Paleontological Research

Total Page:16

File Type:pdf, Size:1020Kb

Paleontological Research Paleontological Research ISSN 1342-8144 Formerly Transactions and Proceedings of the Palaeontological Society of Japan Vol. 4 No.2 June 2000 The Palaeontological Society of Japan Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Jan Bergstrom (Swedish Museum of Natural History, Stockholm, Sweden), Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoshi Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D. K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 1999-2000 President: Kei Mori Councillors: Kiyotaka Chinzei, Takashi Hamada, Yoshikazu Hasegawa, Itaru Hayami, Hiromichi Hirano, Noriyuki Ikeya, Junji Itoigawa, Tomoki Kase, Hiroshi Kitazato, Itaru Koizumi, Haruyoshi Maeda, Ryuichi Majima, Makoto Manabe, Hiroshi Noda, Ikuwo Obata, Kenshiro Ogasawara, Terufumi Ohno, Tatsuo Oji, Tomowo Ozawa, Yukimitsu Tomida, Tsunemasa Saito, Takeshi Setoguchi, Kazushige Tanabe, Akira Yao ,;... Members of Standing Committee: Hiroshi Kitazato (General Affairs) , Tatsuo Oji ( aison Officer), Makoto Manabe (Finance), Kazushige Tanabe (Editor in Chief, PRJ, Tomoki Kase (Co- Editor, PRJ, RyUlchi Majima (Planning), Hiromichi Hirano (Membership), Kenshiro Ogasawara (Foreign Affairs) , Haruyoshi Maeda (Publicity Officer), Noriyuki Ikeya (Editor, "FoSSils"), Yukimitsu Tomida (Editor in Chief, Special Papers), Tamiko Ohana (Representative, Union of Natural History Societies). Secretaries: Masanori Shimamoto, Takao Ubukata (General Affairs) , Hajime Taru (Planning), Tokuji Mitsugi (Membership), Shuko Adachi (Foreign Affairs) , Kazuyoshi Endo, Yasunari Shigeta, Takenori Sasaki (Editors of PRJ , Akira Tsukagoshi (Editor of "Fossiles"), Naoki Kohno (Editor of Special Papers), Hidenori Tanaka (Publicity officer) Auditor: Nobuhiro Kotake Notice about photocopying: In order to photocopy any work from this publication, you or your organization must obtain permission from the following organization which has been delegated for copyright for clearance by the copyright owner of this publication. Except in the USA, Japan Academic Association for Copyright Clearance (JAACC), 41-6 Akasaka 9- chome, Minato- ku, Tokyo 107-0052, Japan. Phone: 81 - 3- 3475- 5618, Fax: 81 - 3- 3475- 5619, E- mail: [email protected] In the USA, Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. Phone: (978)750-8400, Fax: (978)750- 4744, www.copyright.com Cover: Idealized sketch of Nipponites mirabilis Yabe, a Late Cretaceous (Turonian) nostoceratid ammonite. Various reconstructions of the mode of life of this species have been proposed, because of its curiously meandering shell form (after T. Okamoto, 1988). All communication relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Honkomagome 5-16- 9, Bunkyo- ku, Tokyo 113-8622, Japan Visit our society website at http://ammo.kueps.kyoto-u.ac.jp./palaeontlindex.html Paleontological Research, vol. 4, no. 2, pp. 83-88, June 30, 2000 © by the Palaeontological Society of Japan Orthoconic cephalopods from the Lower Permian Atahoc Formation in East Timor SHUJI NIKO\ TAMIO NISHIDA2 and KEIJI NAKAZAWA3 1 Department of Environmental Studies, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima 739-8521, Japan ([email protected]) 2Department of Earth Science, Faculty of Education, Saga University, Saga 840-0027, Japan ([email protected]) 328-2, Koyama Shimouchikawara-cho, Kitaku, Kyoto 603-8132, Japan Received 10 August 1999; Revised manuscript accepted 20 January 2000 Abstract. Three species of orthoconic cephalopods, Mooreoceras sp. and Atahococeras timorense gen. and sp. nov. of the Pseudorthoceratidae, and an indeterminate genus and species of the Bactritidae are described from the Lower Permian Atahoc Formation in the Cribas area, East Timor. Apparent changes in the surface ornamentation of Atahococeras are considered to be genus-level criteria that separate it from the most closely related genus, Bitaunioceras. This assemblage signi­ fies a non-ammonoid cephalopod fauna in the northern margin of Gondwana