(Cretaceous Larger Foraminifera) from the Yezo Group in Hokkaido, Japan and Its Stratigraphic and Paleobiogeographic Significance

Total Page:16

File Type:pdf, Size:1020Kb

(Cretaceous Larger Foraminifera) from the Yezo Group in Hokkaido, Japan and Its Stratigraphic and Paleobiogeographic Significance 216 Proc. Jpn. Acad., Ser. B 82 (2006) [Vol. 82, Mesorbitolina (Cretaceous larger foraminifera) from the Yezo Group in Hokkaido, Japan and its stratigraphic and paleobiogeographic significance By Yasuhiro Iba∗),∗∗),†) and Shin-ichi Sano∗∗∗) (Communicated by Tatsuro Matsumoto, m.j.a.) Abstract: In this paper, we describe an Aptian (Early Cretaceous) larger foraminiferal species Orbitolina (Mesorbitolina) parva from the limestone olistoliths in the lower part of the Yezo Group in the Yubari–Ashibetsu area, central Hokkaido and from limestone pebbles in the lowermost part of the Yezo Group in the Nakagawa area, northern Hokkaido. This is the first report of this species from the circum-North Pacific regions. Based on its occurrences, the shallow-marine carbonates, re-deposited in the lower part of the Yezo Group, are precisely assigned in age to the Late Aptian. Comparison of the lower part of the Yezo Group in central and northern Hokkaido indicates differences of the Aptian–Albian depositional history between the two areas. This study reveals that after Late Aptian, Mesogean key taxa(typicalCretaceous Tethyan biota) demised in the Northwest Pacific. Key words: Aptian; Mesogean; orbitolinid; Mesorbitolina parva;Yezo forearc basin; North Pacific. Introduction. The Orbitolinidae is a larger ing shallow-marine carbonates and correlative con- benthic foraminiferal family, which was most di- glomeratic gravity flow deposits, has been consid- versified during Early and mid-Cretaceous times. ered as one of the important key units in the Yezo Species of this family flourished in shallow-marine Group (Takashima et al., 2004; Iba et al., 2005).5),3) carbonate facies of the whole Tethys region. They In spite of this paleobiogeographic and stratigraphic had relatively short biochronological ranges and pro- importance, the age of the shallow-marine carbon- vide valuable chronostratigraphic information (e.g., ates in Hokkaido remains unsettled, because of their Arnaud-Vanneau, 1998).1) This is important, be- allochthonous occurrences and absence of index fos- cause usually shallow marine carbonates are poorly sils such as ammonites and planktonic foraminifers. dated by index fossils in Japan. We recently found well-preserved orbitolinid Shallow-marine carbonates are intercalated as specimens identified as Orbitolina (Mesorbitolina) olistoliths and pebbles in the lower part of the Yezo parva from the lower part of the Yezo Group in cen- Group in central and northern Hokkaido, north- tral (Locs. 1 and 2 in Fig. 1) and northern (Loc. 3 in ern Japan (e.g., Sano, 1995; Iba et al., 2005).2), 3) Fig. 1) Hokkaido. In this paper, we give the system- They contain abundant rudists and a dasycladacean atic description of this species and discuss the age alga, both of which are key taxa for identifica- of shallow-marine carbonates of the Yezo Group and tion of the Cretaceous Tethyan biotic realm (i.e., correlation of the strata within the Yezo basin. Fur- the Mesogean sensu Masse (1992)4))(e.g.,Sano, thermore, we discuss the implications of our findings 1995),2) and constitute the largest Cretaceous car- from the viewpoint of Cretaceous paleobiogeography. bonate bodies in Japan. An olistostrome contain- This paper is the first report of this species from the circum-North Pacific regions. ∗) JSPS Research Fellow. ∗∗) Department of Earth and Planetary Science, Gradu- Geological settings. The Yezo Group com- ate School of Science, University of Tokyo, Tokyo, Japan. prises Aptian to Paleoceneforearcbasindeposits ∗∗∗) Fukui Prefectural Dinosaur Museum, Fukui, Japan. extending from southern Hokkaido to the Sakhalin †) Department of Earth and