Calcined Clays and LC3

Total Page:16

File Type:pdf, Size:1020Kb

Calcined Clays and LC3 Calcined Clays and LC3 Professor Karen Scrivener Karen Scrivener » English » MA Cambridge, PhD Imperial College » Head of Calcium Aluminate Research Lafarge 1995-2001 » Professor and Director of Laboratory of Construction Materials , EPFL 2001- present » Editor in Chief Cement and Concrete Research » Founder and Co-ordinator of Nanocem. Industrial Academic Partnership for Fundamental Research on Cementitious Materials » Fellow Royal Academy of Engineering Main messages » We have to be realistic about the composition of cementitious materials in the future » >90% will be based on Portland cement with SCMs » Classic SCMs – fly ash and slag are only around 15% of current cement production, will drop to < 10% in near future » We need to use new sources of SCMs - calcined clay » Calcined clays even with only 40-60% Kaolin give very good performance in terms of strength and durability Concrete is an environmentally friendly material Material MJ/kg kgCO2/kg Cement 4.6 0.83 2 Concrete 0.95 0.13 Masonry 3.0 0.22 Wood 8.5 0.46 Wood: multilayer 15 0.81 Steel: Virgin 35 2.8 Steel: Recycled 9.5 0.43 Aluminium: virgin 218 11.46 Relative energy, CO Relativeenergy, Aluminium recycled 28.8 1.69 Glass fibre 100 8.1 composites Glass 15.7 0.85 ICE version 1.6a Hammond G.P. and Jones C.I 2008 Proc Instn Civil Engineers www.bath.ac.uk/mech-eng/sert/embodied/ Origins of CO2 emissions in cement production 1 tonne of cement leads to the emission of 650 – 900 kg CO2 The production process is highly optimised Around 80% of CaCO3 thermodynamic limit. decomposition 40 it is estimated that < 2% (CHEMICAL) further savings can be Fuel made here 60 Use of waste fuels, which can be > 80% reduces the demand for fossil fuels CaCO3 CaO + CO2 What can be done to lower environmental impact? What is available on earth? Mg rest K Na2O Na Too soluble K2O Ca Fe2O3 Fe Too low mobility in alkaline solutions MgO CaO Al O SiO2 The most useful Al O Si 2 3 Slag cement blend Hydraulic materials in CaO-SiO2-Al2O3 system SiO2 BUT, what sources of minerals are there which contain Al2O3 >> SiO2 ? Bauxite – localised, under increasing demand for Aluminium production, EXPENSIVE Also resource limited. All current bauxite production diverted to produce CSA would Calcium aluminate / cover <15% of need Portland calcium sulfo aluminate Cement CaO Al2O3 Partial replacement of Portland clinker Traditionally Portland Cement consists of clinker ground with about 5% of calcium sulfate (e.g gypsum) Clinker Gypsum Cement Now the majority of cement Supplementary contain other materials as a cementitious partial substitution for materials clinker. SCMs Supplementary cementitious materials Limestone Fly ash Slag Natural pozzolan Calcined clay Often by-products or wastes from other industries Local availability very important! Evolution of Clinker substitution Clinker substitution most successful strategy to reduce CO2 25% 20% 1% 1% 1% 1% 1% 1% 1% 2% 2% 1% 2% 2% 2% 2% 1% 2% Limestone 15% 1% 2% 4% 4% 2% 4% 4% 2% 4% 4% 4% 2% 3% Slag 3% 3% 2% 10% 4% 5% 5% 5% Fly ash 2% 5% 5% 5% 5% 5% 1% 4% 4% 1% Puzzolana 4% 5% 4% 6% 7% 7% 7% Others 5% 5% 6% 6% 6% 6% 4% 0% 2% 1990 2000 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 • Almost no progress in last 5 years • Only 3 substitutes used in quantity Availability of SCMs silica fume waste glass Vegetable ashes Natural Pozzolan Used Available Slag Fly ash Portland cement limestoneFiller Calcined Clay 0 2000 4000 6000 Mt/yr There is no magic solution . Blended with SCMs will be best solution for sustainable cements for foreseeable future . Only material really potentially available in viable quantities is calcined clay. Blend containing combination of calcined clay and limestone are particularly interesting: EPFL led LC3 project supported by SDC. Started 2013 What is LC3 70 100 60 50 80 1 day 40 Gypsum 60 7 days Limestone 30 (MPa) 28 days 40 Calcined clay 20 Clinker 10 90 days Mass proportion (%) proportion Mass 20 