Late Cretaceous Gastropods from the Izumi Group of Southwest Japan

Total Page:16

File Type:pdf, Size:1020Kb

Late Cretaceous Gastropods from the Izumi Group of Southwest Japan See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/282543248 Late Cretaceous gastropods from the Izumi Group of southwest Japan Article in Journal of Paleontology · July 1990 DOI: 10.1017/S0022336000042608 CITATIONS READS 21 109 1 author: Tomoki Kase National Museum of Nature and Science, Tsukuba 160 PUBLICATIONS 1,423 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Epizoans, traces and predation on ammonoids and bivalves View project All content following this page was uploaded by Tomoki Kase on 03 February 2019. The user has requested enhancement of the downloaded file. J. Paleont., 64(4), 1990, pp. 563-578 Copyright ? 1990, The Paleontological Society 0022-3360/90/0064-0563$03.00 LATE CRETACEOUS GASTROPODS FROM THE IZUMI GROUP OF SOUTHWEST JAPAN TOMOKI KASE Department of Geology, National Science Museum, Tokyo 3-23-1 Hyakunincho, Shinjuku-ku, Tokyo 169 Japan ABsTRACTr-The basal part of the Upper Cretaceous, mid-Campanian to Maastrichtian Izumi Group of the Izumi Mountains and Awaji Island, Southwest Japan, contains the most diverse gastropod fauna of this age in Japan. This paper discriminates 19 species and describes two new genera: Atira tricarinata n. sp., Ataphrus (s.s.) sp. A, Ataphrus (s.s.) sp. B, Globularia (s.s.) izumiensis n. sp., Lysis izumiensis n. sp., Trichotropis? sp., Deussenia takinoikensis n. sp., Volutilithes antiqua n. sp., Pseudoperissitys bicarinata Nagao and Otatume, Nekewis sp., Nipponitys inouei n. gen. and sp., Nipponitys acutangularis n. gen. and sp., Nipponitys sp. cf. N. magna (Kalishevitsch), Calorebama cretacea n. sp., Taniella japonica n. gen. and sp., Amuletum (s.s.) sp., Biplica osakensis n. sp., Biplica sphaerica n. sp., and Cylichna sp. The family Ampullospiridae is assigned to the suborder Architaenioglossa from the superfamily Naticacea. The enigmatic genus Lysis is tentatively assigned to the Calyptraeidae. Taniella japonica n. sp. is the oldest member of the family Olividae, and Calorebama cretacea n. sp. is the oldest member of the subfamily Pseudolivinae. Occurrence of Atira, Ataphrus, Biplica, and five perissityids further supports close communication of the northwestern Pacific Late Cretaceous gastropod faunas with those of the North American Pacific coastal areas. INTRODUCTION The gastropods were collected from eight localities, seven in the Izumi Mountains area and one in the Awaji Island area THE CRETACEOUS molluscan faunas in Japan are dominated by ammonites and inoceramids, and, in general, (Figure 1). gastro- In the Izumi Mountains area one locality (NSM- pods are uncommon. Gastropods have, however, PCL11-80-1) been the is within sub- the Shindachi Formation, a turbidite ject of works by Yokoyama (1890), Nagao (1930, facies 1932, of the 1939), Izumi Group, and the other six localities are all Nagao and Otatume (1938), and Matsumoto (1938), within resulting the basal part of the Azenotani Mudstone Member, which in the description of about 50 species. Hayami represents and Kase a marginal (1977) facies of the Izumi Group (Ichihara et al., summarized the basic information on these gastropods 1986). The sevenand localitiesre- in the Izumi Mountains area can be vised them preliminarily. Although these gastropods stratigraphically are rep- grouped into three horizons (Matsumoto and resentative of this age in Southeast Asia and include Morozumi, many 1980): in- A2 (NSM-PCL11-73-1, 11-73-3-11-73-5), teresting genera and species of importance in molluscan B3 (NSM-PCL11-80-1), and B5 (NSM-PCL11-73-2, 11-73-6). phylogeny, classification, and paleobiogeography, they have re- Recent study of ammonites from the Awaji Island area has shown that Horizon A2 is within the Nostoceras hetonaiense ceived little attention. Shells of the species described are poorly preserved and their features are often incompletely known, mak- Zone (earliest Maastrichtian) and Horizons B3 and B5 are some- ing difficult the confident allocation of these gastropods to their where near the Pachydiscus sp. aff. P. subcompressus Zone (early generic (sometimes familial) positions and their close compar- Maastrichtian), respectively (Morozumi, 1985). The discrete isons to those from other areas outside Japan. Thus, knowledge single occurrence at Loc. NSM-PC113-22-1 in the Awaji Island of the Late Cretaceous