of the treatise thus limited, its sphere of usefulness would be somewhat circumscribed. " Mozart was gifted with an extraordinary and hitherto unsurpassed instinct for formal perfection, and his highest achievements lie not more in the tunes which have so captivated the world, than in the perfect sym- metry of his best works In his time these formal outlines were fresh enough to bear a great deal of use without losing their sweetness; arid Mozart used them with remarkable regularity."* The author quotes the above as an explanation of certain broad similarities of treatment which are to be found throughout Mozart's sonatas. -
Cool in the Kitchen: Radiation, Conduction, and the Newton “Hot Block” Experiment
Cool in the Kitchen: Radiation, Conduction, and the Newton “Hot Block” Experiment Mark P. Silverman and Christopher R. Silverman he rate at which an object cools down Our curiosity was aroused. How good an Tgives valuable information about the approximation to reality is Newton’s law— mechanisms of heat loss and the thermal prop- and what in any event determines whether the erties of the material. In general, heat loss temperature of the hot object is too high? occurs by one or more of the following four Furthermore, although Newton’s name is processes: (a) conduction, (b) convection, (c) readily associated with his laws of motion, evaporation, and (d) radiation. law of gravity, and various optical phenomena In conduction, heat is transferred through a and apparatus, it does not usually appear in medium by the collisional encounters of ther- discussions of thermal phenomena. Indeed, mally excited molecules vibrating about their apart from this one instance, a search through equilibrium positions, or, in the case of met- a score or more of history of science books als, by mobile, unbound electrons; only ener- and thermal physics books at various levels of gy, not bulk matter itself, moves through the instruction produced but one other circum- Mark P. Silverman is material. Convection, by contrast, refers to the stance for noting Newton’s name—and that Professor of Physics at Trinity College and former transfer of heat through the action of a moving was his failure to recognize the adiabatic 3 Joliot Professor of Physics fluid; in free or natural convection, the motion nature of sound propagation in air. -
Glossary of Musical Terms
GLOSSARY OF MUSICAL TERMS A absolute music: instrumental music with no intended story (non-programmatic music) a cappella: choral music with no instrumental accompaniment accelerando: gradually speeding up the speed of the rhythmic beat accent: momentarily emphasizing a note with a dynamic attack accessible: music that is easy to listen to and understand adagio: a slow tempo alla breve / cut time: a meter with two half-note beats per measure. It’s often symbolized by the cut-time symbol allegro: a fast tempo; music should be played cheerfully / upbeat brisk alto: a low-ranged female voice; the second highest instrumental range alto instrument examples: alto flute, viola, French horn, natural horn, alto horn, alto saxophone, English horn andante: moderate tempo (a walking speed; "Andare" means to walk) aria: a beautiful manner of solo singing, accompanied by orchestra, with a steady metrical beat articulation marks: Normal: 100% Staccato: 50% > Accent: 75% ^ Marcato: 50% with more weight on the front - Tenuto: 100% art-music: a general term used to describe the "formal concert music" traditions of the West, as opposed to "popular" and "commercial music" styles art song: a musical setting of artistic poetry for solo voice accompanied by piano (or orchestra) atonal: music that is written and performed without regard to any specific key atonality: modern harmony that intentionally avoids a tonal center (has no apparent home key) augmentation: lengthening the rhythmic values of a fugal subject avant-garde: ("at the forefront") a French term that describes highly experimental modern musical styles B ballad: a work in dance form imitative of a folk song, with a narrative structure ballet: a programmatic theatrical work for dancers and orchestra bar: a common term for a musical measure barcarolle: a boating song, generally describing the songs sung by gondoliers in Venice. -
Arxiv:1705.04061V1 [Physics.Optics] 11 May 2017