Compressive strength strength Compressive 0 0 PC LC3-50 PC PPC30 LC3-50 LC3-65 • 50% less clinker • 30% less CO2 LC3 is a family of cements, • Similar strength the figure refers to • Better chloride resistance the clinker content • ASR resistant Why can we get such high replacement levels » Calcined kaolinite (metakaolin) is much » Alumina in metakaolin can more reactive than react with limestone to glassy SCMs give space filling hydrates Ms Mc Hc Strät.AFt Hc C 4AFAFt CH AFt Ms Strät . AFt OPC 28d 1d 5 10 1520 25 Position [ 2Q ] Ms Mc Hc Strät.AFtHc C4AFAFt CH AFt Ms Strät. AFt LC3-50 28d 1d 5 10 1520 25 Position [2Q ] What kinds of clay are suitable? Three basic clay structures Kaolinite (1:1) Montmorillonite (2:1) Illite (Micas) (Smectites) (2:1) + ++ Na , Ca , H2O silicon aluminium “Metakaolin”, sold as high purity product for paper, ceramic, refractory industries Requirements for purity, colour, etc, mean expensive 3-4x price cement Clays containing metakaolin often available as wastes – over or under burden Much much less expensive About 50 clays studied from around the world Different calcination conditions Different compositions, impurities Different physical properties 0%17.0% 35.0%38.9% 50.3% 66.2% 79.4% 95% Quartz% of calcined kaolinite in the calcined clay Pure kaolinite Benchmark test of clay strength Compressive strength EN 196-1 at 1, 3, 7, 28 and 90 d Linear increase of strength with the MK content of calcined clays Similar strength to PC for blends containing 40% of calcined kaolinite from 7d onwards At 28 and 90 days, little additional benefit >50% Minor impacts of fineness, specific surface and secondary phases Calcined kaolinite content overwhelming parameter Availability of suitable clays, yellow pink and light green regions, and others Suitable clays presently stockpiled as waste Trial productions in Cuba and India Housing materials produced in factories by unskilled workers with no special training at 1:1 replacement Potential impact of LC3 technology Clinker Global cement Global SCM Global CO factor, 2 production volume reduction IEA study for global average Billion Billion Million CSI of tons/year tones/year tones/year % WBCSD 2006 2.6 79 0.5 2050 4.4 73 1.2 200 3 (CSI study) Global potential of LC 2050 4.4 60 1.8 600 (with LCC) ∆ = 400 million tonnes per yr Can replace whole of need for CCS in low demand scenario > whole of CO2 emissions of France In fact little extra benefit above ~ 60% kaolin Similar strength to PC for blends containing 40% of calcined kaolinite from 7d onwards At 28 and 90 days, little additional benefit for clays >60% of kaolinite Clinker hydration degree Higher DoH for LC3-50 blends due to the filler effect of calcined clay and limestone DoH constant for LC3-50 (95.0%) from 3 days onwards: significant slowing down of clinker hydration Clinker hydration continues for LC3-50 containing less than 65% of calcined kaolinite Clinker hydration slowing down due to a too low relative humidity? Measurement of the relative humidity Higher relative humidity for the LC3-50 (95.0%) Lack of water is not responsible for the slowing down of clinker hydration Amount of reacted metakaolin Increase of the amount of reacted metakaolin with the calcined kaolinite content This increase becomes lower with the increase of the calcined kaolinite content Porosity characterization by MIP Significant refinement of porosity already at 3 days of hydration LC3-50 (95%) 3d » Porosity already well defined at 3 days for high-grade calcined clays » Kinetics difference depending on the grade of calcined clays Competition of clinker and metakaolin reactions Clays containing > 65% of calcined kaolinite: Slowing down of clinker hydration and stabilization of porosity observed by MIP However, metakaolin keeps reacting (not seen by MIP) Characterization of metakaolin reaction Carboaluminate increase until 50% of kaolinite Decrease then due to lack of large capillary pores . Incorporation of Si and Al in C-A-S-H. Significant increase of the Al/Ca for LC3-50 (95.0%) Hc+Mc 28 days.
