13 Version of Attached Le: Accepted Version Peer-Review Status of Attached Le: Peer-Reviewed Citation for Published Item: Taormina, A

Total Page:16

File Type:pdf, Size:1020Kb

13 Version of Attached Le: Accepted Version Peer-Review Status of Attached Le: Peer-Reviewed Citation for Published Item: Taormina, A Durham Research Online Deposited in DRO: 03 September 2013 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: Taormina, A. and Wendland, K. (2013) 'The overarching nite symmetry group of Kummer surfaces in the Mathieu group M24.', Journal of high energy physics., 2013 (08). p. 125. Further information on publisher's website: http://dx.doi.org/10.1007/JHEP08(2013)125 Publisher's copyright statement: c SISSA 2013. Published by Springer on behalf of International School for Advanced Studies (SISSA - Trieste, Italy). The nal publication is available at Springer via http://dx.doi.org/10.1007/JHEP08(2013)125. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full DRO policy for further details. Durham University Library, Stockton Road, Durham DH1 3LY, United Kingdom Tel : +44 (0)191 334 3042 | Fax : +44 (0)191 334 2971 https://dro.dur.ac.uk The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24 (Version published in Journal of High Energy Physics (2013) 10.1007/JHEP08(2013)125) Anne Taormina∗ and Katrin Wendlandy ∗Centre for Particle Theory & Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K. yMathematics Institute, Albert-Ludwigs-Universit¨atFreiburg, Eckerstraße 1, Freiburg im Breisgau, D-79104, Germany. Abstract In view of a potential interpretation of the role of the Mathieu group M24 in the con- text of strings compactified on K3 surfaces, we develop techniques to combine groups of symmetries from different K3 surfaces to larger `overarching' symmetry groups. We con- struct a bijection between the full integral homology lattice of K3 and the Niemeier lattice 24 of type A1 , which is simultaneously compatible with the finite symplectic automorphism groups of all Kummer surfaces lying on an appropriate path in moduli space connecting the square and the tetrahedral Kummer surfaces. The Niemeier lattice serves to express all these symplectic automorphisms as elements of the Mathieu group M24, generating the 4 `overarching finite symmetry group' (Z2) oA7 of Kummer surfaces. This group has order 40320, thus surpassing the size of the largest finite symplectic automorphism group of a K3 surface by orders of magnitude. For every Kummer surface this group contains the group of symplectic automorphisms leaving the K¨ahlerclass invariant which is induced from the underlying torus. Our results are in line with the existence proofs of Mukai and Kondo, that finite groups of symplectic automorphisms of K3 are subgroups of one of eleven subgroups of M23, and we extend their techniques of lattice embeddings for all Kummer surfaces with K¨ahlerclass induced from the underlying torus. 1 Introduction M24 is the largest in a family of five sporadic groups - amongst the 26 appearing in the classification of finite simple groups - that has rekindled interest in the mathematical physics community following an intriguing remark published by Eguchi, Ooguri and Tachikawa [1]. This remark stems from an expression for the elliptic genus of a K3 surface that uses knowledge of 2-dimensional N = 4 superconformal field theory and Witten's construction of elliptic genera [2, 3]. That the K3 elliptic genus, which is a weak Jacobi form of weight 0 and index 1, may be expanded in a linear combination of N = 4 superconformal characters is not surprising. Indeed in the context of superstring theory, it has long been established that compactification on a K3 surface, which is a hyperk¨ahlermanifold, yields a world-sheet theory that is invariant under N = 4 superconformal transformations. The K3 elliptic genus may be ∗[email protected] [email protected] 1 calculated as a specialisation of the corresponding partition function, which is a sesquilinear expression in the N = 4 characters [4]. What is surprising and remains to be fully understood, is that the coefficients of the non-BPS N = 4 characters in the elliptic genus decomposition coincide with the dimensions of some irreducible and reducible representations of the sporadic group M24. Actually, on the basis of the information encoded in the K3 elliptic genus alone, the dimensions could be those of representations of the Mathieu group M23, the stabilizer in M24 of an element in the set I = f1; 2; :::; 24g, when viewing M24 as the group of permutations of 24 elements preserving the extended binary Golay code G24. It turns out that this Mathieu group