Optically levitated nanoparticle as a model system for stochastic bistable dynamics F. Ricci,1 R. A. Rica,1 M. Spasenovi´c,1 J. Gieseler,1, 2 L. Rondin,3 L. Novotny,3 and R. Quidant1, 4 1ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain 2Physics Department, Harvard University, Cambridge, Massachusetts 02138, US. 3ETH Z¨urich,Photonics Laboratory, 8093 Z¨urich,Switzerland 4ICREA-Instituci´oCatalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain Nano-mechanical resonators have gained an up to ∼ 50 dB amplification of non-resonant harmonic increasing importance in nanotechnology owing force at the atto-newton scale. In addition, the unprece- to their contributions to both fundamental and dented level of control achieved will enable the use of applied science. Yet, their small dimensions and levitated nanoparticles as a model system for stochastic mass raises some challenges as their dynamics bistable dynamics with applications to a wide range gets dominated by nonlinearities that degrade of fields including biophysics16,17, chemistry18,19 and their performance, for instance in sensing appli- nanotechnology20. cations. Here, we report on the precise control of the nonlinear and stochastic bistable dynamics Results of a levitated nanoparticle in high vacuum. Our experiment is sketched in Fig. 1a. A single sil- We demonstrate how it can lead to efficient ica nanoparticle (d ∼ 177 nm in diameter) is optically signal amplification schemes, including stochastic trapped in vacuum by a tightly focused laser beam, and resonance. This work paves the way for the use its 3D trajectory monitored with a balanced split detec- of levitated nanoparticles as a model system for tion scheme. -
Computational Invention of Cadences and Chord Progressions by Conceptual Chord-Blending
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) Computational Invention of Cadences and Chord Progressions by Conceptual Chord-Blending Manfred Eppe16, Roberto Confalonieri1, Ewen Maclean2, Maximos Kaliakatsos3, Emilios Cambouropoulos3, Marco Schorlemmer1, Mihai Codescu4, Kai-Uwe Kuhnberger¨ 5 1IIIA-CSIC, Barcelona, Spain 2University of Edinburgh, UK 3University of Thessaloniki, Greece fmeppe,confalonieri,[email protected] [email protected] femilios,[email protected] 4University of Magdeburg, Germany 5 University of Osnabruck,¨ Germany 6 ICSI, Berkeley, USA [email protected] [email protected] [email protected] Abstract chord and moves to the tonic, and the seventh resolves down- wards by stepwise motion, whereas the fifth may be omitted. We present a computational framework for chord inven- In the Phrygian cadence, the bass note (third of the chord) is tion based on a cognitive-theoretic perspective on con- ceptual blending. The framework builds on algebraic the most important note as it plays the role of a downward specifications, and solves two musicological problems. leading note, and the second most important note is the root. It automatically finds transitions between chord progres- In such a setup, we propose two applications of chord blend- sions of different keys or idioms, and it substitutes chords ing, to give rise to new cadences and chord progressions. in a chord progression by other chords of a similar func- The first application is to generate a novel cadence as a ‘fu- tion, as a means to create novel variations. The approach sion’ of existing cadences by blending chords with a similar is demonstrated with several examples where jazz ca- function. -
How Cold Is Cold: What Is Temperature?
How_Cold_is_Cold:_What_is_Temperature? Hi. My name is Rick McMaster and I work at IBM in Austin, Texas. I'm the STEM advocate and known locally as Dr. Kold because of the work that I do with schools in central Texas. Think about this question. Was it cold today when you came to school? Was it hot? We'll come back to that shortly, but let's start with something that I think we would all agree is cold, ice. Here's a picture of a big piece of ice. An iceberg, in fact. Now take a few minutes to discuss how much of the iceberg you see above the water, and why this happens. Welcome back. The density of water is about 0.92 grams per cubic centimeter, and sea water about 1.025. If we divide the first by the second, you see that about 90% of the iceberg is below the surface, something for a ship to watch out for. Why did we start with density and not temperature? Density is something that's a much more common experience. If something floats in water, it's less dense than water. If it sinks, it's more dense. That can't be argued. Let's take a little more time to talk about water and ice because it will be important later. So why is ice less dense than water? The solid form of water forms hexagonal crystals with the Hydrogen atoms shown in white, forming bonds with neighboring Oxygen atoms in red. With the water molecules no longer able to move readily, the ice is less dense and the iceberg floats. -
A LIGHTWEIGHT NOTATION for PLAYING PIANO for FUN by R.J.A