Recommended publications
  • Construction Engineering Australia • June/July 2017
    PROUDLY SUPPORTED BY PROUD MEDIA PARTNER CONCRETE INSTITUTE of AUSTRALIA CONSTRUCTION ENGINEERING OFFICIAL PUBLICATION AUSTRALIA JUNE/JULY 2017 V3.03 CONSTRUCTION CIVIL WORKS CIVIL ENGINEERING PRINT POST APPROVED - 100001889 Keynote Speakers Professor Tim Ibell Professor Karen Scrivener Ms Louise Adams Professor Doug Hooton Mr Peter McBean Professor Des Bull Invited Speakers Mr Mike Schneider Dr Stuart Matthews Conference Registration Now Open Concrete 2017 includes • Quality Technical Program REGISTER TODAY AT: • Cement and Durability Workshops www.concrete2017.com.au • Huge Trade Exhibition • Gala “Awards for Excellence in Concrete” Dinner • Social and Networking Events 28th Biennial Conference hosted by Conference Partner www.concrete2017.com.au JUNE/JULY 2017 contents Volume 3 Number3 Published by: 2 Editorial Editorial and Publishing Consultants Pty Ltd ABN 85 007 693 138 PO Box 510, Broadford 4 Industry News Victoria 3658 Australia Phone: 1300 EPCGROUP (1300 372 476) Int’l: +61 3 5784 3438 Fax: +61 3 5784 2210 10 Cover Feature: City of Gold Coast www.epcgroup.com Publisher and Managing Editor Anthony T Schmidt 14 Product Focus: MetaMax 10 Phone: 1300 EPCGROUP (1300 372 476) Mobile: 0414 788 900 Email: [email protected] 14 Product Focus: Aussie Pumps Deputy Editor Rex Pannell Tsurumi Piling Pump Mobile: 0433 300 106 Email: [email protected] 16 Case Study: Modular Walls National Advertising Sales Manager Yuri Mamistvalov Phone: 1300 EPCGROUP (1300 372 476) Mobile: 0419 339 865 18 Lift and Shift Email: [email protected] 16 Advertising Sales - SA Jodie Chester - G Advertising 22 Innovative Solutions Mobile: 0439 749 993 Email: [email protected] 26 Materials Handling Advertising Sales - WA Licia Salomone - OKeeffe Media Mobile: 0412 080 600 Email: [email protected] 30 Concrete Institute News Graphic Design Annette Epifanidis 38 National Precast Feature 38 Mobile: 0416 087 412 TERMS AND CONDITIONS 46 Equipment Feature This publication is published by Editorial and Publishing Consultants Pty Ltd (the “Publisher”).
    [Show full text]
  • Strategic Energy Technology Plan
    STRATEGIC ENERGY TECHNOLOGY PLAN Scientific Assessment in support of the Materials Roadmap enabling Low Carbon Energy Technologies Energy efficient materials for buildings Authors: M. Van Holm, L. Simões da Silva, G. M. Revel, M. Sansom, H. Koukkari, H. Eek JRC Coordination: P. Bertoldi, E. Tzimas EUR 25173 EN - 2011 The mission of the JRC-IET is to provide support to Community policies related to both nuclear and non-nuclear energy in order to ensure sustainable, secure and efficient energy production, distribution and use. European Commission Joint Research Centre Institute for Energy and Transport Contact information Address: Via Enrico Fermi, 2749 I-21027 Ispra (VA) E-mail: [email protected] Tel.: +39 (0332) 78 9299 Fax: +39 (0332) 78 5869 http://iet.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC68158 EUR 25173 EN ISBN 978-92-79-22790-5 (pdf) ISBN 978-92-79-22789-9 (print) ISSN 1831-9424 (online) ISSN 1018-5593 (print) doi:10.2788/64929 Luxembourg: Publications Office of the European Union,2011 © European Union, 2011 Reproduction is authorised provided the source is acknowledged Printed in Italy Preamble This scientific assessment serves as the basis for a materials research roadmap for Energy efficient materials for buildings technology, itself an integral element of an overall "Materials Roadmap Enabling Low Carbon Technologies", a Commission Staff Working Document published in December 2011.