information is encoded in the K3 elliptic genus in the form of a weakly holomorphic mock modular form 1 of weight 2 on SL(2; Z), suggesting the existence of a \Mathieu Moonshine" phenomenon [5, 7, 6, 8]. Yet, an interpretation of the appearance of M24 as a symmetry group within a theory of strings compactified on K3 is lacking. One difficulty is that the M24 sporadic group does not act in a conventional way on the string states. Rather, the symmetry manifests itself when a specific subset of BPS states is considered. Another particularity is that by nature, the elliptic genus is an invariant on each irreducible component of the moduli space of N = (2; 2) superconformal field theories. The moduli space of superconformal theories on K3 is such an irreducible component. Hence, the M24-information the elliptic genus carries is unaltered when surfing the K3 moduli space between generic points and isolated points with enhanced symmetry, of which Gepner models are the main examples. This suggests that M24, in a sense yet to be uncovered, `overarches' the symmetries associated with all superconformal field theories in the K3 moduli space. Although we have, at this stage, little new to say regarding the interpretation of an M24-action within the framework of strings compactified on K3 surfaces, we show here how an overar- ching symmetry, smaller than M24, emerges when considering the finite groups of symplectic automorphisms of all K3 surfaces of a particular type. Namely, we consider symmetry groups of Kummer surfaces, by which we mean the groups of those symplectic automorphisms that preserve the K¨ahlerclass induced by that of the underlying complex torus. The results pre- sented in this work should be regarded as an attempt to set the scene for further investigations pinning down an `overarching' M24-action as alluded to above. We revisit the results obtained by Mukai in [9], stating that any finite group of symplectic automorphisms of a K3 surface is isomorphic to a subgroup of the Mathieu group M23 which has at least 5 orbits on the set I of 24 elements. We develop a technique which allows to combine the symmetry groups of 4 several different Kummer surfaces. With this technique, we obtain the group (Z2) o A7 of 7 2 order 2 ·3 ·5·7 = 40320, which is a maximal subgroup of M23. This group contains as proper subgroups all symplectic automorphism groups of Kummer surfaces preserving the induced K¨ahlerclass. In this sense, we find an `overarching' symmetry group of all Kummer surfaces. In [10], Kondo rederives Mukai's result, using ingenious lattice techniques. The framework 24 we set up here is in this spirit. We use the Niemeier lattice of type A1 , denoted N hereafter, as a device which for all Kummer surfaces encodes the action of the symmetry groups as au- tomorphisms of the extended binary Golay code, represented by permutations on 24 elements belonging to M24. This encoding is linked to the construction of a bijection θ between the full integral homology lattice H∗(X; Z) of a Kummer surface X and the negative definite version of the Niemeier lattice N, denoted N(−1). Here, the lattice H∗(X; Z) is identified with the standard unimodular lattice of the appropriate signature by an isometry which is induced by the Kummer construction and thus is naturally fixed and compatible with all Kummer surfaces. Although in general, the bijection θ between H∗(X; Z) and N(−1) depends on the complex structure and K¨ahlerclass of the Kummer surface considered, we are able to con- struct a unique bijection Θ, up to a few choices of signs, which for two specific Kummer 2 surfaces denoted X0 and XD4 yields an action of their distinct symmetry groups, T64 and T192 respectively, on the same Niemeier lattice N. Moreover, Θ is compatible with the generic ∼ 4 symmetry group Gt = (Z2) of Kummer surfaces. In fact, we argue that we are naturally working in a smooth connected cover Mfhk of the moduli space of hyperk¨ahlerstructures on K3. Namely, the symplectic automorphism group of a K3 surface which preserves a given K¨ahlerclass solely depends on the hyperk¨ahlerstructure determined by the invariant complex structure and K¨ahlerclass. The choice of an isometric identification of H∗(X; Z) with a fixed standard lattice amounts to the transition to the smooth connected cover Mfhk of the moduli space. We show that our bijection Θ is compatible with the symmetry group of all K3 sur- faces along a particular path which connects X0 and XD4 in Mfhk. Indeed, there exists such a path consisting of Kummer surfaces, all of whose symmetry groups away from beginning ∼ 4 and end of the path restrict to the generic one, Gt = (Z2) .
