Epirubicin Hydrochloride for Injection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Personal Radiation Monitoring
Personal Radiation Monitoring Tim Finney 2020 Radiation monitoring Curtin staff and students who work with x-ray machines, neutron generators, or radioactive substances are monitored for exposure to ionising radiation. The objective of radiation monitoring is to ensure that existing safety procedures keep radiation exposure As Low As Reasonably Achievable (ALARA). Personal radiation monitoring badges Radiation exposure is measured using personal radiation monitoring badges. Badges contain a substance that registers how much radiation has been received. Here is the process by which a user’s radiation dose is measured: 1. The user is given a badge to wear 2. The user wears the badge for a set time period (usually three months) 3. At the end of the set time, the user returns the badge 4. The badge is sent away to be read 5. A dose report is issued. These steps are repeated until monitoring is no longer required. Badges are supplied by a personal radiation monitoring service provider. Curtin uses a service provider named Landauer. In addition to user badges, the service provider sends control badges that are kept on site in a safe place away from radiation sources. The service provider reads each badge using a process that extracts a signal from the substance contained in the badge to obtain a dose measurement. (Optically stimulated luminescence is one such process.) The dose received by the control badge is subtracted from the user badge reading to obtain the user dose during the monitoring period. Version 1.0 Uncontrolled document when printed Health and Safety Page 1 of 7 A personal radiation monitoring badge Important Radiation monitoring badges do not protect you from radiation exposure. -
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams
Proper Use of Radiation Dose Metric Tracking for Patients Undergoing Medical Imaging Exams Frequently Asked Questions Introduction In August of 2021, the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) jointly released the following position statement advising against using information about a patient’s previous cumulative dose information from medical imaging exams to decide the appropriateness of future imaging exams. This statement was also endorsed by the Radiological Society of North America (RSNA). It is the position of the American Association of Physicists in Medicine (AAPM), the American College of Radiology (ACR), and the Health Physics Society (HPS) that the decision to perform a medical imaging exam should be based on clinical grounds, including the information available from prior imaging results, and not on the dose from prior imaging-related radiation exposures. AAPM has long advised, as recommended by the International Commission on Radiological Protection (ICRP), that justification of potential patient benefit and subsequent optimization of medical imaging exposures are the most appropriate actions to take to protect patients from unnecessary medical exposures. This is consistent with the foundational principles of radiation protection in medicine, namely that patient radiation dose limits are inappropriate for medical imaging exposures. Therefore, the AAPM recommends against using dose values, including effective dose, from a patient’s prior imaging exams for the purposes of medical decision making. Using quantities such as cumulative effective dose may, unintentionally or by institutional or regulatory policy, negatively impact medical decisions and patient care. This position statement applies to the use of metrics to longitudinally track a patient’s dose from medical radiation exposures and infer potential stochastic risk from them. -
Chemotherapy Protocol
Chemotherapy Protocol BREAST CANCER CYCLOPHOSPHAMIDE-EPIRUBICIN-PACLITAXEL (7 day) Regimen • Breast Cancer – Cyclophosphamide-Epirubicin-Paclitaxel (7 day) Indication • Neoadjuvant / adjuvant therapy of early breast cancer • WHO Performance status 0, 1 Toxicity Drug Adverse Effect Cyclophosphamide Dysuria, haemorrhagic cystitis, taste disturbances Epirubicin Cardio-toxicity, urinary discolouration (red) Hypersensitivity, hypotension, bradycardia, peripheral Paclitaxel neuropathy, myalgia and back pain on administration The adverse effects listed are not exhaustive. Please refer to the relevant Summary of Product Characteristics for full details. Monitoring Regimen • FBC, U&Es and LFTs prior to each cycle. • Ensure adequate cardiac