gastropods in Japan is still imperfect. area is within the Seidan Formation, which is within the Di- The Izumi Group in Southwest Japan has yielded exception- dymoceras awajiense Zone (Late Campanian) (Morozumi, 1985). ally diverse gastropods. Even in this group, however, the gas- Detailed locality descriptions are listed in the appendix. tropods are very rare and commonly can only be extracted with considerable effort owing to the nature and lithology of the IZUMI GASTROPOD FAUNA exposures. Most of the specimens described herein were ob- Close molluscan faunal similarity between the northwestern tained through the efforts of M. Tani, M. Sato, and T. Nishioka Pacific and North American Pacific Coast areas in the Late of Osaka City, S. Inoue of Kobe City, A. Nakamura of Kochi Cretaceous has long been recognized among ammonites (Matsu- University, and A. Matsuoka of Niigata University. Other spec- moto, 1960; Matsumoto in Bando et al., 1987), bivalves (Kauff- imens are from collections of the Osaka Museum of Natural man, 1973), and gastropods (Sohl, 1967). Kauffman (1973) has History, Osaka, or were collected by the author. A total indicated of 19 from his analysis of bivalves that these two areas are species has been discriminated; 11 species and two genera, biogeographically Tani- distinct from other areas and constitute the ella and Nipponitys, are described as new. These provide North new Pacific province, although they differ from each other at data characterizing the Late Cretaceous gastropod faunas the subprovincialof level. The degree of similarity differs in each Japan. taxonomic group. A number of ammonite species are common All described and figured specimens are housed in the between Section Japan and California in every age of the Late Creta- of Invertebrate Paleontology, National Science Museum, ceous Tokyo (Matsumoto, 1960), but faunal provincialism becomes (NSM-PM), the Osaka Museum of Natural History (OMNH), more distinct within the Campanian, probably due to the ap- and the British Museum (Natural History) (BM(NH)), London. pearance of fairly distinct climatic zonation in these areas (Mat- sumoto, 1984; Matsumoto in Bando et al., 1987). On the other AGE AND STRATIGRAPHY OF LOCALITIES hand, the provincialism of bivalves between these areas declined The Izumi Group is a thick marine sequence, mostly gradually of in tur-the Late Cretaceous (Kauffman, 1973). Aside from bidite origin, that consists of conglomerate, sandstone, inoceramids, and a number of bivalve genera are common between mudstone. It extends ENE-WSW in a narrow zone about 300 the the Japanese-East Asian and the Northeast Pacific sub- km long and 20 km wide along the northern border provincesof the in the North Pacific province, but no species have Median Tectonic Line from the Izumi Mountains to the western been found in common. The situation for gastropods seems to border of Shikoku. be nearly the same as for bivalves. 563 This content downloaded from 61.201.49.54 on Sun, 03 Feb 2019 01:42:27 UTC All use subject to https://about.jstor.org/terms 564 JOURNAL OF PALEONTOLOGY, V. 64, NO. 4, 1990 FIGURE I-Index map showing the fossil localities. Our knowledge of the Late Cretaceous gastropods from genus the Atira is widespread from southern California to Vancou- northern circum-Pacific areas is far more incomplete thanver Islandof and westward to Sakhalin and Japan (Sohl, 1969). other molluscan groups except for such taxonomic groups Atira as is the commonest gastropod from the Upper Yezo Group Biplica (Popenoe, 1957), Perissityidae (Popenoe and Saul, of1987; Hokkaido in Japan. The genus Ataphrus was widespread in Saul, 1988a), Tudiculidae and Melongenidae (Saul, 1988b), Tethyan and regions during the Jurassic and Early Cretaceous, but gyrodiform naticids (Popenoe et al., 1987). A considerable abruptly num- decreased from the beginning of the Late Cretaceous ber of species remains undescribed in Japan and California, onward. and Ataphrus compactus (Gabb) and A. crassus Gabb from previously described species are often ambiguous in shell the char- Upper Cretaceous of California and A. teshioensis Nagao acteristics, necessitating refinement of their generic and fromsubge- the Upper Yezo Group of Hokkaido are authentic Ata- neric (often familial) positions based on moder concepts. phrus. Thus, The genus Biplica is a characteristic genus in the Northern discussion of their faunal affinities remains premature. Pacific