Digital Cameras

Total Page:16

File Type:pdf, Size:1020Kb

Digital Cameras Digital Cameras There are hundreds of digital still cameras on the market today, with new models being introduced daily. These cameras can be divided in 2 main groups, SLR (single lens reflex) and non-SLR (point and shoot). SLR digital cameras are very similar to 35mm SLR cameras with the film transport mechanism being replaced with a digital chip and electronic processors. Through the use of mirrors and prisms you view through the same lens used to create the picture. SLR cameras are generally pieces of entire imaging systems which include interchangeable lenses, electronic flashes, and various other specialized products. Most SLRs offer fully automatic to fully manual control of both focusing and exposure. They are more expensive and bulkier than non-SLRs, but their adaptability to almost any photographic situation makes them indispensable to professionals. Examples of digital SLR cameras are the Canon EOS Digital Rebel XT, the Nikon D200, and the Olympus E-330. Non-SLR digital cameras are generally smaller and cheaper, offering convenience at the expense of adaptability. They have permanent lenses which often offer zoom and macro focusing capabilities that are usually adequate in most situations. Focusing and exposure are usually handled automatically which again is satisfactory in most situations. Examples of non-SLR digital cameras are the Canon Powershot series, Nikon Coolpix series, and the Panasonic Lumix series. The more advanced (aka expensive) cameras in each of these series pack many professional features in a small, easy to carry body. When choosing a camera, the first decision therefore is SLR vs. non-SLR. In the SLRs favor are its’ interchangeable lenses, fully auto to fully manual operation, and its’ long term adaptability to almost any situation. The disadvantages are their size and expense. Point and shoot cameras are smaller, lighter, and cheaper. Their lack of interchangeable lenses and inability to deal with non-standard lighting conditions are definite disadvantages though for high quality scientific imaging. Camera Resolution The number of image forming pixels in a digital cameras sensor determines its resolution. Manufacturers list a cameras resolution in terms of Megapixels (millions of pixels). To produce publication quality images, I would recommend purchasing a camera with a minimum of 6 Megapixels (Mp), preferably 8-12 Mp. A 6 Mp camera will produce an uncropped image that is 6.6 x 10 inches at 300 pixels per inch (ppi). Since publishers want submitted images to be actual size at a minimum of 300ppi, you can see that a 6 Mp camera will not produce a file large enough to be used for the cover of NPJ. Most modern SLR and advanced non-SLR cameras are in the 8-12 Mp range. These cameras will produce files that are large enough, even when cropped, to be used for everything from a full bleed cover to a quarter page illustration within an article. Most cameras give you the option of making images using all the pixels or some fraction thereof if you don’t need such a large file. If you know positively that an image will only be used on a web page or in a Powerpoint presentation, you can choose one of these lower resolutions and have the ability to store more images on the memory card. Changing the cameras resolution is usually done through its menu system, so check your manual. I would recommend that for scientific work you always leave the cameras resolution at its highest setting. This will result in larger files but memory is cheap these days so just pick up a few more cards or download more often. At some future date you may decide to make a large print or you may need to crop the image and still have a decent size file for publication. If the original image is too low in resolution you won’t be able to do these things. Storage Formats and Compression When a picture is made with a digital camera, it can be stored on a memory card in several different formats and compressions. SLR type digital cameras offer more options for storage than non-SLR cameras, another point in their favor. The most common formats are JPEG, TIFF, and RAW. Choosing which file format you want to use is usually done through a cameras menu system, so check the manual for instructions. JPEG (Joint Photographic Experts Group, .jpg) is a lossy compressed file format for images. It is extremely versatile as it can greatly reduce the size of a graphics file, thus allowing it to be used on the web or sent attached to an e-mail. Most digital cameras allow you to choose from 3 JPEG compression settings: High (highest quality and largest file size), Medium (medium quality and medium file size), and Low (lowest quality and smallest file size). The greater the compression, the smaller the file size, but at a price. When compressed, information about color and