Recommended publications
  • Classification of Positive Definite Lattices. 22 Feb 2000 Richard E
    Classification of positive definite lattices. 22 Feb 2000 Richard E. Borcherds, ∗ Mathematics department, Evans Hall #3840, University of California at Berkeley, CA 94720-3840 U.S.A. e-mail: [email protected] www home page www.math.berkeley.edu/˜reb Contents. 1. An algorithm for classifying vectors in some Lorentzian lattices. 2. Vectors in the lattice II1,25. 3. Lattices with no roots. Table 0: Primitive norm 0 vectors in II1,25. Table 1: Norm 2 vectors in II1,25. Table 2: Norm 4 vectors in II1,25. 1. Classification of positive norm vectors. In this paper we describe an algorithm for classifying orbits of vectors in Lorentzian lattices. The main point of this is that isomorphism classes of positive definite lattices in some genus often correspond to orbits of vectors in some Lorentzian lattice, so we can classify some positive definite lattices. Section 1 gives an overview of this algorithm, and in section 2 we describe this algorithm more precisely for the case of II1,25, and as an application we give the classification of the 665 25-dimensional unimodular positive definite lattices and the 121 even 25 dimensional positive definite lattices of determinant 2 (see tables 1 and 2). In section 3 we use this algorithm to show that there is a unique 26 dimensional unimodular positive definite lattice with no roots. Most of the results of this paper are taken from the unpublished manuscript [B], which contains more details and examples. For general facts about lattices used in this paper see [C-S], especially chapters 15–18 and 23–28.
    [Show full text]
  • Automorphism Groups of the Holomorphic Vertex Operator
    AUTOMORPHISM GROUPS OF THE HOLOMORPHIC VERTEX OPERATOR ALGEBRAS ASSOCIATED WITH NIEMEIER LATTICES AND THE 1-ISOMETRIES − HIROKI SHIMAKURA Abstract. In this article, we determine the automorphism groups of 14 holomorphic vertex operator algebras of central charge 24 obtained by applying the Z2-orbifold con- struction to the Niemeier lattice vertex operator algebras and lifts of the 1-isometries. − 1. Introduction Recently, (strongly regular) holomorphic vertex operator algebras (VOAs) of central charge 24 with non-zero weight one spaces are classified; there exist exactly 70 such VOAs (up to isomorphism) and they are uniquely determined by the Lie algebra structures on the weight one spaces. The remaining case is the famous conjecture in [FLM88]: a (strongly regular) holomorphic VOA of central charge 24 is isomorphic to the moonshine VOA if the weight one space is zero. The determination of the automorphism groups of vertex operator algebras is one of fundamental problems in VOA theory; it is natural to ask what the automorphism groups of holomorphic VOAs of central charge 24 are. For example, the automorphism group of the moonshine VOA is the Monster ([FLM88]) and those of Niemeier lattice VOAs were determined in [DN99]. However, the other cases have not been determined yet. The purpose of this article is to determine the automorphism group of the holomorphic orb(θ) VOA VN of central charge 24 obtained in [DGM96] by applying the Z2-orbifold con- arXiv:1811.05119v1 [math.QA] 13 Nov 2018 struction to the lattice VOA VN associated with a Niemeier lattice N and a lift θ of the orb(θ) 1-isometry of N.