How- region. It is abundant in the Upper Cretaceous from ever, I give an account of the distribution of species and Albiangenera to Maastrichtian North American Pacific Coast deposits recorded from the Izumi Group in and outside Japan so and that extends southward to Chile and New Zealand (Popenoe, characteristics of the Izumi gastropod fauna may become 1957). avail- The Izumi Group has yielded two Biplica species, and able to other paleontologists. Of the 19 species discriminated Avellana problematica Nagao, 1932, from the Upper Yezo Group herein, 11 new species are at present restricted to the ofIzumi Hokkaido can be reassigned to Biplica. Avellana and Biplica Group. Pseudoperissitys bicarinata Nagao and Otatume
Recommended publications
  • Phylum MOLLUSCA Chitons, Bivalves, Sea Snails, Sea Slugs, Octopus, Squid, Tusk Shell
    Phylum MOLLUSCA Chitons, bivalves, sea snails, sea slugs, octopus, squid, tusk shell Bruce Marshall, Steve O’Shea with additional input for squid from Neil Bagley, Peter McMillan, Reyn Naylor, Darren Stevens, Di Tracey Phylum Aplacophora In New Zealand, these are worm-like molluscs found in sandy mud. There is no shell. The tiny MOLLUSCA solenogasters have bristle-like spicules over Chitons, bivalves, sea snails, sea almost the whole body, a groove on the underside of the body, and no gills. The more worm-like slugs, octopus, squid, tusk shells caudofoveates have a groove and fewer spicules but have gills. There are 10 species, 8 undescribed. The mollusca is the second most speciose animal Bivalvia phylum in the sea after Arthropoda. The phylum Clams, mussels, oysters, scallops, etc. The shell is name is taken from the Latin (molluscus, soft), in two halves (valves) connected by a ligament and referring to the soft bodies of these creatures, but hinge and anterior and posterior adductor muscles. most species have some kind of protective shell Gills are well-developed and there is no radula. and hence are called shellfish. Some, like sea There are 680 species, 231 undescribed. slugs, have no shell at all. Most molluscs also have a strap-like ribbon of minute teeth — the Scaphopoda radula — inside the mouth, but this characteristic Tusk shells. The body and head are reduced but Molluscan feature is lacking in clams (bivalves) and there is a foot that is used for burrowing in soft some deep-sea finned octopuses. A significant part sediments. The shell is open at both ends, with of the body is muscular, like the adductor muscles the narrow tip just above the sediment surface for and foot of clams and scallops, the head-foot of respiration.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • By C. M. Yonge, D.Se. University of Bristol
    453 EVOLUTION OF CILIARY FEEDING IN THE PROSOBRANCHIA, WITH AN ACCOUNT OF FEEDING IN GAPULUS UNGAR/GUS By C. M. Yonge, D.Se. University of Bristol (Text-figs. 1-6) CONTENTS PAGE Introduction 453 Rejection Currents in the Mantle Cavity of the Prosobranchia 453 Evolution of Ciliary Feeding 455 Vermetus novae-hollandiae . 456 Crepidula fornicata and other Calyptraeidae 457 Capulus ungaricus 459 Modification of gill filaments 461 Discussion. 465 Summary 467 References. 468 INTRODUCTION Ciliary feeding, of such widespread occurrence in the Lamellibranchia, is confined in the Gastropoda to a few scattered groups. In freshwater Pul- monata, such as Limnaea, cilia on the foot assist in feeding when the animal is creeping suspended from the surface film (Brockmeier, 1898). Thecoso- matous Pteropoda feed exclusively by the aid of cilia on the unpaired middle lobe and the paired side lobes of the foot, and an evolutionary series- Cavolinia-Cymbulia-Gleba-can be traced in which there is a progressive elaboration in the perfection of this mechanism and an accompanying reduc- tion in the buccal mass and associated structures handed down from carni- vorous ancestors (Yonge, 1926). Only in the few prosobranchs which have acquired ciliary feeding mechanisms do these represent a modification of the ctenidia as in the Lamellibranchia. They also, as it is the aim of this paper to show, represent a modification of the rejection currents present in the mantle cavity of typical prosobranchs. REJECTION CURRENTS IN THE MANTLE CAVITY OF THE PROSOBRANCHIA In typical Prosobranchia a respiratory current, created by the beating of the lateral cilia on the gill filaments, is drawn into the mantle cavity by way of the inhalent opening (frequently prolonged into a siphon, e.g.