    [Show full text]
  • CSI/ECRA Technology Papers 2017 Can Again Serve As Important Reference Documents for Developing Further Technology Roadmaps in the Cement Sector
    European Cement Research European Cement Research Academy Academy GmbH Tannenstrasse 2 40476 Duesseldorf, GERMANY Phone: +49-211-23 98 38-0 Fax: +49-211-23 98 38-500 [email protected] www.ecra-online.org Chairman of the advisory board: Daniel Gauthier Managing director: Martin Schneider Registration office: Duesseldorf Court of registration: Duesseldorf Commercial registration no.: 47580 A-2016/2305 CSI/ECRA-Technology Papers 2017 Development of State of the Art Techniques in Cement Manufacturing: Trying to Look Ahead Dusseldorf, Geneva, 20 March 2017 2 / 190 Development of State of the Art-Techniques in Cement Manufacturing: Trying to Look Ahead, Revision 2017 Cement Sustainability Initiative (CSI) European Cement Research Academy GmbH WBCSD, Maison de la Paix, Chemin Eugène-Rigot 2B CP 2075, 1211 Geneva 1 Tannenstrasse 2 Switzerland 40476 Duesseldorf Germany www.wbcsdcement.org Phone: +49-211-23 98 38-0 [email protected] Fax: +49-211-23 98 38-500 Managing director: Philippe Fonta www.ecra-online.org [email protected] Project officer: Cristiana Ciaraldi Chairman of the advisory board: Daniel Gauthier Managing director: Martin Schneider Project manager: Volker Hoenig Person in charge: Johannes Ruppert Registration office: Duesseldorf Court of registration: Duesseldorf Commercial registration no.: 47580 This study was commissioned by the Cement Sustainability Initiative (CSI), a member-led programme of the World Business Council for Sustainable Development (WBCSD). The re- port represents the independent research efforts of the European Cement Research Acade- my (ECRA) to identify, describe and evaluate technologies which may contribute to increas- ing energy efficiency and reducing greenhouse gas emissions from global cement production today as well as in the medium and long-term future.
    [Show full text]
  • Laboratory Investigation of the Fracture Properties of Nanoclay-Modified Asphalt Materials Under Direct Tensile Test
    Laboratory Investigation of the Fracture Properties of Nanoclay-Modified Asphalt Materials under Direct Tensile Test Mohammad Hossein Esfahani1, Ali Asadollahi baboli2, Sunil Deshpande3 & Amir Asadollahi Baboli4 1Dept of Civil Engineering, Imam Khomeini International University, Qazvin, Iran 2&3Dept of Civil Engineering, Bharati Vidyapeeth University, Pune, India 4Dept of Civil Engineering, Islamic Azad University Qaemshahr, Gaemshahr,Iran E-mail : [email protected], [email protected], [email protected], [email protected] they contain carbon, hydrogen, nitrogen, sulfur, oxygen, Abstract – Increasing traffic loads and traffic volume, combined with the rising cost of asphalt, have led to an etc. Researchers have been trying to use different kinds urgent need to improve the durability, safety and efficiency of additives to modify the base asphalt in order to of asphalt pavements through asphalt modification. In this increase the resistance to pavement distress. In general, research, we have tried to use a kind of additives to modify fibers and polymers are two main materials used in the the base asphalt in order to increase the resistance to asphalt modification [1–5]. Fiber was one of the most pavement distress. The objective of this study is to review widely used additives to enhance the bonding between existing literature in the area of nano-modification of asphalt and aggregates or within asphalt since 4000 asphalt and proceed to apply nano-materials to asphalt to years old ago [6–12]. In addition, scientist and engineers improve the performance. This study integrates literature tried to use the polymer Styrene Butadiene Styrene review, preparation, and characterization of nano- modified asphalt materials.