    [Show full text]
  • The Moonshine Module for Conway's Group
    Forum of Mathematics, Sigma (2015), Vol. 3, e10, 52 pages 1 doi:10.1017/fms.2015.7 THE MOONSHINE MODULE FOR CONWAY’S GROUP JOHN F. R. DUNCAN and SANDER MACK-CRANE Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA; email: [email protected], [email protected] Received 26 September 2014; accepted 30 April 2015 Abstract We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise. 2010 Mathematics Subject Classification: 11F11, 11F22, 17B69, 20C34 1. Introduction Taking the upper half-plane H τ C (τ/ > 0 , together with the Poincare´ 2 2 2 2 VD f 2 j = g metric ds y− .dx dy /, we obtain the Poincare´ half-plane model of the D C hyperbolic plane.
    [Show full text]
  • String Theory Moonshine
    Strings 2014, Princeton Umbral Moonshine and String Theory Miranda Cheng University of Amsterdam* *: on leave from CNRS, France. A Myseros Story Abot Strings on K3 Finite Moonshine Modular Groups Objects symmetries of interesting objects functions with special symmetries K3 Sigma-Model 2d sigma models: use strings to probe the geometry. M = K3 Σ N=(4,4) superconformal Elliptic Genus of 2d SCFT In a 2d N>=(2,2) SCFT, susy states are counted by the elliptic genus: q = e2⇡i⌧ ,y = e2⇡iz • holomorphic [Schellekens–Warner, Witten ’87] • modular SL(2,Z) •topological EG = EG ⇣ ⌘ ⇣ ⌘ K3 Sigma-Model 2d sigma model on K3 is a N=(4,4) SCFT. ⇒ The spectrum fall into irred. representations of the N=4 SCA. 4 2 J +J¯ J L c/24 L c/24 ✓i(⌧,z) EG(⌧,z; K3) = Tr ( 1) 0 0 y 0 q 0− q¯ 0− =8 HRR − ✓ (⌧, 0) i=2 i ⇣ ⌘ X ✓ ◆ = 24 massless multiplets + tower of massive multiplets 1 2 ✓ (⌧,z) 1/8 2 3 = 1 24 µ(⌧,z)+2 q− ( 1 + 45 q + 231 q + 770 q + ...) ⌘3(⌧) − “Appell–Lerch⇣ sum” numbers of massive N=4 multiplets ⌘ also dimensions of irreps of M24, ! an interesting finite group with ~108 elements [Eguchi–Ooguri–Tachikawa ’10] Why EG(K3) ⟷ M24? Q: Is there a K3 surface M whose symmetry (that preserves the hyperKähler structure) is M24? [Mukai ’88, Kondo ’98] No! M24 elements symmetries of M2 symmetries of M1 Q: Is there a K3 sigma model whose symmetry is M24? [Gaberdiel–Hohenegger–Volpato ’11] No! M24 elements possible symmetries of K3 sigma models 3.
    [Show full text]
  • Quadratic Forms and Their Applications
    Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999.
    [Show full text]
  • Arxiv:1403.3712V6 [Math.NT] 18 Aug 2015 the Q1 Coefficient of J(Τ), Can Be Expressed As a Linear Combination of Dimensions of Irreducible
    CLASSICAL AND UMBRAL MOONSHINE: CONNECTIONS AND p-ADIC PROPERTIES KEN ONO, LARRY ROLEN, SARAH TREBAT-LEDER Abstract. The classical theory of monstrous moonshine describes the unexpected connection between the representation theory of the monster group M, the largest of the sporadic simple groups, and certain modular functions, called Hauptmoduln. In particular, the n-th Fourier coefficient of Klein’s j-function is the dimension of the grade n part of a special infinite dimen- sional representation V \ of the monster group. More generally the coefficients of Hauptmoduln \ are graded traces Tg of g 2 M acting on V . Similar phenomena have been shown to hold for the Mathieu group M24, but instead of modular functions, mock modular forms must be used. This has been conjecturally generalized even further, to umbral moonshine, which associates to each of the 23 Niemeier lattices a finite group, infinite dimensional representation, and mock modular form. We use generalized Borcherds products to relate monstrous moonshine and umbral moon- shine. Namely, we use mock modular forms from umbral moonshine to construct via generalized Borcherds products rational functions of the Hauptmoduln Tg from monstrous moonshine. This allows us to associate to each pure A-type Niemeier lattice a conjugacy class g of the monster group, and gives rise to identities relating dimensions of representations from umbral moonshine to values of Tg. We also show that the logarithmic derivatives of the Borcherds products are p-adic modular forms for certain primes p and describe some of the resulting properties of their coefficients modulo p. 1. Introduction Monstrous moonshine begins with the surprising connection between the coefficients of the modular function P1 P 3 n 3 (1 + 240 d q ) 1 J(τ) := j(τ) − 744 = n=1 djn − 744 = + 196884q + 21493760q2 + ::: Q1 n 24 q n=1(1 − q ) q and the representation theory of the monster group M, which is the largest of the simple sporadic groups.