tonality are discarded permanently. A compressed file may exhibit blotchiness around objects with fine detail and color banding instead of smooth gradations of tone. If you save your digital images as JPEGs, I would recommend always using the highest quality setting. Most SLR and non-SLR cameras can also save images as TIFFs (Tagged Image File Format, .tif). TIFFs are uncompressed files and are therefore very large. They can easily be up to 10 times larger than a JPEG of the exact same scene. The advantage of using the TIFF format is that all the fine detail and smooth tonal gradations of the digital image are recorded. If you are taking images that are important and specifically being made to go into print, a TIFF file will provide better quality than a JPEG file. All new digital SLRs and many non-SLRs can also save images as RAW files. Each manufacturer has its own proprietary RAW format and you will need software from the manufacturer or Adobe Photoshop CS to open them. RAW files are just what they sound like, unfiltered, unprocessed, raw data that strikes a cameras digital sensor. When you save an image as a JPEG or TIFF file the cameras processor interprets the raw data and makes all sorts of decisions about color saturation, sharpening, contrast, etc. All these decisions are recorded in the file and will affect the look of the image. A RAW file does not do this, it only records the actual sensor data and allows you to make all these decisions for yourself when you open the file on a computer. Others advantages of the RAW format are that the files are usually smaller than uncompressed Tiffs and they can be opened on the computer as 16-bit files. A 16-bit file has greater latitude for image manipulation (tonality, contrast, color balance, color saturation, etc.) after the exposure than an 8-bit file. My recommended work flow for taking scientific images of the highest quality is this: 1. Take pictures with camera set to RAW mode. 2. Download the RAW files to computer and save these as archive files that you can always return to. 3. Open the RAW file in the camera manufacturers proprietary software or any of the Adobe Photoshop CS versions (1-3 at present). Open the image as a 16 bit file. Make exposure, color, saturation, contrast, and sharpening manipulations. Save 16 bit file as an uncompressed TIFF file. 4. For publication, open the 16 bit file and resize to desired dimensions and resolution, convert to an 8 bit file and save in TIFF format. 5. For attaching to an e-mail or adding to a web site, open 16 bit file, resize accordingly, convert to 8 bit file, and save as a JPEG. If your digital camera does not offer a RAW format then use this workflow: 1. Take pictures with camera set to TIFF mode. If these files are too large for convenient storage set camera to record at the highest quality JPEG mode. 2. Download the files to computer and save these as archive files that you can always return to. 3. Open file in image manipulation software (Adobe Photoshop, iPhoto, etc.). Make exposure, color, saturation, contrast, and sharpening changes. Save as an uncompressed TIFF file. 4. For e-mail size images, change image size to 5x7’ @ 200ppi and save as JPEG with medium compression. .
Recommended publications
  • “Digital Single Lens Reflex”
    PHOTOGRAPHY GENERIC ELECTIVE SEM-II DSLR stands for “Digital Single Lens Reflex”. In simple language, a DSLR is a digital camera that uses a mirror mechanism to either reflect light from a camera lens to an optical viewfinder (which is an eyepiece on the back of the camera that one looks through to see what they are taking a picture of) or let light fully pass onto the image sensor (which captures the image) by moving the mirror out of the way. Although single lens reflex cameras have been available in various shapes and forms since the 19th century with film as the recording medium, the first commercial digital SLR with an image sensor appeared in 1991. Compared to point-and-shoot and phone cameras, DSLR cameras typically use interchangeable lenses. Take a look at the following image of an SLR cross section (image courtesy of Wikipedia): When you look through a DSLR viewfinder / eyepiece on the back of the camera, whatever you see is passed through the lens attached to the camera, which means that you could be looking at exactly what you are going to capture. Light from the scene you are attempting to capture passes through the lens into a reflex mirror (#2) that sits at a 45 degree angle inside the camera chamber, which then forwards the light vertically to an optical element called a “pentaprism” (#7). The pentaprism then converts the vertical light to horizontal by redirecting the light through two separate mirrors, right into the viewfinder (#8). When you take a picture, the reflex mirror (#2) swings upwards, blocking the vertical pathway and letting the light directly through.