A LIGHTWEIGHT NOTATION FOR PLAYING PIANO FOR FUN by R.J.A. Buhr 1. INTRODUCTION Music notation gets in the way of the joy of making music on the piano that can be had without first spending thousands of hours at the keyboard to develop piano “wizardry,” meaning a combination of keyboard skill and mastery of music notation. The message of this document is the joy can be had, without any loss of musical substance, with no more wizardry than is required to read and play single melody lines. The vehicle is a lightweight notation I call PKP (for Picturing Keyboard Patterns) for annotating the core flow of harmony in interval terms above the staff. I developed the notation as an adult beginner with no training in music theory after becoming frustrated with the way music notation obscures the keyboard simplicity of harmony. That the notation has substance in spite of this humble origin is indicated by the following opinion of PKP provided by a music theorist specializing in improvisational music (see supplementary pages): “The hook ... , at least in my opinion, is that it's possible to attain a deep understanding of chords (and their constituent intervals) without recourse to Western notation. This has direct consequences for physical patterning, fingerings, etc. Essentially, your method combines the utility of a play-by-ear approach with the depth of a mathematically-informed theory of music.” PKP follows from two observations that anyone can make. One is the piano keyboard supplies only 12 piano keys to play all the notes of an octave that music notation describes in many more than 12 ways by key signatures and accidentals (sharps, flats, naturals). -
Using Math to Understand Our World Project 1 Measuring Temperature & Newton’S Law of Cooling
Using Math to Understand Our World Project 1 Measuring Temperature & Newton’s Law of Cooling 1 Instructions Read through the project and work through all the questions. It is important that you work through everything so that you can understand all the issues. But you do not have to hand in all of your answers. To see which answers to hand in, refer to the “What to Hand In” sheet. I have tried to put in boldface all questions in the text that also appear in the “What to Hand In” sheet. Note that there may also be a few questions on the “What to Hand In” sheet that are not explicitly stated in the project, but which you will be able to answer after working through the project. 2 Introduction Isaac Newton is often said to have been the greatest mathematician and scientist ever, and may very well have been. Everyone knows the story of Newton and the apple tree. You’ve probably also heard of Newton’s Law of Inertia: An object at rest tends to stay at rest, an object in motion tends to stay in motion. You may even have heard of Newton’s Second Law, F = ma (Force = mass ∗ acceleration ). Newton invented calculus, developed laws of gravity, discovered that white light is made up of many colors, measured the speed of sound, developed the foundations of mechanics (including the Laws above) and so on. Newton probably added more to the understanding of nature than any other person, ever. Later in his life, Newton was interested in temperature. -
VI. the Colours of the Atmosphere Considered with Reference to a Previous Paper “On the Colour of Steam Under Certain Circumstances.”
Philosophical Magazine Series 3 ISSN: 1941-5966 (Print) 1941-5974 (Online) Journal homepage: http://www.tandfonline.com/loi/tphm14 VI. The colours of the atmosphere considered with reference to a previous paper “On the colour of steam under certain circumstances.” James D. Forbes Esq. F. R. SS. L. & Ed. To cite this article: James D. Forbes Esq. F. R. SS. L. & Ed. (1839) VI. The colours of the atmosphere considered with reference to a previous paper “On the colour of steam under certain circumstances.” , Philosophical Magazine Series 3, 15:93, 25-37, DOI: 10.1080/14786443908649817 To link to this article: http://dx.doi.org/10.1080/14786443908649817 Published online: 01 Jun 2009. Submit your article to this journal Article views: 3 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=3phm20 Download by: [Universite Laval] Date: 27 June 2016, At: 10:33 Professor Forbes on the Colours of the/ltmosphere. 25 But it appears to me that the powers and riehes of these extraordinary districts remain vet to be fully developed. They exhibit an immense number of mighty steam-engines, furnished by nature at no cost, and applicable to the produc- tion of an infinite variety of objects. In the progress of time this vast machinery of heat and force will probably become the moving central point of extensive manufacturing establish- ments. The steam, which has been so ingeniously applied to the concentration and evaporation of the boracic acid, will probably hereafter, instead of wasting itself in the air, be em- ployed to move huge engines, which will be directed to the infinite variety of production which engages the attention of labouring and intelligent artisans; and thus, in the course of time, there can be little doubt, that these lagoons, which were fled fi'om as objects of danger and terror by uninstructed man, will gather round them a large intelligent population, and beeome sources of prosperity to innumerable individuals through countless generations. -
Natures Forces Simple Machines