    [Show full text]
  • How to Make Concrete More Sustainable Harald Justnes1
    Journal of Advanced Concrete Technology Vol. 13, 147-154, March 2015 / Copyright © 2015 Japan Concrete Institute 147 Scientific paper How to Make Concrete More Sustainable Harald Justnes1 A selected paper of ICCS13, Tokyo 2013. Received 12 November 2013, accepted 16 February 2015 doi:10.3151/jact.13.147 Abstract Production of cement is ranking 3rd in causes of man-made carbon dioxide emissions world-wide. Thus, in order to make concrete more sustainable one may work along one or more of the following routes; 1) Replacing cement in con- crete with larger amounts of supplementary cementing materials (SCMs) than usual, 2) Replacing cement in concrete with combinations of SCMs leading to synergic reactions enhancing strength, 3) Producing leaner concrete with less cement per cubic meter utilizing plasticizers and 4) Making concrete with local aggregate susceptible to alkali silica reaction (ASR) by using cement replacements, thus avoiding long transport of non-reactive aggregate. 1 Introduction SCMs, also uncommon ones like calcined marl 2. Replacing cement in concrete with combinations of The cement industry world-wide is calculated to bring SCMs leading to synergic reactions enhancing about 5-8% of the total global anthropogenic carbon strength dioxide (CO2) emissions. The general estimate is about 3. Producing leaner concrete with less cement per cubic 1 tonne of CO2 emission per tonne clinker produced, if meter utilizing plasticizers. fossil fuel is used and no measures are taken to reduce it. 4. Making concrete with local aggregate susceptible to The 3rd rank is not because cement is such a bad mate- alkali silica reaction (ASR) by using cement re- rial with respect to CO2 emissions, but owing to the fact placements, thus avoiding long transport of non- that it is so widely used to construct the infrastructure reactive aggregate and buildings of modern society as we know it.
    [Show full text]
  • Silica Fume and Metakaolin As Supplementary Cementing Materials- a Review
    ISSN(Online): 2319-8753 ISSN (Print): 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 6, Issue 10, October 2017 Silica Fume and Metakaolin as Supplementary Cementing Materials- A Review Syed Abuthahir 1, Nirmalkumar2 P.G. Student, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India1 Professor, Department of Civil Engineering, Kongu Engineering College, Perundurai, Erode, India2 ABSTRACT:The replacement of cement by various mineral admixtures as supplementary cementing materials for concrete has gained a global attention in recent years. This replacement becomes efficient not only by increasing the strength and durability of the concrete but also reduces the usage of the ordinary cement thereby curtailing the environmental hazardous due to cement manufacturing industries. This paper reviews the work carried out on the use of silica fume (SF) and Metakaolin (MK) as supplementary cementing materials as a partial replacement for cement. The literature demonstrates that both SF and MK are effective and causes significant improvement in various properties of the concrete in both fresh and harden state. KEYWORDS: Metakaolin, Silica Fume, Compressive Strength, Durability Properties. I.INTRODUCTION Major of the construction company relies on the concrete. Cement is major constituent of concrete. The annual global production of ordinary portland cement is about 3 Gt. Cement becomes a dominant binder due to its versatility, durability, and its demand increases dramatically. Even though it is a vital material, it production directly affects the environment by releasing 0.87t of carbon dioxide for every tonne of cement produced.
    [Show full text]
  • Cements for the Future
    The meeting will be held at the Village Hotel Leeds. Address: The Village Hotel Leeds 186 Otley Road Headingley Leeds, LS16 5PR United Kingdom Tel: +44 113 278 1000 th Fax: +44 113 278 1111 5 OPEN MEETING http://www.village-hotels.co.uk/hotels/leeds/ The Village Hotel, Leeds, UK Cements for the Future Tuesday, April 28, 2009 The Village Hotel Headingley Leeds, United Kingdom http://www.nanocem.org/leeds2009 Nanocem is a network of European academic and industrial partners, all Invited speakers: interested in fundamental research on cement and concrete. The consortium is Peter Robery, Technical Director, Halcrow Group Ltd, Visiting Professor, entirely financed by its industrial partners. Academic partners contribute in kind the University of Leeds, Immediate Past President, The Concrete Society, UK through their projects. Pal Chana, Chief Executive (Acting), British Cement Association, UK Since its foundation in 2002, the network has constantly grown and consists and speakers from Nanocem network: now of 24 academic partners and 15 industry partners from all over Europe. More Leon Black, University of Leeds, UK than 120 academic researchers are managing some 60 PhD and PostDoctoral Jesper Sand Damtoft, Aalborg Portland, DK research projects in the area of fundamental research. Peter McDonald, University of Surrey, UK Donald Macphee, University of Aberdeen, Scotland, UK Nanocem’s main activities are: Phil Purnell, University of Leeds, UK • organizing workshops and seminars, Ian Richardson, University of Leeds, UK • sponsoring research in multi-partner projects, Karen Scrivener, Coordinator Nanocem, Ecole Polytechnique Fédérale de • acting as a recruitment base for researchers in cementitious materials, Lausanne, Switzerland • highlighting the importance of R&D on cementitious materials at the European level.