PlanetaryScience, Graduate School of Science, University of Tokyo, 7–3–1 Hongo, Bunkyo- Island (Far East Russia) (e.g., Okada, 1983; ku, Tokyo 113–0033, Japan (e-mail; [email protected]). Takashima et al., 2004).6),5) This group represents No. 7] Late Aptian Orbitolina from the Yezo Group, northern Japan 217 Fig. 1. Locality map of Orbitolina (Mesorbitolina) parva in the Yezo Group, Hokkaido. A. Yubari–Ashibetsu area, central Hokkaido (Loc. 1; MF 29172, Loc. 2; MF 29173). Geological information is based on Takashima et al. (2004).5) B. Nakagawa area, northern Hokkaido (Loc. 3; MF 29174). Geological information is based on Nagao (1962).46) Note that the “Onodera Formation” of Nagao (1962)46) is now considered as a locally-developed lithologic facies within the Kamiji Formation (e.g., Kawaguchi, 1997).32) areference marine Cretaceous succession in the In northern Hokkaido, pebbles of shallow- circum-North Pacific regions, and contains abundant marine calcareous sediments were discoveredfroma macro- and microfossils at various horizons, espe- gravity flow deposit in the lower part of the Yezo cially in the Upper Cretaceous (e.g., Matsumoto, Group (Iba et al., 2005)3) (Fig. 1–B). This gravity 1942).7) flow deposit containing limestone pebbles is interca- In central Hokkaido, many limestone olistoliths lated inthelowermostpart of the Yezo Group in this (= “Orbitolina limestones”: Yabe, 1901)8) are in- region (Iba et al., 2005).3) The carbonate pebbles tercalated in the Kirigishiyama Olistostrome Mem- contain rudist fragments (Mesogean key taxa) and ber of the Shuparogawa Formation, the lower part of other carbonate platform biota such as orbitolinid the Yezo Group (Takashima et al., 2004)5) (Fig. 1– foraminifera and calcareous red algae. Similarities A). Abundant Mesogean key taxa (rudists and a of bio- and lithofacies between the limestone olis- dasycladacean alga) and other carbonate platform toliths in central Hokkaido and the limestone peb- biota, such as miliolid and orbitolinid foraminifers, bles in northern Hokkaido were pointed out by Iba hermatypic hexacorals, nerineacean gastropods, and et al. (2005).3) These limestone olistoliths and peb- calcareous red algae, are found in the limestone olis- bles from central and northern Hokkaido were orig- toliths (e.g., Sano, 1995, 2000; Hirano and Takagi, inally deposited in a shallow-marine shelf adjacent 1998).2), 9), 10) Sano (1995, 2000)2), 9) reconstructed a to the continental arc in the eastern margin of the carbonate platform in its original depositional en- Asian Continent. They werelatertransported into vironment, based on the distribution of litho- and adeeper part of the basin (Sano, 1995; Iba et al., biofacies within these limestone olistoliths. 2005).2), 3) 218 Y. Iba and S. Sano [Vol. 82, Orbitolinid taxonomy:previousworks. Table I. Measurements of specimens of Orbitolina (Mesor- bitolina) parva from the Yezo Group The Orbitolinidae is classified into two “subfami- Diameter of lies”, the Orbitolininae and the Dictyoconinae. In Diameter of Sample No. embryonic the subfamily Orbitolininae, structure and size of protoconch apparatus the embryonic apparatus are significant for generic- and species-level classification (e.g., Hofker, 1963; UMUT MF 29172 0.07 mm 0.17 mm Schroeder, 1963; 1975).11)–13) Hofker (1963)11) rec- UMUT MF 29173 0.08 mm 0.17 mm ognized only one phylogenetic lineage within the Or- UMUT MF 29174 0.15 mm 0.25 mm bitolininae, which was summarized as one evolution- ary species “Orbitolina lenticularis”. He divided “O. lenticularis”intofiveFormGroups (Form Group I Type specimen: Holotype P5494 deposited in to V in ascending order) based mainly on the size dif- the U.S. National Museum of the Natural History ference of the embryonic apparatus. Younger forms from the PeakFormation, Lower Albian, Grant have a larger and more complicated embryonic ap- County, New Mexico, USA. paratus than older ones. Material:Three specimens (UMUT MF 