ELEMENTARY SCIENCE PROGRAM MATH, SCIENCE & TECHNOLOGY EDUCATION A Collection of Learning Experiences NATURES FORCES SIMPLE MACHINES Nature’s Forces Simple Machines Student Activity Book Name__________________________________________________________ This learning experience activity book is yours to keep. Please put your name on it now. This activity book should contain your observations of and results from your experiments. When performing experiments, ask your teacher for any additional materials you may need. TABLE OF CONTENTS Activity Sheet for L.E. #1 - Measuring Mass ...........................................................2-3 Activity Sheet for L.E. #2 - Measuring Weight.........................................................4 Activity Sheet for L.E. #3 - Measuring Force...........................................................5-8 Activity Sheet for L.E. #4 - Force, Weight and Mass...............................................9-11 Activity Sheet for L.E. #5 - Gravity – Gravity Everywhere .......................................12-17 Activity Sheet for L.E. #6 - Unseen Forces .............................................................18-23 Activity Sheet for L.E. #7 - Inclined Plane ...............................................................24-31 Activity Sheet for L.E. #8 - Wedge ..........................................................................32-33 Activity Sheet for L.E #9 - Screw.............................................................................34-35 Activity Sheet for L.E. #10 - Levers.........................................................................36-41 -
A Selection of New Arrivals September 2017
A selection of new arrivals September 2017 Rare and important books & manuscripts in science and medicine, by Christian Westergaard. Flæsketorvet 68 – 1711 København V – Denmark Cell: (+45)27628014 www.sophiararebooks.com AMPERE, Andre-Marie. Mémoire. INSCRIBED BY AMPÈRE TO FARADAY AMPÈRE, André-Marie. Mémoire sur l’action mutuelle d’un conducteur voltaïque et d’un aimant. Offprint from Nouveaux Mémoires de l’Académie royale des sciences et belles-lettres de Bruxelles, tome IV, 1827. Bound with 18 other pamphlets (listed below). [Colophon:] Brussels: Hayez, Imprimeur de l’Académie Royale, 1827. $38,000 4to (265 x 205 mm). Contemporary quarter-cloth and plain boards (very worn and broken, with most of the spine missing), entirely unrestored. Preserved in a custom cloth box. First edition of the very rare offprint, with the most desirable imaginable provenance: this copy is inscribed by Ampère to Michael Faraday. It thus links the two great founders of electromagnetism, following its discovery by Hans Christian Oersted (1777-1851) in April 1820. The discovery by Ampère (1775-1836), late in the same year, of the force acting between current-carrying conductors was followed a year later by Faraday’s (1791-1867) first great discovery, that of electromagnetic rotation, the first conversion of electrical into mechanical energy. This development was a challenge to Ampère’s mathematically formulated explanation of electromagnetism as a manifestation of currents of electrical fluids surrounding ‘electrodynamic’ molecules; indeed, Faraday directly criticised Ampère’s theory, preferring his own explanation in terms of ‘lines of force’ (which had to wait for James Clerk Maxwell (1831-79) for a precise mathematical formulation). -
Boethius's Music
/ OTHER PUBLlSHED VOlUMES IN THE MUSIC THEORY nANSLATION SElUES: Fundamentals of Musiy The Praetieal Harm oni st at the Harpsiehord, 1708. by Francesco Gas parini, translated by Frank S, Stillings. edited by David L. Burrows. The An 01Couruerpoint, Pan Three of Le tstinaioni harmoniche, 1558, by AN ICIUS MANLIUS SEVERINUS BOETHIUS G ioseffo Zar lino, translated by Guy A , Marco and Claude V. Palisca . Hucbaìd, Guido, and Iohn 0 11 Music, Three Medieval ìreatises, translated by Warren Babb, edited with Introductions by Claude V. Patisca, The An 01 Stria Musical Composition, 1771-1 779, by Johann Philipp Kim berger, translated by David Beach and Jurgen Thym. Translaced, wùh Introduai on and Notes by lntroductory Essay on Composùion , 1782-1793 . by Heinrich Ch risto ph Koch , translated by Nancy Kovaleff Baker, Calvin M. Bower Aristides Qllintilianus 0 11 Music, in Three Books, translated with lnt ro duet ion , Commemery, and A nnotations, by Thomas J, Mathiesen . On ,!le Modes, Part Four of Le lstitutìoni harmoniche, 1558, by Gioseffo Edired by Za rlìno, translated by Vered Co hen, edited with an Introduction by Oaude V. Patisca. Claude V. Patisca The Fiorentine Camerata: Documentary Studies and Tm nsk uions by Claude V. Patisca. 1989 Yale University Press New Haven & London xii CONTENTS Ptolemy adap ts ratios te the dlvision of the enharmonic genus 182 23. Ptolemy's division of the soft chromatic genus 182 Preface by Series Editor 24. Ptole my's division of the sharp chromarìc genus 182 25. Disposition of Ptclemy's compaci gene ra with numbe rs and ratics 183 26.