    [Show full text]
  • Completing a Photography Exhibit Data Tag
    Completing a Photography Exhibit Data Tag Current Data Tags are available at: https://unl.box.com/s/1ttnemphrd4szykl5t9xm1ofiezi86js Camera Make & Model: Indicate the brand and model of the camera, such as Google Pixel 2, Nikon Coolpix B500, or Canon EOS Rebel T7. Focus Type: • Fixed Focus means the photographer is not able to adjust the focal point. These cameras tend to have a large depth of field. This might include basic disposable cameras. • Auto Focus means the camera automatically adjusts the optics in the lens to bring the subject into focus. The camera typically selects what to focus on. However, the photographer may also be able to select the focal point using a touch screen for example, but the camera will automatically adjust the lens. This might include digital cameras and mobile device cameras, such as phones and tablets. • Manual Focus allows the photographer to manually adjust and control the lens’ focus by hand, usually by turning the focus ring. Camera Type: Indicate whether the camera is digital or film. (The following Questions are for Unit 2 and 3 exhibitors only.) Did you manually adjust the aperture, shutter speed, or ISO? Indicate whether you adjusted these settings to capture the photo. Note: Regardless of whether or not you adjusted these settings manually, you must still identify the images specific F Stop, Shutter Sped, ISO, and Focal Length settings. “Auto” is not an acceptable answer. Digital cameras automatically record this information for each photo captured. This information, referred to as Metadata, is attached to the image file and goes with it when the image is downloaded to a computer for example.
    [Show full text]
  • What Resolution Should Your Images Be?
    What Resolution Should Your Images Be? The best way to determine the optimum resolution is to think about the final use of your images. For publication you’ll need the highest resolution, for desktop printing lower, and for web or classroom use, lower still. The following table is a general guide; detailed explanations follow. Use Pixel Size Resolution Preferred Approx. File File Format Size Projected in class About 1024 pixels wide 102 DPI JPEG 300–600 K for a horizontal image; or 768 pixels high for a vertical one Web site About 400–600 pixels 72 DPI JPEG 20–200 K wide for a large image; 100–200 for a thumbnail image Printed in a book Multiply intended print 300 DPI EPS or TIFF 6–10 MB or art magazine size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1800 x 1200 pixels. Printed on a Multiply intended print 200 DPI EPS or TIFF 2-3 MB laserwriter size by resolution; e.g. an image to be printed as 6” W x 4” H would be 1200 x 800 pixels. Digital Camera Photos Digital cameras have a range of preset resolutions which vary from camera to camera. Designation Resolution Max. Image size at Printable size on 300 DPI a color printer 4 Megapixels 2272 x 1704 pixels 7.5” x 5.7” 12” x 9” 3 Megapixels 2048 x 1536 pixels 6.8” x 5” 11” x 8.5” 2 Megapixels 1600 x 1200 pixels 5.3” x 4” 6” x 4” 1 Megapixel 1024 x 768 pixels 3.5” x 2.5” 5” x 3 If you can, you generally want to shoot larger than you need, then sharpen the image and reduce its size in Photoshop.
    [Show full text]
  • Session Outline: History of the Daguerreotype
    Fundamentals of the Conservation of Photographs SESSION: History of the Daguerreotype INSTRUCTOR: Grant B. Romer SESSION OUTLINE ABSTRACT The daguerreotype process evolved out of the collaboration of Louis Jacques Mande Daguerre (1787- 1851) and Nicephore Niepce, which began in 1827. During their experiments to invent a commercially viable system of photography a number of photographic processes were evolved which contributed elements that led to the daguerreotype. Following Niepce’s death in 1833, Daguerre continued experimentation and discovered in 1835 the basic principle of the process. Later, investigation of the process by prominent scientists led to important understandings and improvements. By 1843 the process had reached technical perfection and remained the commercially dominant system of photography in the world until the mid-1850’s. The image quality of the fine daguerreotype set the photographic standard and the photographic industry was established around it. The standardized daguerreotype process after 1843 entailed seven essential steps: plate polishing, sensitization, camera exposure, development, fixation, gilding, and drying. The daguerreotype process is explored more fully in the Technical Note: Daguerreotype. The daguerreotype image is seen as a positive to full effect through a combination of the reflection the plate surface and the scattering of light by the imaging particles. Housings exist in great variety of style, usually following the fashion of miniature portrait presentation. The daguerreotype plate is extremely vulnerable to mechanical damage and the deteriorating influences of atmospheric pollutants. Hence, highly colored and obscuring corrosion films are commonly found on daguerreotypes. Many daguerreotypes have been damaged or destroyed by uninformed attempts to wipe these films away.