29172– Sincethe first report by Yabe (1901),8) or- 29174) recovered from the lower part of the Yezo bitolinid foraminifers have been reported from sev- Group in Hokkaido are identified to the present eral localities in Japan. Yabe and Hanzawa (1926)14) species (see Fig. 1 for their detailed localities). They proposed several new orbitolinid species. Hofker are deposited in the University Museum, the Uni- (1963)11) regarded all of the previously known versity of Tokyo. UMUT MF 29172 and 29173 came Japanese orbitolinids, including new species de- from limestone olistoliths in the Yubari–Ashibetsu scribed by Yabe and Hanzawa (1926),14) as belong- area, central Hokkaido (Fig. 1–A). UMUT MF 29174 ing to one species “Orbitolina lenticularis”. Subse- was recovered from a limestone pebble in the Naka- quently, Japanese researchers have followed Hofker’s gawa area, northern Hokkaido (Fig. 1–B). All the classification (e.g., Ujii´eand Kusukawa, 1968; Matsu- three specimens are axially sectioned, but a horizon- maru, 1971; Matsumaru et al., 1976).15)–17) tal section has not yet been observed due to inade- On the other hand, Schroeder (1975, 1979)13), 18) quate state of the preservation. paid attention to the developmental pattern of the Description:Externalcharacters: The test is orbitolinid embryonic apparatus, and recognized small, low conical, the base of which is concave several phylogenetic lineages within the Orbitolin- (Fig. 2–1a, 2a) and convex (Fig. 2–3a). The diame- inae. He classified the Orbitolininae into several ter of the test varies from 1.02 to 5.30 mm, the height short-ranging genera and species based on the con- varies from 0.50 to 1.00 mm. Thickness of the test cepts of phylogenetic lineages (e.g., Eopalorbitolina– from 0.83 to 0.93 mm. The apex of the megalospheric Palorbitolina lineage; Praeorbitolina–Mesorbitolina form is slightly rounded. lineage). Schroeder’s taxonomy is now widely ac- Internal characters (embryonic apparatus): The cepted and used for biostratigraphic studies (e.g., megalospheric embryonic apparatus is centrally sit- Moullade et al., 1985; Simmons and Williams, 1992; uated in the tip of the test, and consists of a pro- Husinec et al., 2000).19)–21) Following Schroeder’s toconch and a deuteroconch with a small, developed classification scheme, Iba et al. (2005)3) reported the and subdivided subembryonic zone. It is small, with occurrences of “Mesorbitolina texana–parva group” ameandiameterof0.20mm. The protoconch is from the basal part of the Yezo Group in the Naka- globular, not ellipsoidal.
Recommended publications
  • 40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor
    40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor To cite this version: Jonathan Gaylor. 40Ar/39Ar Dating of the Late Cretaceous. Earth Sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112124. tel-01017165 HAL Id: tel-01017165 https://tel.archives-ouvertes.fr/tel-01017165 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Sud 11 UFR des Sciences d’Orsay École Doctorale 534 MIPEGE, Laboratoire IDES Sciences de la Terre 40Ar/39Ar Dating of the Late Cretaceous Thèse de Doctorat Présentée et soutenue publiquement par Jonathan GAYLOR Le 11 juillet 2013 devant le jury compose de: Directeur de thèse: Xavier Quidelleur, Professeur, Université Paris Sud (France) Rapporteurs: Sarah Sherlock, Senoir Researcher, Open University (Grande-Bretagne) Bruno Galbrun, DR CNRS, Université Pierre et Marie Curie (France) Examinateurs: Klaudia Kuiper, Researcher, Vrije Universiteit Amsterdam (Pays-Bas) Maurice Pagel, Professeur, Université Paris Sud (France) - 2 - - 3 - Acknowledgements I would like to begin by thanking my supervisor Xavier Quidelleur without whom I would not have finished, with special thanks on the endless encouragement and patience, all the way through my PhD! Thank you all at GTSnext, especially to the directors Klaudia Kuiper, Jan Wijbrans and Frits Hilgen for creating such a great project.