function before starting treatment with epirubicin. Baseline LVEF should be measured, particularly in patients with a history of cardiac problems or in the elderly. Dose Modifications The dose modifications listed are for haematological, liver and renal function only. Dose adjustments may be necessary for other toxicities as well. In principle all dose reductions due to adverse drug reactions should not be re- escalated in subsequent cycles without consultant approval. It is also a general rule for chemotherapy that if a third dose reduction is necessary treatment should be stopped. Please discuss all dose reductions / delays with the relevant consultant before prescribing if appropriate. The approach may be different depending on the clinical circumstances. The following is a general guide only. Version 1.2 (November 2020) Page 1 of 7 Breast – Cyclophosphamide-Epirubicin-Paclitaxel (7 day) Haematological Prior to prescribing the following treatment criteria must be met on day one of treatment. Criteria Eligible Level Neutrophils equal to or more than 1x10 9/L Platelets equal to or more than 100x10 9/L Consider blood transfusion if patient symptomatic of anaemia or has a haemoglobin of less than 8g/dL If counts on day one are below these criteria for neutrophils and platelets then delay treatment for seven days. -
Cumulative Radiation Dose in Patients Admitted with Subarachnoid Hemorrhage: a Prospective PATIENT SAFETY Study Using a Self-Developing Film Badge
Cumulative Radiation Dose in Patients Admitted with Subarachnoid Hemorrhage: A Prospective PATIENT SAFETY Study Using a Self-Developing Film Badge A.C. Mamourian BACKGROUND AND PURPOSE: While considerable attention has been directed to reducing the x-ray H. Young dose of individual imaging studies, there is little information available on the cumulative dose during imaging-intensive hospitalizations. We used a radiation-sensitive badge on 12 patients admitted with M.F. Stiefel SAH to determine if this approach was feasible and to measure the extent of their x-ray exposure. MATERIALS AND METHODS: After obtaining informed consent, we assigned a badge to each of 12 patients and used it for all brain imaging studies during their ICU stay. Cumulative dose was deter- mined by quantifying exposure on the badge and correlating it with the number and type of examinations. RESULTS: The average skin dose for the 3 patients who had only diagnostic DSA without endovascular intervention was 0.4 Gy (0.2–0.6 Gy). The average skin dose of the 8 patients who had both diagnostic DSA and interventions (eg, intra-arterial treatment of vasospasm and coiling of aneurysms) was 0.9 Gy (1.8–0.4 Gy). One patient had only CT examinations. There was no effort made to include or exclude the badge in the working view during interventions. CONCLUSIONS: It is feasible to incorporate a film badge that uses a visual scale to monitor the x-ray dose into the care of hospitalized patients. Cumulative skin doses in excess of 1 Gy were not uncommon (3/12) in this group of patients with acute SAH. -
BC Cancer Protocol Summary for Neoadjuvant Or Adjuvant Therapy for Breast Cancer Using Fluorouracil, Epirubicin, Cyclophosphamide and Docetaxel
BC Cancer Protocol Summary for Neoadjuvant or Adjuvant Therapy for Breast Cancer Using Fluorouracil, Epirubicin, Cyclophosphamide and DOCEtaxel Protocol Code BRAJFECD Tumour Group Breast Contact Physician Dr. Stephen Chia ELIGIBILITY: . Node positive (any T, N1-3) or high risk, node negative early stage breast cancer . Less than or equal to 65 years of age or fit patients greater than 65 years deemed appropriate by supervising physician . ECOG 0-1 . HER-2 negative . Adequate renal and hepatic function . Adequate cardiac function EXCLUSIONS: . ECOG 2-4 . Significant hepatic dysfunction . Congestive heart failure (LVEF less than 45%) or other significant heart disease . Greater than or equal to grade 2 sensory or motor neuropathy . Pregnancy or lactation . Unsuitable for aggressive adjuvant chemotherapy TESTS: . Baseline: CBC & diff, platelets, creatinine, bilirubin, ALT, Alk Phos, LDH, GGT . Before each treatment (Day 1): CBC & diff, platelets. Prior to Cycle #4: CBC & diff, platelets, bilirubin, ALT, Alk Phos (see Precaution #5 for guidelines regarding hepatic dysfunction and DOCEtaxel). If clinically indicated: bilirubin, ALT, Alk Phos, creatinine, protein level, albumin, GGT, LDH, urea, MUGA scan or echocardiogram PREMEDICATIONS: . For the 3 cycles of epirubicin, fluorouracil and cyclophosphamide, antiemetic protocol for highly emetogenic chemotherapy (see protocol SCNAUSEA) . For the 3 cycles of DOCEtaxel: Dexamethasone 8 mg PO bid for 3 days, starting one day prior to each DOCEtaxel administration. Patient must receive minimum of 3 doses pre-treatment. Additional antiemetics not usually required. DOCEtaxel-induced onycholysis and cutaneous toxicity of the hands may be prevented by wearing frozen gloves starting 15 minutes before DOCEtaxel infusion until 15 minutes after end of DOCEtaxel infusion; gloves should be changed after 45 minutes of wearing to ensure they remain cold during the entire DOCEtaxel infusion. -