    [Show full text]
  • Item 421 Hydraulic Cement Concrete
    421 Item 421 Hydraulic Cement Concrete 1. DESCRIPTION Furnish hydraulic cement concrete for concrete pavements, concrete structures, and other concrete construction. 2. MATERIALS Use materials from prequalified sources listed on the Department website. Provide coarse and fine aggregates from sources listed in the Department’s Concrete Rated Source Quality Catalog (CRSQC). Use materials from non-listed sources only when tested and approved by the Engineer before use. Allow 30 calendar days for the Engineer to sample, test, and report results for non-listed sources. Do not combine approved material with unapproved material. 2.1. Cement. Furnish cement conforming to DMS-4600, “Hydraulic Cement.” 2.2. Supplementary Cementing Materials (SCM). Fly Ash. Furnish fly ash, ultra-fine fly ash (UFFA), and modified Class F fly ash (MFFA) conforming to DMS-4610, “Fly Ash.” Slag Cement. Furnish Slag Cement conforming to DMS-4620, “Slag Cement.” Silica Fume. Furnish silica fume conforming to DMS-4630, “Silica Fume.” Metakaolin. Furnish metakaolin conforming to DMS-4635, “Metakaolin.” 2.3. Cementitious Material. Cementitious materials are the cement and supplementary cementing materials used in concrete. 2.4. Chemical Admixtures. Furnish admixtures conforming to DMS-4640, “Chemical Admixtures for Concrete.” 2.5. Water. Furnish mixing and curing water that is free from oils, acids, organic matter, or other deleterious substances. Water from municipal supplies approved by the Texas Department of Health will not require testing. Provide test reports showing compliance with Table 1 before use when using water from other sources. Water that is a blend of concrete wash water and other acceptable water sources, certified by the concrete producer as complying with the requirements of both Table 1 and Table 2, may be used as mix water.
    [Show full text]
  • ANNUAL REPORT 2016 PERFORMANCE INDICATORS Pictured on the Front Cover (Top to Bottom)
    ANNUAL REPORT 2016 PERFORMANCE INDICATORS Pictured on the front cover (top to bottom): Professor Craig Simmons is the Scientific Director of the Translational Biology and Engineering Program (TBEP). TBEP is the University of Toronto’s component of the Ted Rogers Centre for Heart Research (TRCHR) and brings together faculty members and their students from U of T Dentistry, Engineering and Medicine. Together, these researchers are advancing heart research, diagnostics, and regeneration using a comprehensive approach that includes systems and developmental biology, technology innovation and clinical translation. On May 13, 2016 more than 1,400 students and teachers from across the Greater Toronto Area converged on U of T Engineering for Innovate U. The one-day workshop was Canada’s largest science, technology, engineering and math (STEM) event for children in Grades 3 to 8. Innovate U was run in partnership with Google Canada and Actua, a national STEM charity. Two students from U of T Engineering work on the Formula SAE racing car. Students can choose from more than 90 engineering clubs and teams, from design and competition groups such as the Human-Powered Vehicle Team to cultural and arts groups such as Skule™ Orchestra, as well as national organizations such as Engineers Without Borders. Currently under construction, the Centre for Engineering Innovation & Entrepreneurship (CEIE) will set a new standard for engineering education and research. When the CEIE opens in 2017, it will provide a new home for some of our world-leading institutes, such as the Centre for Global Engineering and the Institute for Sustainable Energy. Its design/meet rooms and fabrication facilities will enable students, faculty and industry partners to collaborate across disciplines on complex global challenges and launch new companies to bring their innovations to market.