    [Show full text]
  • Discovery of Chemosynthesis-Based Association on the Cretaceous Basal Leatherback Sea Turtle from Japan
    Editors' choice Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan ROBERT G. JENKINS, ANDRZEJ KAIM, KEI SATO, KAZUHIRO MORIYA, YOSHINORI HIKIDA, and REN HIRAYAMA Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62 (4): 683–690. We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of com- munities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event.
    [Show full text]
  • Stratigraphy of the Sorachi and Yezo Groups in the Furano-Ashibetsu Area, Hokkaido, Japan: Another Oceanic Plate in the NW Pacific
    MIS20-P02 Japan Geoscience Union Meeting 2018 Stratigraphy of the Sorachi and Yezo groups in the Furano-Ashibetsu area, Hokkaido, Japan: Another oceanic plate in the NW Pacific. *Ryusei KOTA1, Hayato Ueda1 1. Niigata University The Sorachi - Yezo Belt in central Hokkaido consists of the Jurassic - Lower Cretaceous Sorachi Group and the Cretaceous Yezo Group. The lower part of the Sorachi Group consists of basalt lavas. The upper part consists mainly of siliceous and tuffaceous mudstones partly with intercalation of basalt and volcaniclastics . The Yezo Group conformably overlies the Sorachi Group and is composed of sandstone and mudstone. Various models have been proposed for the origin of the Sorachi Group, based mainly on petrology of the lower part lavas, and agreement has not yet been obtained. It is difficult to specify the tectonic setting for the lower Sorachi Group only by igneous petrology. Therefore, in this study, we focus on stratigraphy and clastic composition of sediments (the upper Sorachi Group to the lower Yezo Group) overlying the basalt. We divided the Sorachi Group of the Furano-Ashibetsu area into five lithostratigraphic units (S1: basalt lava, S2a: volcanic conglomerate, S2b: volcaniclastic sandstone with mudstone, S2c: siliceous mudstone with tuff, and S2d: siliceous tuffaceous mudstone with basalts), The lower Yezo Group are divided into two units (Ly1: sandy and Ly2: muddy turbidites, respectively). [HU1] S1b is assigned to Tithonian - Berriasian by radiolarians. Zircon U-Pb ages suggest that a S2b sandstone is Valanginian or younger, a S2d tuff bed is Barremian, and a Ly 1 sandstones is latest Barremian –earliest Aptian or younger.
    [Show full text]
  • Maastrichtian Ammonoid Fauna from the Pugachevo Area, Southern Sakhalin, Russian Far East
    The Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East, edited by Y. Shigeta and H. Maeda, National Science Museum Monographs, 31: 121–136, 2005 Maastrichtian Ammonoid Fauna from the Pugachevo Area, Southern Sakhalin, Russian Far East Haruyoshi Maeda1 and Yasunari Shigeta2 1 Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606–8502, Japan E-mail: [email protected] 2 Department of Geology and Paleontology, National Science Museum, 3–23–1Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] Abstract The stratigraphy and paleontology of the Cretaceous Yezo Group in the Pugachevo area has been investigated. The group is divided into the Bykov and Krasnoyarka formations in ascending order, and its exposures in the area range in age from Middle Campanian to Maastrichtian. Canado- ceras kossmati and Sphenoceramus schmidti, of Middle Campanian age, characterize the Bykov For- mation, while the middle and upper parts of the Krasnoyarka Formation are characterized by the pres- ence of Pachydiscus flexuosus and Gaudryceras makarovense, which are Late Maastrichtian in age. A typical occurrence of this widespread Upper Maastrichtian ammonoid assemblage is confirmed in a new section located between the Naiba and Makarov areas. Preservation of the Upper Maastrichtian ammonoids ranks among the best in the world and is probably unmatched in any other locality in southern Sakhalin. Specimens of P. flexuosus and G. makarovense preserved in the large calcareous nodules mainly exhibit aragonite preservation. Their phragmocones are usually free from compactional damage although the last two or three camerae are sometimes slightly crushed similar to the body chambers.