In Advanced Upper Tract Urothelial Carcinoma
ANTICANCER RESEARCH 37 : 1875-1883 (2017) doi:10.21873/anticanres.11525 Comparison of Efficacy of Adjuvant MEC (Methotrexate, Epirubicin and Cisplatin) and GC (Gemcitabine and Cisplatin) in Advanced Upper Tract Urothelial Carcinoma SHENG-CHUN HUNG 1, SHIAN-SHIANG WANG 1,2,3 , CHUN-KUANG YANG 1, JIAN-RI LI 1, CHEN-LI CHENG 1, YEN-CHUAN OU 1, HAO-CHUNG HO 1, KUN-YUAN CHIU 1 and CHUAN-SHU CHEN 1 1Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.; 2School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C.; 3Department of Applied Chemistry, National Chi Nan University, Puli, Taiwan, R.O.C. Abstract. Aim: To evaluate the efficacy of methotrexate, (3). Its behavior appears multi-focal and in 17% of cases, epirubicin and cisplatin (MEC) or gemcitabine and cisplatin concurrent bladder cancer is present (4). Furthermore, an (GC) as adjuvant chemotherapy in advanced upper tract estimated 22-47% of patients with UTUC may suffer from urothelium carcinoma (UTUC). Patients and Methods: From bladder recurrence (5) and 2-6% of patients suffer from 2002 January to 2008 December, a total of 70 patients with contralateral recurrence (6). advanced UTUC received radical nephroureterctomy at our A radical nephroureterectomy and bladder cuff excision is Institute with MEC and GC as adjuvant chemotherapy. Disease- standard treatment for UTUC, while offering the benefits of free survival (DFS), cancer-specific survival (CSS) and overall preventing tumor spreading and an entire urinary tract resection survival (OS) among the two groups were evaluated. Results: (7). However, after definite and en bloc surgical removal of the The MEC (n=30) and GC group (n=40) were compared and kidney, it still appears to be a poor prognosis for advanced showed no significant differences in DFS (p=0.859), CSS disease, with a <50% 5-year cancer-specific survival rate in (p=0.722) and OS (p=0.691). -
Radiation Glossary
Radiation Glossary Activity The rate of disintegration (transformation) or decay of radioactive material. The units of activity are Curie (Ci) and the Becquerel (Bq). Agreement State Any state with which the U.S. Nuclear Regulatory Commission has entered into an effective agreement under subsection 274b. of the Atomic Energy Act of 1954, as amended. Under the agreement, the state regulates the use of by-product, source, and small quantities of special nuclear material within said state. Airborne Radioactive Material Radioactive material dispersed in the air in the form of dusts, fumes, particulates, mists, vapors, or gases. ALARA Acronym for "As Low As Reasonably Achievable". Making every reasonable effort to maintain exposures to ionizing radiation as far below the dose limits as practical, consistent with the purpose for which the licensed activity is undertaken. It takes into account the state of technology, the economics of improvements in relation to state of technology, the economics of improvements in relation to benefits to the public health and safety, societal and socioeconomic considerations, and in relation to utilization of radioactive materials and licensed materials in the public interest. Alpha Particle A positively charged particle ejected spontaneously from the nuclei of some radioactive elements. It is identical to a helium nucleus, with a mass number of 4 and a charge of +2. Annual Limit on Intake (ALI) Annual intake of a given radionuclide by "Reference Man" which would result in either a committed effective dose equivalent of 5 rems or a committed dose equivalent of 50 rems to an organ or tissue. Attenuation The process by which radiation is reduced in intensity when passing through some material. -
``Low Dose``And/Or``High Dose``In Radiation Protection: a Need To