    [Show full text]
  • Sample Manuscript Showing Specifications and Style
    Information capacity: a measure of potential image quality of a digital camera Frédéric Cao 1, Frédéric Guichard, Hervé Hornung DxO Labs, 3 rue Nationale, 92100 Boulogne Billancourt, FRANCE ABSTRACT The aim of the paper is to define an objective measurement for evaluating the performance of a digital camera. The challenge is to mix different flaws involving geometry (as distortion or lateral chromatic aberrations), light (as luminance and color shading), or statistical phenomena (as noise). We introduce the concept of information capacity that accounts for all the main defects than can be observed in digital images, and that can be due either to the optics or to the sensor. The information capacity describes the potential of the camera to produce good images. In particular, digital processing can correct some flaws (like distortion). Our definition of information takes possible correction into account and the fact that processing can neither retrieve lost information nor create some. This paper extends some of our previous work where the information capacity was only defined for RAW sensors. The concept is extended for cameras with optical defects as distortion, lateral and longitudinal chromatic aberration or lens shading. Keywords: digital photography, image quality evaluation, optical aberration, information capacity, camera performance database 1. INTRODUCTION The evaluation of a digital camera is a key factor for customers, whether they are vendors or final customers. It relies on many different factors as the presence or not of some functionalities, ergonomic, price, or image quality. Each separate criterion is itself quite complex to evaluate, and depends on many different factors. The case of image quality is a good illustration of this topic.
    [Show full text]
  • Invention of Digital Photograph
    Invention of Digital photograph Digital photography uses cameras containing arrays of electronic photodetectors to capture images focused by a lens, as opposed to an exposure on photographic film. The captured images are digitized and stored as a computer file ready for further digital processing, viewing, electronic publishing, or digital printing. Until the advent of such technology, photographs were made by exposing light sensitive photographic film and paper, which was processed in liquid chemical solutions to develop and stabilize the image. Digital photographs are typically created solely by computer-based photoelectric and mechanical techniques, without wet bath chemical processing. The first consumer digital cameras were marketed in the late 1990s.[1] Professionals gravitated to digital slowly, and were won over when their professional work required using digital files to fulfill the demands of employers and/or clients, for faster turn- around than conventional methods would allow.[2] Starting around 2000, digital cameras were incorporated in cell phones and in the following years, cell phone cameras became widespread, particularly due to their connectivity to social media websites and email. Since 2010, the digital point-and-shoot and DSLR formats have also seen competition from the mirrorless digital camera format, which typically provides better image quality than the point-and-shoot or cell phone formats but comes in a smaller size and shape than the typical DSLR. Many mirrorless cameras accept interchangeable lenses and have advanced features through an electronic viewfinder, which replaces the through-the-lens finder image of the SLR format. While digital photography has only relatively recently become mainstream, the late 20th century saw many small developments leading to its creation.
    [Show full text]
  • Ground-Based Photographic Monitoring
    United States Department of Agriculture Ground-Based Forest Service Pacific Northwest Research Station Photographic General Technical Report PNW-GTR-503 Monitoring May 2001 Frederick C. Hall Author Frederick C. Hall is senior plant ecologist, U.S. Department of Agriculture, Forest Service, Pacific Northwest Region, Natural Resources, P.O. Box 3623, Portland, Oregon 97208-3623. Paper prepared in cooperation with the Pacific Northwest Region. Abstract Hall, Frederick C. 2001 Ground-based photographic monitoring. Gen. Tech. Rep. PNW-GTR-503. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 340 p. Land management professionals (foresters, wildlife biologists, range managers, and land managers such as ranchers and forest land owners) often have need to evaluate their management activities. Photographic monitoring is a fast, simple, and effective way to determine if changes made to an area have been successful. Ground-based photo monitoring means using photographs taken at a specific site to monitor conditions or change. It may be divided into two systems: (1) comparison photos, whereby a photograph is used to compare a known condition with field conditions to estimate some parameter of the field condition; and (2) repeat photo- graphs, whereby several pictures are taken of the same tract of ground over time to detect change. Comparison systems deal with fuel loading, herbage utilization, and public reaction to scenery. Repeat photography is discussed in relation to land- scape, remote, and site-specific systems. Critical attributes of repeat photography are (1) maps to find the sampling location and of the photo monitoring layout; (2) documentation of the monitoring system to include purpose, camera and film, w e a t h e r, season, sampling technique, and equipment; and (3) precise replication of photographs.