near the Sakmari­ an/Artinskian boundary. Key words: Atahococeras gen. nov., Bactritida, East Timor, Gondwana, Orthocerida, Sakma­ rian/Artinskian boundary Introduction reddish shale is considered to correspond to the ammonoid horizon of Audley-Charles (1968, p. 6, fig. 2, columnar sec­ Timor is the largest (maximum ca. 365 km long and 100 tion of the Cribas Anticline), about 150 m below the top of km wide) island in the Banda Arc of the Indonesian the Atahoc Formation. Since Grunau (1953, 1956) first as­ Archipelago, where corresponds toa collision zone between signed this formation to the Sakmarian (Lower Permian) the Indo-Australian and Asian Plates. Thus, the geology of based on ammonoids, a number of subsequent workers this island is structurally complex. Carter et al. (1976) have given support to this determination (e.g., Schouppe, stated that the older rocks on Timor consist of the 1957; Shimizu, 1966; Audley-Charles, 1968). More recent autochthonous Australian facies and overthrusting units .de­ and detailed paleontological research by Nishida et al. rived from the Asian island arc. The purpose of this study (1997) revealed co-occurrence of ammonoids with the pre­ is to document and describe an Early Permian orthocerid sent orthocerids and bactritid, namely Somoholites beluenis and bactritid cephalopod fauna of the Atahoc Formation, (Haniel), Agathiceras cf. sundaicum Haniel, Metapronorites which is part of the autochthonous facies. The materials timorensis (Haniel) and Atsabites weberi Haniel. They con­ were collected by one of us (K. N.) from the right bank of the cluded that the fossil horizon corresponds stratigraphically to River Sumasse, west of Cribas under cooperation with H. the boundary between the Somohole and Bitauni Suzuki and T. Takahashi during field work of 1961 in East Formations in West Timor, the age of which horizon is cor­ Timor (Figure 1). Other than "Orthoceres" that were re­ relative with near the Sterlitamakian (latest Sakmarian)/ ported by Gageonnet and Lemoine (1958), this is the first Aktastinskian (earliest Artinskian) boundary. description of non-ammonoid cephalopods from the Atahoc Blendinger et al. (1992) stated, on the basis of Formation. ammonoids, that a con specific middle Permian fauna flour­ The Lower Permian Atahoc Formation is made up of the ished from Timor to the western Mediterranean along the oldest exposed sediments in East Timor, and forms the northern margin of Gondwana. We shall not comment on Cribas Anticline together with the Upper? Permian Cribas, the paleobiogeographic implications of the present result, the Triassic Aitutu and the Triassic to Jurassic Wai Luli because knowledge concerning Permian nautiloids and Formations in the Cribas area (Audley-Charles, 1968; Figure bactritoids in this province is still sparse. Besides a record 1). It consists of more than 600 m of sandstone and shale of a Wordian (early Late Permian) fauna from Oman (Niko et with thin intercalated beds of limestone and basaltic lava. al., 1996), the present paper represents the only other docu­ The stratigraphic position of the present cephalopod-bearing mentation of non-ammonoid cephalopods with modern 84 Shuji Niko et at. STUDY AREA _ allochthonous un its ~post-JUraSSic fm D Wai Luli Fm. [m~mmJ A i t u t u F m. ~ Cribas Fm. Atahoc Fm. Figure 1. Map showing fossillocalily (arrow), and geology of the Cribas area, East Timor (modified from Audley-Charles, 1968). taxonomic treatment in the northern margin of Gondwana, diameter/length ratio approximately 3.4; septal curvature and therefore provides the base data for paleobiogeography shallow. Siphuncle subcentral, shifted dorsally from center, of nautiloids and bactritoids. consists of cyrtochoanitic septal necks, 0.70-0.99 mm in The specimens studied are deposited in the pale­ length, and inflated connecting rings that are subcylindrical ontological collections of the Department of Geology and to fusiform in shape; adnation area narrow. Cameral de­ Mineralogy, Faculty of Science, Kyoto University (KU). posits thin, episeptal-mural apically and mural adorally; endosiphuncular deposits weakly developed, form annuli Systematic paleontology that are unfused and restricted near septal foramina. Discussion.-Although the surface ornamentation of the Subclass Nautiloidea Agassiz, 1847 examined specimens is not observable, their oval shell cross Order Orthocerida