IAEA-CN-67/154 "LOW DOSE" AND/OR "HIGH DOSE" IN RADIATION PROTECTION: A NEED TO SETTING CRITERIA FOR DOSE CLASSIFICATION Mehdi Sohrabi National Radiation Protection Department & XA9745670 Center for Research on Elevated Natural Radiation Atomic Energy Organization of Iran, Tehran ABSTRACT The "low dose" and/or "high dose" of ionizing radiation are common terms widely used in radiation applications, radiation protection and radiobiology, and natural radiation environment. Reading the title, the papers of this interesting and highly important conference and the related literature, one can simply raise the question; "What are the levels and/or criteria for defining a low dose or a high dose of ionizing radiation?". This is due to the fact that the criteria for these terms and for dose levels between these two extreme quantities have not yet been set, so that the terms relatively lower doses or higher doses are usually applied. Therefore, setting criteria for classification of radiation doses in the above mentioned areas seems a vital need. The author while realizing the existing problems to achieve this important task, has made efforts in this paper to justify this need and has proposed some criteria, in particular for the classification of natural radiation areas, based on a system of dose limitation. In radiation applications, a "low dose" is commonly associated to applications delivering a dose such as given to a patient in a medical diagnosis and a "high dose" is referred to a dose in applications such as radiotherapy, mutation breeding, control of sprouting, control of insects, delay ripening, and sterilization having a range of doses from 1 to 105 Gy, for which the term "high dose dosimetry" is applied [1]. -
Natural Products. a History of Success and Continuing Promise for Drug Discovery and Development
Natural Products. A History of Success and Continuing Promise for Drug Discovery and Development Gordon M. Cragg NIH Special Volunteer [email protected] David J. Newman Natural Products Branch Developmental Therapeutics Program National Cancer Institute EARLY DOCUMENTATION OF USE OF MEDICINAL PLANTS http://www.nlm.nih.gov/hmd/collections/archives/index.html • Mesopotamian ~2,600 B. C. E. • Egyptian ~ 1,800 B. C. E. • Chinese – ~1,100 B. C. E. and continuing • Indian ~ 1,000 B. C. E. and continuing • Greek ~ 500 B. C. E. Greco-Roman expertise preserved and coordinated with other traditions by Islamic cultures during the Dark Ages ~ 400-1,100 CE Avicenna. Persian pharmacist, physician, poet, philosopher author: canon medicinae – “final codification of Greco-Roman medicine” Great Moments in Pharmacy Collection APhA Traditional Medicine and Drug Discovery • 80% of the world population resides in developing countries • 80% of people in developing countries utilize plants to meet their primary health care needs • Global pop. ca. 7 billion ca. 4.5 billion people utilize plants to meet their primary health care needs Farnsworth NR, et al. Medicinal Plants in Therapy. Bull. W.H.O. 63:965-981 (1985) Fabricant and Farnsworth, EnViron. Health Perspect. 109, 69-75 (2001) Cordell and Clovard, J. Nat. Prod., 75, 514-525 (2012) Norman Farnsworth 1800s. Discovery of some active principles of major herbal preparations Newman and Cragg. Natural Product Chemistry for Drug Discovery, eds. Buss and Butler, M. S., Royal Soc. Chem., Cambridge, 2010, pp. 3-27 European chemists (apothecaries) revolutionized drug discovery and development. 1817. Sertϋrner reports isolation of morphine from Papaver somniferum. -
Breast Pathway Group – FEC75 (Fluorouracil / Epirubicin / Cyclophosphamide) in Advanced Breast Cancer
Breast Pathway Group – FEC75 (Fluorouracil / Epirubicin / Cyclophosphamide) in Advanced Breast Cancer Indication: First line palliative therapy in selected patients with advanced breast cancer Regimen details: Fluorouracil 600mg/m2 IV Day 1 Epirubicin *75mg/m2 IV Day 1 Cyclophosphamide 600mg/m2 IV Day 1 * Consider using FEC60 regimen in patients > 60 years Administration: Epirubicin IV bolus injection via a fast-running Sodium Chloride 0.9% infusion Fluorouracil IV bolus injection via a fast-running Sodium Chloride 0.9% infusion Cyclophosphamide may be administered as IV bolus injection via a fast-running Sodium Chloride 0.9% infusion or as a short infusion e.g. in 100-250ml Sodium Chloride 0.9% over 30 minutes Frequency: Day 1, every 21 days, for 6 cycles Pre-medication: Not routinely required Anti- emetics: Highly Emetogenic Follow local anti-emetic policy. Supportive medication: Mouthcare as per local policy. Extravasation: Fluorouracil: Irritant Epirubicin: Vesicant Cyclophosphamide: Non-vesicant Epirubicin should be administered with appropriate