    [Show full text]
  • Late Jurassic–Early Cretaceous Intra-Arc Sedimentation and Volcanism Linked to Plate Motion Change in Northern Japan
    Title Late Jurassic‒Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan Author(s) TAKASHIMA, REISHI; NISHI, HIROSHI; YOSHIDA, TAKEYOSHI Geological Magazine, 143(6), 753-770 Citation https://doi.org/10.1017/S001675680600255X Issue Date 2006-11 Doc URL http://hdl.handle.net/2115/17119 Rights Copyright © 2006 Cambridge University Press Type article File Information GM143-6.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Geol. Mag.: page 1 of 18. c 2006 Cambridge University Press 1 doi:10.1017/S001675680600255X Late Jurassic–Early Cretaceous intra-arc sedimentation and volcanism linked to plate motion change in northern Japan REISHI TAKASHIMA∗†, HIROSHI NISHI∗ &TAKEYOSHI YOSHIDA‡ *Department of Earth and Planetary Science, Graduate School of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, 060-0810, Japan ‡Institute of Mineralogy, Petrology and Economic Geology, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, 980-8567, Japan (Received 5 October 2005; accepted 10 January 2006) Abstract – The Sorachi Group, composed of Upper Jurassic ophiolite and Lower Cretaceous island-arc volcano-sedimentary cover, provides a record of Late Jurassic–Early Cretaceous sedimentation and volcanism in an island-arc setting off the eastern margin of the Asian continent. Stratigraphic changes in the nature and volume of the Sorachi Group volcanic and volcaniclastic rocks reveal four tectonic stages. These stages resulted from changes in the subduction direction of the Pacific oceanic plate. Stage I in the Late Jurassic was characterized by extensive submarine eruptions of tholeiitic basalt from the back-arc basin. Slab roll-back caused rifting and sea-floor spreading in the supra-subduction zone along the active Asian continental margin.
    [Show full text]
  • (Dinosauria: Hadrosauridae) from the Marine
    www.nature.com/scientificreports OPEN A New Hadrosaurine (Dinosauria: Hadrosauridae) from the Marine Deposits of the Late Cretaceous Received: 1 March 2019 Accepted: 2 August 2019 Hakobuchi Formation, Yezo Group, Published: xx xx xxxx Japan Yoshitsugu Kobayashi1, Tomohiro Nishimura2, Ryuji Takasaki 3, Kentaro Chiba4, Anthony R. Fiorillo5, Kohei Tanaka6, Tsogtbaatar Chinzorig 7, Tamaki Sato8 & Kazuhiko Sakurai2 A nearly complete skeleton of a new hadrosaurid, Kamuysaurus japonicus gen. et sp. nov., was discovered from the outer shelf deposits of the Upper Cretaceous Hakobuchi Formation of the Yezo Group in Hobetsu area of Mukawa town in Hokkaido, Japan. Kamuysaurus belongs to the sub-clade of Hadrosaurinae, Edmontosaurini, and forms a monophyly with Laiyangosaurus and Kerberosaurus from the northern Far East. Kamuysaurus has a long anterior platform for the nasofrontal sutural surface, which may indicate the presence of a small supracranial crest, similar to a sub-adult form of Brachylophosaurus based on the extension of the nasofrontal sutural surface. The Dispersal Extinction Cladogenesis analysis with the 50% Majority Rule consensus tree suggests that the clade of Kamuysaurus, Laiyangosaurus, and Kerberosaurus may have dispersed into Asia prior to the late Campanian and the potential endemism of this clade during the late Campanian and early Maastrichtian in the northern Far East. The results of both Dispersal Extinction Cladogenesis and Ancestral State Reconstruction analyses imply that the marine-infuenced environment in North America during the Campanian may have played an important role for the hadrosaurid diversifcation in its early evolutionary history. Hadrosaurid dinosaurs are one of the most successful herbivorous dinosaurs in the Late Cretaceous, and these fossil remains are common in the uppermost Cretaceous (Campanian and Maastrichtian) deposits in Laurasia (North America, Asia, and Europe) and some areas of Gondwana (South America and Antarctica)1,2.