    [Show full text]
  • CONCRETE INSTITUTE of AUSTRALIA
    CONCRETE IN AUSTRALIA CONCRETE INSTITUTE of AUSTRALIA Volume 41 Issue 2 June 2015 $9.95 Inc. GST www.concreteinstitute.com.au SPECIAL FEATURES n POST TENSION DESIGN & CONSTRUCTION SEMINAR n MITIGATING ALKALI AGGREGATE REACTIONS VOL 41, NO 2 JUNE 2015 UHPFRC AS A MATERIAL FOR BRIDGE CONSTRUCTION Are we making the most of our opportunities? FROM THE PRESIDENT Engineering and the Einstein Test My favourite quote from Th e Concrete Institute’s national and state based that famous engineer, seminars are one of the key ways in which we can help Albert Einstein, states engineers to develop their practical design skills, but I that everything should would here like to focus on three other, perhaps lesser be simplifi ed as far as known, sources of information available to Institute possible, but no further. members: Th is is a good summary As one of the benefi ts of membership of the international of the task of the fi b the Concrete Institute has access to online copies of the engineer at all stages of fi b “technical bulletins”. Th e bulletins are now available to their work from analysis members for free download on the Institute website, with Douglas Jenkins and design, through to a total of 68 documents currently available. Th e name construction, monitoring “bulletin” perhaps suggests a brief summary document, and remediation. Th ere are many great examples of but this is not the case; each bulletin is of textbook length, simple and elegant design from ancient structures such as and the series includes works on all aspects of concrete the Roman Pont du Garde to the modern Millau Viaduct, engineering, including a four volume manual of concrete but the history of structures is also literally littered with design, and the fi b model concrete code.
    [Show full text]
  • Making Concrete Change: Innovation in Low-Carbon Cement and Concrete 
    Chatham House Report Johanna Lehne and Felix Preston Making Concrete Change Innovation in Low-carbon Cement and Concrete #ConcreteChange Chatham House Report Johanna Lehne and Felix Preston Energy, Environment and Resources Department | June 2018 Making Concrete Change Innovation in Low-carbon Cement and Concrete The Royal Institute of International Affairs Chatham House 10 St James’s Square London SW1Y 4LE T: +44 (0) 20 7957 5700 F: + 44 (0) 20 7957 5710 www.chathamhouse.org Charity Registration No. 208223 Copyright © The Royal Institute of International Affairs, 2018 Chatham House, the Royal Institute of International Affairs, does not express opinions of its own. The opinions expressed in this publication are the responsibility of the author(s). All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any information storage or retrieval system, without the prior written permission of the copyright holder. Please direct all enquiries to the publishers. ISBN 978 1 78413 272 9 A catalogue record for this title is available from the British Library. Printed and bound in Great Britain by Latimer Trend. The material selected for the printing of this report is manufactured from 100% genuine de-inked post-consumer waste by an ISO 14001 certified mill and is Process Chlorine Free. Typeset by Soapbox, www.soapbox.co.uk Cover image: Staircase, Benesse Museum House, Naoshima, Japan. Copyright © Education Images/UIG via Getty Images
    [Show full text]
  • Mechanical Properties of Glass Powder and Metakaolin in Concrete
    ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.8 Mechanical Properties of Glass Powder and Metakaolin in Concrete Mukund Kumar1, Ajay Kumar Singh2 M.Tech Scholar1, Assistant Professor2 Department of Civil Engineering SSTC-SSGI, Bhilai, India Abstract: The production of Portland cement releases significant amount of greenhouse gas, One ton of cement clinker production releases approximately one ton of carbon dioxide. Today many researches are going to utilize mineral admixtures for the replacement of cement, fine aggregate and coarse aggregate using industrial waste like Metakaolin, Fly ash, GGBS, copper sag and glass. Glass has a unique property; it can be recycled many times without changing its chemical properties. Million tones of glass discarded every year from houses and industries and for dumping they need grounds. The addition of glass powder and metakaolin increases the durability properties of concrete. The use of metakaolin and glass powder will give us advantage to save natural resources and in addition to that it will be economical to use it in concrete. In this research work the metakaolin was used to replace the cement in 10%, 20% and 30% and glass powder was used to replace the fine aggregate in 10%, 20%, 30% and 40%. The compressive strength test was carried out on specimen for 7 days and 28 days, compressive strength, split tensile strength and durability test for 28 days. Keywords: Glass Powder, Metakaolin, Compressive Strength, Split Tensile Strength, Flexural Strength, Durability Test. I. INTRODUCTION used. Sand passing through IS 4.75mm Sieve was used for casting all the specimens. The curosity of the concrete researchers in using waste or recycled materials in concrete is increasing because of the Corse Aggregate: emphasis placed on sustainable construction.
    [Show full text]