    [Show full text]
  • 40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor
    40Ar/39Ar Dating of the Late Cretaceous Jonathan Gaylor To cite this version: Jonathan Gaylor. 40Ar/39Ar Dating of the Late Cretaceous. Earth Sciences. Université Paris Sud - Paris XI, 2013. English. NNT : 2013PA112124. tel-01017165 HAL Id: tel-01017165 https://tel.archives-ouvertes.fr/tel-01017165 Submitted on 2 Jul 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Paris Sud 11 UFR des Sciences d’Orsay École Doctorale 534 MIPEGE, Laboratoire IDES Sciences de la Terre 40Ar/39Ar Dating of the Late Cretaceous Thèse de Doctorat Présentée et soutenue publiquement par Jonathan GAYLOR Le 11 juillet 2013 devant le jury compose de: Directeur de thèse: Xavier Quidelleur, Professeur, Université Paris Sud (France) Rapporteurs: Sarah Sherlock, Senoir Researcher, Open University (Grande-Bretagne) Bruno Galbrun, DR CNRS, Université Pierre et Marie Curie (France) Examinateurs: Klaudia Kuiper, Researcher, Vrije Universiteit Amsterdam (Pays-Bas) Maurice Pagel, Professeur, Université Paris Sud (France) - 2 - - 3 - Acknowledgements I would like to begin by thanking my supervisor Xavier Quidelleur without whom I would not have finished, with special thanks on the endless encouragement and patience, all the way through my PhD! Thank you all at GTSnext, especially to the directors Klaudia Kuiper, Jan Wijbrans and Frits Hilgen for creating such a great project.
    [Show full text]
  • Permophiles Issue
    Table of Contents Notes from the SPS Secretary 1 Lucia Angiolini Notes from the SPS Chair 2 Shuzhong Shen Officers and Voting Members since August, 2012 2 Report on the First International Congress on Continental Ichnology [ICCI-2015], El Jadida, Morocco, 21-25 April, 2015 4 Hafid Saber Report on the 7th International Brachiopod Congress, May 22-25, 2015 Nanjing, China 8 Lucia Angiolini Progress report on correlation of nonmarine and marine Lower Permian strata, New Mexico, USA 10 Spencer G. Lucas, Karl Krainer, Daniel Vachard, Sebastian Voigt, William A. DiMichele, David S. Berman, Amy C. Henrici, Joerg W. Schneider, James E. Barrick Range of morphology in monolete spores from the uppermost Permian Umm Irna Formation of Jordan 17 Michael H. Stephenson Palynostratigraphy of the Permian Faraghan Formation in the Zagros Basin, Southern Iran: preliminary studies 20 Amalia Spina, Mohammad R. Aria-Nasab , Simonetta Cirilli, Michael H. Stephenson Towards a redefinition of the lower boundary of the Protochirotherium biochron 22 Fabio Massimo Petti, Massimo Bernardi, Hendrik Klein Preliminary report of new conodont records from the Permian-Triassic boundary section at Guryul ravine, Kashmir, India 24 Michael E. Brookfield, Yadong Sun The paradox of the end Permian global oceanic anoxia 26 Claudio Garbelli, Lucia Angiolini, Uwe Brand, Shuzhong Shen, Flavio Jadoul, Karem Azmy, Renato Posenato, Changqun Cao Late Carboniferous-Permian-Early Triassic Nonmarine-Marine Correlation: Call for global cooperation 28 Joerg W. Schneider, Spencer G. Lucas Example for the description of basins in the CPT Nonmarine-Marine Correlation Chart Thuringian Forest Basin, East Germany 28 Joerg W. Schneider, Ralf Werneburg, Ronny Rößler, Sebastian Voigt, Frank Scholze ANNOUNCEMENTS 36 SUBMISSION GUIDELINES FOR ISSUE 62 39 Photo 1:The Changhsingian Gyaniyma Formation (Unit 8, bedded and Unit 9, massive, light) at the Gyaniyma section, SW Tibet.