Recommended publications
  • Cave-70-02-Fullr.Pdf
    L. Espinasa and N.H. Vuong ± A new species of cave adapted Nicoletiid (Zygentoma: Insecta) from Sistema Huautla, Oaxaca, Mexico: the tenth deepest cave in the world. Journal of Cave and Karst Studies, v. 70, no. 2, p. 73±77. A NEW SPECIES OF CAVE ADAPTED NICOLETIID (ZYGENTOMA: INSECTA) FROM SISTEMA HUAUTLA, OAXACA, MEXICO: THE TENTH DEEPEST CAVE IN THE WORLD LUIS ESPINASA AND NGUYET H. VUONG School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, [email protected] and [email protected] Abstract: Anelpistina specusprofundi, n. sp., is described and separated from other species of the subfamily Cubacubaninae (Nicoletiidae: Zygentoma: Insecta). The specimens were collected in SoÂtano de San AgustõÂn and in Nita Ka (Huautla system) in Oaxaca, MeÂxico. This cave system is currently the tenth deepest in the world. It is likely that A.specusprofundi is the sister species of A.asymmetrica from nearby caves in Sierra Negra, Puebla. The new species of nicoletiid described here may be the key link that allows for a deep underground food chain with specialized, troglobitic, and comparatively large predators suchas thetarantula spider Schizopelma grieta and the 70 mm long scorpion Alacran tartarus that inhabit the bottom of Huautla system. INTRODUCTION 760 m, but no human sized passage was found that joined it into the system. The last relevant exploration was in Among international cavers and speleologists, caves 1994, when an international team of 44 cavers and divers that surpass a depth of minus 1,000 m are considered as pushed its depth to 1,475 m. For a full description of the imposing as mountaineers deem mountains that surpass a caves of the Huautla Plateau, see the bulletins from these height of 8,000 m in the Himalayas.
    [Show full text]
  • 40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor
    40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor To cite this version: Jonathan Gaylor. 40Ar/39Ar Dating of the Late Cretaceous. Earth Sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112124. tel-01017165 HAL Id: tel-01017165 https://tel.archives-ouvertes.fr/tel-01017165 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Sud 11 UFR des Sciences d’Orsay École Doctorale 534 MIPEGE, Laboratoire IDES Sciences de la Terre 40Ar/39Ar Dating of the Late Cretaceous Thèse de Doctorat Présentée et soutenue publiquement par Jonathan GAYLOR Le 11 juillet 2013 devant le jury compose de: Directeur de thèse: Xavier Quidelleur, Professeur, Université Paris Sud (France) Rapporteurs: Sarah Sherlock, Senoir Researcher, Open University (Grande-Bretagne) Bruno Galbrun, DR CNRS, Université Pierre et Marie Curie (France) Examinateurs: Klaudia Kuiper, Researcher, Vrije Universiteit Amsterdam (Pays-Bas) Maurice Pagel, Professeur, Université Paris Sud (France) - 2 - - 3 - Acknowledgements I would like to begin by thanking my supervisor Xavier Quidelleur without whom I would not have finished, with special thanks on the endless encouragement and patience, all the way through my PhD! Thank you all at GTSnext, especially to the directors Klaudia Kuiper, Jan Wijbrans and Frits Hilgen for creating such a great project.
    [Show full text]
  • Discovery of Chemosynthesis-Based Association on the Cretaceous Basal Leatherback Sea Turtle from Japan
    Editors' choice Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan ROBERT G. JENKINS, ANDRZEJ KAIM, KEI SATO, KAZUHIRO MORIYA, YOSHINORI HIKIDA, and REN HIRAYAMA Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62 (4): 683–690. We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of com- munities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event.