    [Show full text]
  • Stratigraphy and Fossil Assemblages of the Upper Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East
    The Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East, edited by Y. Shigeta and H. Maeda, National Science Museum Monographs, 31: 25–120, 2005 Stratigraphy and Fossil Assemblages of the Upper Cretaceous System in the Makarov Area, Southern Sakhalin, Russian Far East Haruyoshi Maeda1, Yasunari Shigeta2, Allan Gil S. Fernando3 and Hisatake Okada3 1 Department of Geology and Mineralogy, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyou-ku, Kyoto 606–8502, Japan E-mail: [email protected] 2 Department of Geology and Paleontology, National Science Museum, 3–23–1 Hyakunin-cho, Shinjuku-ku, Tokyo 169–0073, Japan E-mail: [email protected] 3 Department of Earth and Planetary Sciences, Graduate School of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 060–0810, Japan E-mail: [email protected]; [email protected] Abstract The stratigraphy and paleontology of the Cretaceous Yezo Group in the Makarov area has been thoroughly investigated. Exposures of the group in this area range in age from Santonian to Maastrichtian, and attain a total thickness of 2,500 m. The group is divided into the Bykov and Kras- noyarka formations in ascending order. The Bykov Formation consists mostly of offshore mudstones, and is lithologically subdivided into four lithostratigraphic units designated as B1–B4, while the Krasnoyarka Formation is composed mainly of nearshore sandstones and deltaic deposits, and is sub- divided into five units: K1–K4b. Except for the uppermost part of the Krasnoyarka Formation, the remaining Cretceous strata are very fossiliferous. Among the fossil fauna, pachydiscid, tetragonitid, and gaudryceratid ammonoids are especially abundant.
    [Show full text]
  • Ammonoid Biodiversity Changes Across the Cenomanian–Turonian Boundary in the Yezo Group, Hokkaido, Japan
    Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan KEN’ICHI KURIHARA, SEIICHI TOSHIMITSU, and HIROMICHI HIRANO Kurihara, K., Toshimitsu, S., and Hirano, H. 2012. Ammonoid biodiversity changes across the Cenomanian–Turonian boundary in the Yezo Group, Hokkaido, Japan. Acta Palaeontologica Polonica 57 (4): 749–757. Ammonoid biodiversity changes from shallow to offshore environments across the Cenomanian–Turonian (C–T) bound− ary are reconstructed in the Yezo Group, Hokkaido, Japan. This group was probably deposited at approximately 35–45°N along a westward subduction margin in the northeastern Asian continent. Temporal changes in species richness in the Yezo Group, which show persistently high values during the middle Cenomanian and then decline stepwise from near the middle–late Cenomanian boundary, resemble those in Europe, but not those in Tunisia and the Western Interior. These differences suggest that the Cenomanian–Turonian “mass extinction” was not a global event for ammonoids but was re− stricted to mid−palaeolatitudinal regions (Europe and Japan). Sea level and climate changes probably influenced ammonoid faunas in the Yezo Group as well as those in Europe. However, it is unlikely that a single, simple cause led to the C–T boundary “mass extinction” because various abiotic changes in the Cenomanian–Turonian transition have been detected, and biotic and abiotic change are interrelated. Key words: Ammonoids, mass extinction, Cenomanian–Turonian (C–T) boundary, Cretaceous, Hokkaido. Ken’ichi Kurihara [[email protected]], Mikasa City Museum, 1−212−1 Nishiki−cho, Ikushumbetsu, Mikasa, Hokkaido 068−2111, Japan; Seiichi Toshimitsu [[email protected]], Geological Survey of Japan, AIST, 1−1−1 Higashi, Tsukuba, Ibaraki 305−8567, Japan; Hiromichi Hirano [[email protected]], Department of Earth Sciences, School of Education and Integrated Arts and Sciences, Waseda University, 1−6−1 Nishiwaseda, Shinjuku−ku, Tokyo 169−8050, Japan.