    [Show full text]
  • Faunal Change and Bathymetric Diversity Gradient in Deep-Sea Prosobranchs from Northeastern Atlantic
    Biodiversity and Conservation (2006) Ó Springer 2006 DOI 10.1007/s10531-005-1344-9 -1 Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from Northeastern Atlantic CELIA OLABARRIA1,2 1Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, South- ampton SO14 3ZH, United Kingdom; 2Present address: Departamento de Ecoloxı´a e Bioloxı´a Animal, Area Ecoloxı´a, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo (Pontevedra), Spain (e-mail: [email protected]; phone: +34-986-812587; fax: +34-986-812556) Received 6 January 2005; accepted in revised form 11 July 2005 Key words: Deep sea, Diversity, Faunal turnover, Northeastern Atlantic, Porcupine Abyssal Plain, Porcupine Seabight, Prosobranchs Abstract. Despite the plethora of studies, geographic patterns of diversity in deep sea remain subject of speculation. This study considers a large dataset to examine the faunal change and depth-diversity gradient of prosobranch molluscs in the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). Rates of species succession (addition and loss) increased rapidly with increasing depth and indicated four possible areas of faunal turnover at about 700, 1600, 2800 and 4100 m. Depth was a significant predictor of diversity, explaining nearly a quarter the variance. There was a pattern of decreasing diversity downslope from 250 m to 1500–1600 m, followed by an increase to high values at about 4000 m and then again, a fall to 4915 m. Processes causing diversity patterns of prosobranchs in the Porcupine Seabight and adjacent Abyssal Plain are likely to differ in magnitude or type, from those operating in other Atlantic areas. Introduction An increasing focus for biodiversity research in the deep sea has been to test for the existence of large-scale gradients in the diversity of marine soft- sediment fauna in deep sea (e.g.
    [Show full text]
  • Discovery of Chemosynthesis-Based Association on the Cretaceous Basal Leatherback Sea Turtle from Japan
    Editors' choice Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan ROBERT G. JENKINS, ANDRZEJ KAIM, KEI SATO, KAZUHIRO MORIYA, YOSHINORI HIKIDA, and REN HIRAYAMA Jenkins, R.G., Kaim, A., Sato, K., Moriya, K., Hikida, Y., and Hirayama, R. 2017. Discovery of chemosynthesis-based association on the Cretaceous basal leatherback sea turtle from Japan. Acta Palaeontologica Polonica 62 (4): 683–690. We report a Late Cretaceous chemosynthetic community fueled by decomposing basal leatherback sea turtle on the ocean floor in the western Pacific. The fossil association representing this community has been recovered from the matrix of a concretion containing a single carapace of Mesodermochelys sp. from Late Cretaceous outer shelf to upper slope deposit of northern Hokkaido, Japan. The carapace displays boreholes most likely performed by boring bivalves, and is associated with molluscan shells, mainly Provanna cf. nakagawensis and Thyasira tanabei. Since this association is similar to fauna already known from Late Cretaceous hydrocarbon seeps, sunken wood, and plesiosaur-falls in Hokkaido, it is suggested that all types of chemosynthesis-based communities in the Late Cretaceous of western Pacific may have belonged to the same regional pool of animals and were not yet fully differentiated into three independent types of com- munities as it is known today. This finding also indicates that the sulfophilic stage of the vertebrate-fall communities was supported not only by plesiosaur carcasses, which were previously reported, but also by sea turtle carcasses. It highlights the possibility of surviving vertebrate-fall communities through the end-Cretaceous mass extinction event on carcasses of sea turtles which are the only large marine vertebrates surviving this event.