    [Show full text]
  • Research Article ISSN 2336-9744 (Online) | ISSN 2337-0173 (Print) the Journal Is Available on Line At
    Research Article ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.ecol-mne.com http://zoobank.org/urn:lsid:zoobank.org:pub:C19F66F1-A0C5-44F3-AAF3-D644F876820B Description of a new subterranean nerite: Theodoxus gloeri n. sp. with some data on the freshwater gastropod fauna of Balıkdamı Wetland (Sakarya River, Turkey) DENIZ ANIL ODABAŞI1* & NAIME ARSLAN2 1 Çanakkale Onsekiz Mart University, Faculty Marine Science Technology, Marine and Inland Sciences Division, Çanakkale, Turkey. E-mail: [email protected] 2 Eskişehir Osman Gazi University, Science and Art Faculty, Biology Department, Eskişehir, Turkey. E-mail: [email protected] *Corresponding author Received 1 June 2015 │ Accepted 17 June 2015 │ Published online 20 June 2015. Abstract In the present study, conducted between 2001 and 2003, four taxa of aquatic gastropoda were identified from the Balıkdamı Wetland. All the species determined are new records for the study area, while one species Theodoxus gloeri sp. nov. is new to science. Neritidae is a representative family of an ancient group Archaeogastropoda, among Gastropoda. Theodoxus is a freshwater genus in the Neritidae, known for a dextral, rapidly grown shell ended with a large last whorl and a lunate calcareous operculum. Distribution of this genus includes Europe, also extending from North Africa to South Iran. In Turkey, 14 modern and fossil species and subspecies were mentioned so far. In this study, we aimed to uncover the gastropoda fauna of an important Wetland and describe a subterranean Theodoxus species, new to science. Key words: Gastropoda, Theodoxus gloeri sp. nov., Sakarya River, Balıkdamı Wetland Turkey.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Stratigraphy of the Sorachi and Yezo Groups in the Furano-Ashibetsu Area, Hokkaido, Japan: Another Oceanic Plate in the NW Pacific
    MIS20-P02 Japan Geoscience Union Meeting 2018 Stratigraphy of the Sorachi and Yezo groups in the Furano-Ashibetsu area, Hokkaido, Japan: Another oceanic plate in the NW Pacific. *Ryusei KOTA1, Hayato Ueda1 1. Niigata University The Sorachi - Yezo Belt in central Hokkaido consists of the Jurassic - Lower Cretaceous Sorachi Group and the Cretaceous Yezo Group. The lower part of the Sorachi Group consists of basalt lavas. The upper part consists mainly of siliceous and tuffaceous mudstones partly with intercalation of basalt and volcaniclastics . The Yezo Group conformably overlies the Sorachi Group and is composed of sandstone and mudstone. Various models have been proposed for the origin of the Sorachi Group, based mainly on petrology of the lower part lavas, and agreement has not yet been obtained. It is difficult to specify the tectonic setting for the lower Sorachi Group only by igneous petrology. Therefore, in this study, we focus on stratigraphy and clastic composition of sediments (the upper Sorachi Group to the lower Yezo Group) overlying the basalt. We divided the Sorachi Group of the Furano-Ashibetsu area into five lithostratigraphic units (S1: basalt lava, S2a: volcanic conglomerate, S2b: volcaniclastic sandstone with mudstone, S2c: siliceous mudstone with tuff, and S2d: siliceous tuffaceous mudstone with basalts), The lower Yezo Group are divided into two units (Ly1: sandy and Ly2: muddy turbidites, respectively). [HU1] S1b is assigned to Tithonian - Berriasian by radiolarians. Zircon U-Pb ages suggest that a S2b sandstone is Valanginian or younger, a S2d tuff bed is Barremian, and a Ly 1 sandstones is latest Barremian –earliest Aptian or younger.
    [Show full text]
  • Maastrichtian Ammonoid Fauna from the Pugachevo Area, Southern Sakhalin, Russian Far East
    The Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East, edited by Y. Shigeta and H. Maeda, National Science Museum Monographs, 31: 121–136, 2005 Maastrichtian Ammonoid Fauna from the Pugachevo Area, Southern Sakhalin, Russian Far East Haruyoshi Maeda1 and Yasunari Shigeta2 1 Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606–8502, Japan E-mail: [email protected] 2 Department of Geology and Paleontology, National Science Museum, 3–23–1Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] Abstract The stratigraphy and paleontology of the Cretaceous Yezo Group in the Pugachevo area has been investigated. The group is divided into the Bykov and Krasnoyarka formations in ascending order, and its exposures in the area range in age from Middle Campanian to Maastrichtian. Canado- ceras kossmati and Sphenoceramus schmidti, of Middle Campanian age, characterize the Bykov For- mation, while the middle and upper parts of the Krasnoyarka Formation are characterized by the pres- ence of Pachydiscus flexuosus and Gaudryceras makarovense, which are Late Maastrichtian in age. A typical occurrence of this widespread Upper Maastrichtian ammonoid assemblage is confirmed in a new section located between the Naiba and Makarov areas. Preservation of the Upper Maastrichtian ammonoids ranks among the best in the world and is probably unmatched in any other locality in southern Sakhalin. Specimens of P. flexuosus and G. makarovense preserved in the large calcareous nodules mainly exhibit aragonite preservation. Their phragmocones are usually free from compactional damage although the last two or three camerae are sometimes slightly crushed similar to the body chambers.