    [Show full text]
  • Stratigraphic and Petrological Insights Into the Late Jurassic–Early Cretaceous Tectonic Framework of the Northwest Pacific Margin
    Chapter 3 Stratigraphic and Petrological Insights into the Late Jurassic–Early Cretaceous Tectonic Framework of the Northwest Pacific Margin Reishi Takashima, Hiroshi Nishi and Takeyoshi Yoshida Additional information is available at the end of the chapter http://dx.doi.org/10.5772/intechopen.68289 Abstract Late Jurassic–Early Cretaceous volcano‐sedimentary sequences in the Sorachi, Kumaneshiri, and Yezo groups are exposed in central Hokkaido. The sequences are considered to reflect the Late Mesozoic tectonic history of the northwest Pacific continental margin. Based on the stratigraphic and petrological characteristics of igneous and volcaniclastic rocks of the Sorachi, Yezo, and Kabato groups, Late Jurassic–Early Cretaceous tectonics in central Hokkaido can be divided into six stages. Stage I (Tithonian) is characterized by extensive eruption of tholeiitic basalt accompanied with andesitic volcaniclastic rocks and terrigenous deposits. Seafloor spreading or large igneous province formation occurred near an island arc and/or continent during this stage. In Stage II, island arc volcanic islands were constructed on the basaltic rocks formed during Stage I. Stage III (latest Berriasian‐Valanginian) is character ‐ ized by the formation of pull‐apart basins accompanied by seafloor spreading. Widespread upwelling of the asthenosphere below central Hokkaido may have occurred during this stage. After the cessation of in situ volcanism in Stage IV (Hauterivian), submarine island arc volcanism reoccurred in Stage V (Barremian). In Stage VI (Aptian–Campanian), typi‐ cal active continental margin volcanism occurred and voluminous granitic batholiths were formed in western Hokkaido. Keywords: Jurassic, Cretaceous, Sorachi group, Kumaneshiri group, Asian continental margin, Hokkaido 1. Introduction The Early Late Jurassic is characterized by a peak in submarine igneous activity represented by a negative peak in 87Sr/86Sr in marine sediments [7, 15].
    [Show full text]
  • This Article Appeared in a Journal Published by Elsevier. the Attached
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Cretaceous Research 37 (2012) 319e340 Contents lists available at SciVerse ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Review paper A review of the Upper Cretaceous marine reptiles from Japan T. Sato a,*, T. Konishi b, R. Hirayama c, M.W. Caldwell d,e a Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Nukui-Kita-Machi 4-1-1, Koganei City, Tokyo 184-8501, Japan b Royal Tyrrell Museum of Palaeontology, PO Box 7500, Drumheller, Alberta T0J 0Y0, Canada c School of International Liberal Studies, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan d Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada e Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada article info abstract Article history: Taxonomy and stratigraphic distribution of the Upper Cretaceous marine reptiles from Japan are Received 10 March 2011 reviewed.