precautions to prevent extravasation. If there is any possibility that extravasation Version: 1.0 Supersedes: all other versions Approved by LCA Breast Pathway Chemotherapy Lead: Mark Harries November 2014 Reason for Update: LCA Protocol Approved by LCA Joint Delivery Subgroup Co-Chairs: Pauline McCalla & Rebecca Johl Development Prepared by: Anabel Rodriguez Marina Approved by LCA Medicines & Chemotherapy Steering Group Chair: Jamie Ferguson Second check by: Lisa Yuen Date prepared: November 2014 Review Date: November 2016 Disclaimer: The Joint Delivery Chemotherapy Nurse/Oncology Pharmacist Group is a sub-group of the Medicines & Chemotherapy Steering Group (MCSG) working within the London Cancer Alliance Integrated Cancer System (LCA). -
Internal and External Exposure Exposure Routes 2.1
Exposure Routes Internal and External Exposure Exposure Routes 2.1 External exposure Internal exposure Body surface From outer space contamination and the sun Inhalation Suspended matters Food and drink consumption From a radiation Lungs generator Radio‐ pharmaceuticals Wound Buildings Ground Radiation coming from outside the body Radiation emitted within the body Radioactive The body is equally exposed to radiation in both cases. materials "Radiation exposure" refers to the situation where the body is in the presence of radiation. There are two types of radiation exposure, "internal exposure" and "external exposure." External exposure means to receive radiation that comes from radioactive materials existing on the ground, suspended in the air, or attached to clothes or the surface of the body (p.25 of Vol. 1, "External Exposure and Skin"). Conversely, internal exposure is caused (i) when a person has a meal and takes in radioactive materials in the food or drink (ingestion); (ii) when a person breathes in radioactive materials in the air (inhalation); (iii) when radioactive materials are absorbed through the skin (percutaneous absorption); (iv) when radioactive materials enter the body from a wound (wound contamination); and (v) when radiopharmaceuticals containing radioactive materials are administered for the purpose of medical treatment. Once radioactive materials enter the body, the body will continue to be exposed to radiation until the radioactive materials are excreted in the urine or feces (biological half-life) or as the radioactivity weakens over time (p.26 of Vol. 1, "Internal Exposure"). The difference between internal exposure and external exposure lies in whether the source that emits radiation is inside or outside the body. -
Epirubicin Ebewe Solution for Injection 2 Mg/Ml 2
NEW ZEALAND DATA SHEET EPIRUBICIN EBEWE (EPIRUBICIN HYDROCHLORIDE) 1. PRODUCT NAME Epirubicin Ebewe solution for injection 2 mg/mL 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Active: Epirubicin hydrochloride Each vial contains 2 mg/mL of epirubicin hydrochloride Epirubicin hydrochloride is a red-orange, almost odourless, hygroscopic powder, sparingly soluble in water and dilute alcohol. List of excipients with known effect: Sodium chloride For the full list of excipients, see Section 6.1 List of excipients. 3. PHARMACEUTICAL FORM Solution for injection (clear red solution, vials). 4. CLINICAL PARTICULARS 4.1. THERAPEUTIC INDICATIONS Epirubicin hydrochloride has produced responses in a wide spectrum of neoplastic diseases, and is indicated for the treatment of breast cancer, gastric cancer, ovarian cancer, small cell lung cancer, lymphoma (non-Hodgkin's lymphoma), advanced/ metastatic soft tissue sarcoma, and superficial bladder cancer (Tis, Ta). In bladder cancer, epirubicin hydrochloride is also indicated in the prophylaxis of recurrence after transurethral resection of stage T1 papillary cancers and stage Ta multifocal papillary cancers (grade 2 and 3). 4.2. DOSE AND METHOD OF ADMINISTRATION Dosage The safety and efficacy of epirubicin in children has not been established. Care in the intravenous administration of epirubicin hydrochloride will reduce the chance of perivenous infiltration. It may also decrease the chance of local reactions, such as urticaria and erythematous streaking (see Section 4.4 Special warnings and precautions for use). Note. The recommended lifetime cumulative dose limit of epirubicin is 900 mg/m2 body surface area. Under conditions of normal recovery from drug induced toxicity (particularly bone marrow depression and stomatitis), the recommended dosage schedule in adults, as described below, is as a single intravenous injection administered at 21 day intervals.