    [Show full text]
  • Late Jurassic–Early Cretaceous Intra-Arc Sedimentation and Volcanism Linked to Plate Motion Change in Northern Japan
    Title Late Jurassic‒Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan Author(s) TAKASHIMA, REISHI; NISHI, HIROSHI; YOSHIDA, TAKEYOSHI Geological Magazine, 143(6), 753-770 Citation https://doi.org/10.1017/S001675680600255X Issue Date 2006-11 Doc URL http://hdl.handle.net/2115/17119 Rights Copyright © 2006 Cambridge University Press Type article File Information GM143-6.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Geol. Mag.: page 1 of 18. c 2006 Cambridge University Press 1 doi:10.1017/S001675680600255X Late Jurassic–Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan REISHI TAKASHIMA∗†, HIROSHI NISHI∗ &TAKEYOSHI YOSHIDA‡ *Department of Earth and Planetary Science, Graduate School of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, 060-0810, Japan ‡Institute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8567, Japan (Received 5 October 2005; accepted 10 January 2006) Abstract – The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage I in the Late Jurassic was characterized by extensive submarine eruptions of tholeiitic basalt from the back-arc basin. Slab roll-back caused rifting and sea-floor spreading in the supra-subduction zone along the active Asian continental margin.
    [Show full text]
  • A New Neritopsidae (Mollusca, Gastropoda, Neritopsina) from French Polynesia
    A new Neritopsidae (Mollusca, Gastropoda, Neritopsina) from French Polynesia Pierre LOZOUET Muséum national d’Histoire naturelle, Département Systématique et Évolution, case postale 51, 57 rue Cuvier, F-75231 Paris cedex 05 (France) [email protected] Lozouet P. 2009. — A new Neritopsidae (Mollusca, Gastropoda, Neritopsina) from French Polynesia. Zoosystema 31 (1) : 189-198. ABSTRACT Neritopsis richeri n. sp., the fourth Recent species of a group of “living fossil” molluscs, is described from the Austral Islands (French Polynesia). Most of the material was collected during the BENTHAUS cruise. Th is species diff ers from its congeners in teleoconch sculpture, which has 1 to 4 secondary cords in the interspaces between the primary cords. Th e spiral ribs are also weakly beaded. In addition, and in contrast to the common species N. radula (Linnaeus, 1758), N. richeri n. sp. has a multispiral protoconch that implies a planktotrophic larval KEY WORDS Mollusca, development. Its relationship to N. aqabaensis Bandel, 2007 described from Gastropoda, an immature specimen is diffi cult to assess, the sculpture of adults suspected Neritopsina, to be N. aqabaensis being identical to that of N. radula. Neritopsis richeri n. sp. Indo-West Pacifi c, living fossils, appears to be restricted to French Polynesia but possibly has been confused with new species. N. radula in previous publications. RÉSUMÉ Un nouveau Neritopsidae (Mollusca, Gastropoda, Neritopsina) de Polynésie française. Neritopsis richeri n. sp., la quatrième espèce actuelle d’un groupe de mollusques « fossiles vivants », est décrite des îles Australes (Polynésie française). La plupart des spécimens ont été recueillis au cours de la campagne BENTHAUS. Cette espèce se distingue de ses congénères par la sculpture de la téléoconque munie de 1 à 4 cordons secondaires dans l’espace entre les cordons primaires.
    [Show full text]
  • (Dinosauria: Hadrosauridae) from the Marine
    www.nature.com/scientificreports OPEN A New Hadrosaurine (Dinosauria: Hadrosauridae) from the Marine Deposits of the Late Cretaceous Received: 1 March 2019 Accepted: 2 August 2019 Hakobuchi Formation, Yezo Group, Published: xx xx xxxx Japan Yoshitsugu Kobayashi1, Tomohiro Nishimura2, Ryuji Takasaki 3, Kentaro Chiba4, Anthony R. Fiorillo5, Kohei Tanaka6, Tsogtbaatar Chinzorig 7, Tamaki Sato8 & Kazuhiko Sakurai2 A nearly complete skeleton of a new hadrosaurid, Kamuysaurus japonicus gen. et sp. nov., was discovered from the outer shelf deposits of the Upper Cretaceous Hakobuchi Formation of the Yezo Group in Hobetsu area of Mukawa town in Hokkaido, Japan. Kamuysaurus belongs to the sub-clade of Hadrosaurinae, Edmontosaurini, and forms a monophyly with Laiyangosaurus and Kerberosaurus from the northern Far East. Kamuysaurus has a long anterior platform for the nasofrontal sutural surface, which may indicate the presence of a small supracranial crest, similar to a sub-adult form of Brachylophosaurus based on the extension of the nasofrontal sutural surface. The Dispersal Extinction Cladogenesis analysis with the 50% Majority Rule consensus tree suggests that the clade of Kamuysaurus, Laiyangosaurus, and Kerberosaurus may have dispersed into Asia prior to the late Campanian and the potential endemism of this clade during the late Campanian and early Maastrichtian in the northern Far East. The results of both Dispersal Extinction Cladogenesis and Ancestral State Reconstruction analyses imply that the marine-infuenced environment in North America during the Campanian may have played an important role for the hadrosaurid diversifcation in its early evolutionary history. Hadrosaurid dinosaurs are one of the most successful herbivorous dinosaurs in the Late Cretaceous, and these fossil remains are common in the uppermost Cretaceous (Campanian and Maastrichtian) deposits in Laurasia (North America, Asia, and Europe) and some areas of Gondwana (South America and Antarctica)1,2.