    [Show full text]
  • Mechanism of Long-Standing Cenozoic Basin Formation in Central Hokkaido
    Itoh et al. Progress in Earth and Planetary Science 2014, 1:6 http://www.progearthplanetsci.com/content/1/1/6 RESEARCH Open Access Mechanism of long-standing Cenozoic basin formation in central Hokkaido: an integrated basin study on an oblique convergent margin Yasuto Itoh1*, Osamu Takano2, Shigekazu Kusumoto3 and Machiko Tamaki4 Abstract The basin-forming process along a convergent margin off the eastern coast of Eurasia was pursued on the basis of geological, geochemical, and geophysical approaches. Central Hokkaido has been a site of vigorous tectonic events throughout the Cenozoic reflecting the long-standing subduction of oceanic plates in the region. Geochemical modeling provided an estimate of the eroded Paleogene unit in the study area. Data on the considerable thickness of the missing unit implied continued subsidence of the forearc region and its subsequent exhumation under the emergence of a compressive regime synchronous with the back-arc opening stage. Spatially large facies variety in the Paleogene system suggests that basin compartmentalization occurred as a result of the trench-parallel component of the plate convergence. Right-lateral motion seems to have been the dominant type in Hokkaido and the forearc of northeast Japan since the Late Cretaceous, except for a left-lateral episode during rapid subsidence of the Izanagi Plate around 110 Ma. Numerical modeling demonstrated that dextral slip on a bunch of longitudinal strike-slip faults restored the Neogenedepocenters in central Hokkaido, together with an east-west compressive regime related to an arc-arc collision. Keywords: Basin subsidence; Foreland basin; Modeling; Strike-slip basin; Subduction-related basin; Tectonics and sedimentation; Geochemistry; Maturation; Hokkaido Background focus here and elsewhere was on the central N-S elon- Hokkaido is an island presently located at a junction of gated depression adjacent to the arc-arc collision front the Kurile arc and northeast Japan arc (Figure 1).
    [Show full text]
  • New Records of Coleoid Cephalopod Jaws from the Upper Cretaceous of Hokkaido, Japan, and Their Paleobiogeographic and Evolutionary Implications
    Cretaceous Research 70 (2017) 128e141 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes New records of coleoid cephalopod jaws from the Upper Cretaceous of Hokkaido, Japan, and their paleobiogeographic and evolutionary implications * Kazushige Tanabe a, , Akihiro Misaki b, Yoshinori Hikida c, Tomohiro Nishimura d a Department of Earth and Planetary Science, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033, Japan b Kitakyushu Museum of Natural History and Human History, 2-4-1 Higashida, Kitakyushu City, Fukuoka 805-0071, Japan c Nakagawa Museum of Natural History, Yasukawa 28-9, Nakagawa Town, Hokkaido 098-2626, Japan d Hobetsu Museum, Hobetsu 80-6, Mukawa Town, Hokkaido, 054-0211, Japan article info abstract Article history: Seven coleoid jaws recovered from Santonian to lower Campanian (Upper Cretaceous) strata in Hok- Received 23 June 2016 kaido, Japan were taxonomically studied. Based on the comparison with the jaws of modern and fossil Received in revised form coleoids, six of the seven jaw fossils are referred to the following two genera and three species, including 22 October 2016 one possible new species: Nanaimoteuthis jeletzkyi and N. yokotai of the order Vampyromorpha, and Accepted in revised form 23 October 2016 Paleocirroteuthis sp. nov. (?) of the order Cirroctopodida. The other single lower jaw is seemingly similar Available online 24 October 2016 to those of modern octopods and teuthids with respect to the shape of the inner lamella, but its order- level assignment could not be determined because of its imperfect preservation. N. jeletzkyi has been Keywords: Late Cretaceous described in the Upper Cretaceous fore-arc basin deposits in Hokkaido (Yezo Group) and Vancouver fi Coleoidea Island, Canada (Nanaimo Group), whereas N.
    [Show full text]