    [Show full text]
  • Three Alien Molluscs from Iskenderun Bay (SE Turkey)
    Aquatic Invasions (2006) Volume 1, Issue 2: 76-79 DOI 10.3391/ai.2006.1.2.4 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Research article Three alien molluscs from Iskenderun Bay (SE Turkey) Doğan Çeviker1 and Serhat Albayrak2* 1Itri Sokak No:2 34349 Balmumcu-Istanbul, Turkey E-mail: [email protected] 2Istanbul University, Faculty of Science, Department of Biology 34118 Vezneciler-Istanbul, Turkey E-mail: [email protected] *Corresponding author Received 26 April 2006; accepted in revised form 4 May 2006 Abstract This study reports the presence of three alien molluscs from Iskenderun Bay (SE Turkey). Amathina tricarinata (Linnaeus, 1767) and Petricola hemprichi Issel, 1869 have prior records from other regions of Mediterranean, but, Cardites akabana (Sturany, 1899) first recorded in this paper. Since all of them are present in the Red Sea or Suez Canal, they can be considered as Lessepsian immigrants. Key words: Mollusca, alien species, Mediterranean, Turkey Introduction that 88 % of the exotic molluscs are Lessepsian immigrants in the eastern Mediterranean (Galil The Mediterranean Sea hosts about 8500 species and Zenetos 2002). Detailed data about these species of macroscopic animals. This rich biodiversity, are available on the Internet (www.ciesm.org/atlas). representing 8-9 % of total species number of the Either Lessepsian or non-Lessepsian, many world’s seas, comprises temperate and sub- new non-indigenous species continue to enter the tropical elements together with endemic and Mediterranean. alien species (Zenetos et al. 2002). The eastern Mediterranean is most vulnerable The introduction of alien species (also known to invasion and should be continuously as exotic, introduced or non-native species) into monitored.
    [Show full text]
  • The Limpet Form in Gastropods: Evolution, Distribution, and Implications for the Comparative Study of History
    UC Davis UC Davis Previously Published Works Title The limpet form in gastropods: Evolution, distribution, and implications for the comparative study of history Permalink https://escholarship.org/uc/item/8p93f8z8 Journal Biological Journal of the Linnean Society, 120(1) ISSN 0024-4066 Author Vermeij, GJ Publication Date 2017 DOI 10.1111/bij.12883 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Biological Journal of the Linnean Society, 2016, , – . With 1 figure. Biological Journal of the Linnean Society, 2017, 120 , 22–37. With 1 figures 2 G. J. VERMEIJ A B The limpet form in gastropods: evolution, distribution, and implications for the comparative study of history GEERAT J. VERMEIJ* Department of Earth and Planetary Science, University of California, Davis, Davis, CA,USA C D Received 19 April 2015; revised 30 June 2016; accepted for publication 30 June 2016 The limpet form – a cap-shaped or slipper-shaped univalved shell – convergently evolved in many gastropod lineages, but questions remain about when, how often, and under which circumstances it originated. Except for some predation-resistant limpets in shallow-water marine environments, limpets are not well adapted to intense competition and predation, leading to the prediction that they originated in refugial habitats where exposure to predators and competitors is low. A survey of fossil and living limpets indicates that the limpet form evolved independently in at least 54 lineages, with particularly frequent origins in early-diverging gastropod clades, as well as in Neritimorpha and Heterobranchia. There are at least 14 origins in freshwater and 10 in the deep sea, E F with known times ranging from the Cambrian to the Neogene.
    [Show full text]
  • Salinas Pueblo Missions National Monument U.S
    National Park Service Geologic Map of Salinas Pueblo Missions National Monument U.S. Department of the Interior Geologic Resources Inventory New Mexico Natural Resource Stewardship and Science Pa NPS Boundary Qpy Peidmont alluvium, younger deposits (upper Pleistocene to Holocene) Pu Arroyo de Alamillo and Abo Formations, undifferentiated (Lower Permian (Leonardian and Wolfcampian)) Qgm Qayo Stream alluvium, younger subunit (uppermost Pleistocene to Holocene) Pa Abo Formation (Lower Permian (Leonardian and Wolfcampian)) Infrastructure Qae Stream alluvium and eolian sand (late Pleistocene to late Holocene) Pal Abo Formation, lower units (Lower Permian (Leonardian and Wolfcampian)) 55 point of interest roads Qaam Abo Arroyo stream