    [Show full text]
  • Stratigraphy and Fossil Assemblages of the Upper Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East
    The Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East, edited by Y. Shigeta and H. Maeda, National Science Museum Monographs, 31: 25–120, 2005 Stratigraphy and Fossil Assemblages of the Upper Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East Haruyoshi Maeda1, Yasunari Shigeta2, Allan Gil S. Fernando3 and Hisatake Okada3 1 Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606–8502, Japan E-mail: [email protected] 2 Department of Geology and Paleontology, National Science Museum, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] 3 Department of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060–0810, Japan E-mail: [email protected]; [email protected] Abstract The stratigraphy and paleontology of the Cretaceous Yezo Group in the Makarov area has been thoroughly investigated. Exposures of the group in this area range in age from Santonian to Maastrichtian, and attain a total thickness of 2,500 m. The group is divided into the Bykov and Kras- noyarka formations in ascending order. The Bykov Formation consists mostly of offshore mudstones, and is lithologically subdivided into four lithostratigraphic units designated as B1–B4, while the Krasnoyarka Formation is composed mainly of nearshore sandstones and deltaic deposits, and is sub- divided into five units: K1–K4b. Except for the uppermost part of the Krasnoyarka Formation, the remaining Cretceous strata are very fossiliferous. Among the fossil fauna, pachydiscid, tetragonitid, and gaudryceratid ammonoids are especially abundant.
    [Show full text]
  • Ammonoid Biodiversity Changes Across the Cenomanian–Turonian Boundary in the Yezo Group, Hokkaido, Japan
    Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan KEN’ICHI KURIHARA, SEIICHI TOSHIMITSU, and HIROMICHI HIRANO Kurihara, K., Toshimitsu, S., and Hirano, H. 2012. Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan. Acta Palaeontologica Polonica 57 (4): 749–757. Ammonoid biodiversity changes from shallow to offshore environments across the Cenomanian–Turonian (C–T) bound− ary are reconstructed in the Yezo Group, Hokkaido, Japan. This group was probably deposited at approximately 35–45°N along a westward subduction margin in the northeastern Asian continent. Temporal changes in species richness in the Yezo Group, which show persistently high values during the middle Cenomanian and then decline stepwise from near the middle–late Cenomanian boundary, resemble those in Europe, but not those in Tunisia and the Western Interior. These differences suggest that the Cenomanian–Turonian “mass extinction” was not a global event for ammonoids but was re− stricted to mid−palaeolatitudinal regions (Europe and Japan). Sea level and climate changes probably influenced ammonoid faunas in the Yezo Group as well as those in Europe. However, it is unlikely that a single, simple cause led to the C–T boundary “mass extinction” because various abiotic changes in the Cenomanian–Turonian transition have been detected, and biotic and abiotic change are interrelated. Key words: Ammonoids, mass extinction, Cenomanian–Turonian (C–T) boundary, Cretaceous, Hokkaido. Ken’ichi Kurihara [[email protected]], Mikasa City Museum, 1−212−1 Nishiki−cho, Ikushumbetsu, Mikasa, Hokkaido 068−2111, Japan; Seiichi Toshimitsu [[email protected]], Geological Survey of Japan, AIST, 1−1−1 Higashi, Tsukuba, Ibaraki 305−8567, Japan; Hiromichi Hirano [[email protected]], Department of Earth Sciences, School of Education and Integrated Arts and Sciences, Waseda University, 1−6−1 Nishiwaseda, Shinjuku−ku, Tokyo 169−8050, Japan.
    [Show full text]