    [Show full text]
  • 1/2-Inch Megapixel CMOS Digital Image Sensor
    MT9M001: 1/2-Inch Megapixel Digital Image Sensor Features 1/2-Inch Megapixel CMOS Digital Image Sensor MT9M001C12STM (Monochrome) Datasheet, Rev. M For the latest datasheet, please visit www.onsemi.com Features Table 1: Key Performance Parameters Parameter Value • Array Format (5:4): 1,280H x 1,024V (1,310,720 active Optical format 1/2-inch (5:4) pixels). Total (incl. dark pixels): 1,312H x 1,048V Active imager size 6.66 mm (H) x 5.32 mm (V) (1,374,976 pixels) • Frame Rate: 30 fps progressive scan; programmable Active pixels 1,280 H x 1,024 V • Shutter: Electronic Rolling Shutter (ERS) Pixel size 5.2 m x 5.2 m • Window Size: SXGA; programmable to any smaller Shutter type Electronic rolling shutter (ERS) Maximum data rate/ format (VGA, QVGA, CIF, QCIF, etc.) 48 MPS/48 MHz • Programmable Controls: Gain, frame rate, frame size master clock Frame SXGA 30 fps progressive scan; rate (1280 x 1024) programmable Applications ADC resolution 10-bit, on-chip Responsivity 2.1 V/lux-sec • Digital still cameras Dynamic range 68.2 dB • Digital video cameras •PC cameras SNRMAX 45 dB Supply voltage 3.0 V3.6 V, 3.3 V nominal 363 mW at 3.3 V (operating); Power consumption General Description 294 W (standby) Operating temperature 0°C to +70°C The ON Semiconductor MT9M001 is an SXGA-format with a 1/2-inch CMOS active-pixel digital image sen- Packaging 48-pin CLCC sor. The active imaging pixel array of 1,280H x 1,024V. It The sensor can be operated in its default mode or pro- incorporates sophisticated camera functions on-chip grammed by the user for frame size, exposure, gain set- such as windowing, column and row skip mode, and ting, and other parameters.
    [Show full text]
  • More About Digital Cameras Image Characteristics Several Important
    More about Digital Cameras Image Characteristics Several important characteristics of digital images include: Physical Size How big is the image that has been captured, as measured in inches or pixels? File Size How large is the computer file that makes up the image, as measured in kilobytes or megabytes? Pixels All digital images taken with a digital camera are made up of pixels (short for picture elements). A pixel is the smallest part (sometimes called a point or a dot) of a digital image and the total number of pixels make up the image and help determine its size and its resolution, or how much information is included in the image when we view it. Generally speaking, the larger the number of pixels an image contains, the sharper it will appear, especially when it is enlarged, which is what happens when we want to print our photographs larger than will fit into small 3 1\2 X 5 inch or 5 X 7 inch frames. You will notice in the first picture below that the Grand Canyon is in sharp focus and there is a large amount of detail in the image. However, when the image is enlarged to an extreme level, the individual pixels that make up the image are visible--and the image is no longer clear and sharp. Megapixels The term megapixels means one million pixels. When we discuss how sharp a digital image is or how much resolution it has, we usually refer to the number of megapixels that make up the image. One of the biggest selling features of digital cameras is the number of megapixels it is capable of producing when a picture is taken.