terrace, intermediate deposit (upper Pleistocene) Yeso Formation Qa Pa Point Geologic Units Pym Mesa Blanca Member (Lower Permian (Leonardian)) Qgm Qgm Gravel derived from Manzano Mountains sources (Pleistocene) # Tim - Mafic dike rocks (Tertiary) Pa Pyt Torres Member (Lower Permian (Leonardian)) Folds Qgc Gravel derived from Chupadera Mesa sources (Pleistocene) Madera Group Quarai anticline, approximate M Qls Landslide deposits (Pleistocene) Pb Bursum Formation (Lower Permian) Qa syncline, approximate Qca Colluvium and alluvium, undivided (middle to upper Pleistocene) Sites of SalinasSites Pueblo of Missions Salinas National Monument Pueblo Missions National Monument Qgm O PNm5 Wild Cow Formation, middle and upper part of La Casa Member (Upper Pennsylvanian (Virgilian)) Pu Faults: Dashed where approximate, dotted
    [Show full text]
  • The Late Miocene Campo Coy Gypsum (Eastern Betics, Spain)
    GEOGACETA, 67, 2020 The late Miocene Campo Coy gypsum (Eastern Betics, Spain) Los yesos del Mioceno superior de Campo Coy (Cordillera Bética oriental, España) David Artiaga1, Javier García-Veigas1, Luis Gibert2 and Jesús M. Soria3 1 CCiTUB Scientific and Technological Centers, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected]; [email protected]. 2 Departament de Mineralogia, Petrologia i Geologia Aplicada, Universitat de Barcelona, 08028 Barcelona, Spain; ; [email protected]. 3 Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Apdo. Correos 99, 03080 Alicante, Spain. [email protected]. ABSTRACT RESUMEN The Campo Coy basin contains an important evaporite suc- La cuenca de Campo Coy registra una sucesión evaporítica de cession, up to 350 meters thick of gypsum, including two gypsum más de 350 metros de potencia de yeso, dividida en dos unidades units: lower and upper gypsum units. These are characterized by de yesos: unidad inferior y unidad superior. Estas unidades están fine-grain laminated and selenitic primary gypsums and by nodu- formadas por litofacies de yeso primario laminado y yeso selenítico lar-laminated and meganodular secondary gypsums. The geoche- junto con litofacies de yeso secundario laminado-nodular y mega- mical study based on sulfate isotope compositions (δ34S and δ18O) nodular. El estudio geoquímico de la composición isotópica del sul- and strontium isotope ratios (87Sr/86Sr) point to the chemical recy- fato (δ34S y δ18O) y de la relación isotópica del estroncio (87Sr/86Sr) cling of Triassic marine evaporites. Isotope compositions (δ18O and muestra valores indicativos del reciclaje de evaporitas marinas triá- δD) of the hydration water of gypsum point to continental waters sicas.
    [Show full text]
  • Stratigraphy of the Sorachi and Yezo Groups in the Furano-Ashibetsu Area, Hokkaido, Japan: Another Oceanic Plate in the NW Pacific
    MIS20-P02 Japan Geoscience Union Meeting 2018 Stratigraphy of the Sorachi and Yezo groups in the Furano-Ashibetsu area, Hokkaido, Japan: Another oceanic plate in the NW Pacific. *Ryusei KOTA1, Hayato Ueda1 1. Niigata University The Sorachi - Yezo Belt in central Hokkaido consists of the Jurassic - Lower Cretaceous Sorachi Group and the Cretaceous Yezo Group. The lower part of the Sorachi Group consists of basalt lavas. The upper part consists mainly of siliceous and tuffaceous mudstones partly with intercalation of basalt and volcaniclastics . The Yezo Group conformably overlies the Sorachi Group and is composed of sandstone and mudstone. Various models have been proposed for the origin of the Sorachi Group, based mainly on petrology of the lower part lavas, and agreement has not yet been obtained. It is difficult to specify the tectonic setting for the lower Sorachi Group only by igneous petrology. Therefore, in this study, we focus on stratigraphy and clastic composition of sediments (the upper Sorachi Group to the lower Yezo Group) overlying the basalt. We divided the Sorachi Group of the Furano-Ashibetsu area into five lithostratigraphic units (S1: basalt lava, S2a: volcanic conglomerate, S2b: volcaniclastic sandstone with mudstone, S2c: siliceous mudstone with tuff, and S2d: siliceous tuffaceous mudstone with basalts), The lower Yezo Group are divided into two units (Ly1: sandy and Ly2: muddy turbidites, respectively). [HU1] S1b is assigned to Tithonian - Berriasian by radiolarians. Zircon U-Pb ages suggest that a S2b sandstone is Valanginian or younger, a S2d tuff bed is Barremian, and a Ly 1 sandstones is latest Barremian –earliest Aptian or younger.
    [Show full text]