    [Show full text]
  • Oxnard Course Outline
    Course ID: DMS R120B Curriculum Committee Approval Date: 04/25/2018 Catalog Start Date: Fall 2018 COURSE OUTLINE OXNARD COLLEGE I. Course Identification and Justification: A. Proposed course id: DMS R120B Banner title: AdobePhotoShop II Full title: Adobe PhotoShop II B. Reason(s) course is offered: This course provides the development of skills necessary to combine the use of Photoshop digital image editing software with Adobe LightRoom's expanded digital photographic image editing abilities. These skills will enhance a student’s ability to enter into employment positions such as web master, graphics design, and digital image processing. C. C-ID: 1. C-ID Descriptor: 2. C-ID Status: D. Co-listed as: Current: None II. Catalog Information: A. Units: Current: 3.00 B. Course Hours: 1. In-Class Contact Hours: Lecture: 43.75 Activity: 0 Lab: 26.25 2. Total In-Class Contact Hours: 70 3. Total Outside-of-Class Hours: 87.5 4. Total Student Learning Hours: 157.5 C. Prerequisites, Corequisites, Advisories, and Limitations on Enrollment: 1. Prerequisites Current: DMS R120A: Adobe Photoshop I 2. Corequisites Current: 3. Advisories: Current: 4. Limitations on Enrollment: Current: D. Catalog description: Current: This course will continue the development of students’ skills in the use of Adobe Photoshop digital image editing software by integrating the enhanced editing capabilities of Adobe Lightroom into the Adobe Photoshop workflow. Students will learn how to “punch up” colors in specific areas of digital photographs, how to make dull-looking shots vibrant, remove distracting objects, straighten skewed shots and how to use Photoshop and Lightroom to create panoramas, edit Adobe raw DNG photos on mobile device, and apply Boundary Wrap to a merged panorama to prevent loss of detail in the image among other skills.
    [Show full text]
  • Digital Photography Basics for Beginners
    DIGITAL PHOTOGRAPHY BASICS FOR BEGINNERS by Robert Berdan [email protected] www.canadiannaturephotographer.com These notes are free to use by anyone learning or teaching photography. 1. Choosing a camera - there are 2 main types of compact cameras A) Point and Shoot Camera (some have interchangeable lenses most don't) - you view the scene on a liquid crystal display (LCD) screen, some cameras also offer viewfinders. B) Single Lens Reflex (SLR) - cameras with interchangeable lenses let you see the image through the lens that is attached to the camera. What you see is what you get - this feature is particularly valuable when you want to use different types of lenses. Digital SLR Camera with Interchangeable zoom lens 1 Point and shoot cameras are small, light weight and can be carried in a pocket. These cameras tend to be cheaper then SLR cameras. Many of these cameras offer a built in macro mode allowing extreme close-up pictures. Generally the quality of the images on compact cameras is not as good as that from SLR cameras, but they are capable of taking professional quality images. SLR cameras are bigger and usually more expensive. SLRs can be used with a wide variety of interchangeable lenses such as telephoto lenses and macro lenses. SLR cameras offer excellent image quality, lots of features and accessories (some might argue too many features). SLR cameras also shoot a higher frame rates then compact cameras making them better for action photography. Their disadvantages include: higher cost, larger size and weight. They are called Single Lens Reflex, because you see through the lens attached to the camera, the light is reflected by a mirror through a prism and then the viewfinder.
    [Show full text]
  • Evaluation of the Lens Flare
    https://doi.org/10.2352/ISSN.2470-1173.2021.9.IQSP-215 © 2021, Society for Imaging Science and Technology Evaluation of the Lens Flare Elodie Souksava, Thomas Corbier, Yiqi Li, Franc¸ois-Xavier Thomas, Laurent Chanas, Fred´ eric´ Guichard DXOMARK, Boulogne-Billancourt, France Abstract Flare, or stray light, is a visual phenomenon generally con- sidered undesirable in photography that leads to a reduction of the image quality. In this article, we present an objective metric for quantifying the amount of flare of the lens of a camera module. This includes hardware and software tools to measure the spread of the stray light in the image. A novel measurement setup has been developed to generate flare images in a reproducible way via a bright light source, close in apparent size and color temperature (a) veiling glare (b) luminous halos to the sun, both within and outside the field of view of the device. The proposed measurement works on RAW images to character- ize and measure the optical phenomenon without being affected by any non-linear processing that the device might implement. Introduction Flare is an optical phenomenon that occurs in response to very bright light sources, often when shooting outdoors. It may appear in various forms in the image, depending on the lens de- (c) haze (d) colored spot and ghosting sign; typically it appears as colored spots, ghosting, luminous ha- Figure 1. Examples of flare artifacts obtained with our flare setup. los, haze, or a veiling glare that reduces the contrast and color saturation in the picture (see Fig. 1).
    [Show full text]