    [Show full text]
  • 18 Jul 2017 K3 String Theory, Lattices and Moonshine
    K3 String Theory, Lattices and Moonshine Miranda C. N. Cheng∗1,2, Sarah M. Harrison†3, Roberto Volpato‡4,5,6, and Max Zimet§5 1Korteweg-de Vries Institute for Mathematics, Amsterdam, the Netherlands 2Institute of Physics, University of Amsterdam, Amsterdam, the Netherlands 3Center for the Fundamental Laws of Nature, Harvard University, Cambridge, MA 02138, USA 4Dipartimento di Fisica e Astronomia ‘Galileo Galilei’ e INFN sez. di Padova Via Marzolo 8, 35131 Padova (Italy) 5Stanford Institute for Theoretical Physics, Department of Physics Stanford University, Stanford, CA 94305, USA 6Theory Group, SLAC, Menlo Park, CA 94309, USA Abstract In this paper we address the following two closely related questions. First, we complete the classification of finite symmetry groups of type IIA string theory on K3 × R6, where Niemeier lattices play an important role. This extends earlier results by including points in the moduli space with enhanced gauge symmetries in spacetime, or, equivalently, where the world-sheet CFT becomes singular. After classifying the symmetries as abstract groups, we study how they act on the BPS states of the theory. In particular, we classify the conjugacy classes in the T-duality group O+(Γ4,20) which represent physically distinct symmetries. Subsequently, we make two conjectures regarding the connection between the corresponding twining genera of K3 CFTs and Conway and umbral moonshine, building upon earlier work on the relation between moonshine and the K3 elliptic genus. ∗[email protected] (On leave from CNRS, France.) † arXiv:1612.04404v2 [hep-th] 18 Jul 2017 [email protected][email protected] §[email protected] 1 Contents 1 Introduction 3 2 Symmetries 6 2.1 TheModuliSpace ...........................
    [Show full text]
  • Octonions and the Leech Lattice
    Journal of Algebra 322 (2009) 2186–2190 Contents lists available at ScienceDirect Journal of Algebra www.elsevier.com/locate/jalgebra Octonions and the Leech lattice Robert A. Wilson School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, United Kingdom article info abstract Article history: We give a new, elementary, description of the Leech lattice in Received 18 December 2008 terms of octonions, thereby providing the first real explanation Availableonline27March2009 of the fact that the number of minimal vectors, 196560, can be Communicated by Gernot Stroth expressed in the form 3 × 240 × (1 + 16 + 16 × 16).Wealsogive an easy proof that it is an even self-dual lattice. Keywords: © Octonions 2009 Elsevier Inc. All rights reserved. Leech lattice Conway group 1. Introduction The Leech lattice occupies a special place in mathematics. It is the unique 24-dimensional even self-dual lattice with no vectors of norm 2, and defines the unique densest lattice packing of spheres in 24 dimensions. Its automorphism group is very large, and is the double cover of Conway’s group Co1 [2], one of the most important of the 26 sporadic simple groups. This group plays a crucial role in the construction of the Monster [14,4], which is the largest of the sporadic simple groups, and has connections with modular forms (so-called ‘Monstrous Moonshine’) and many other areas, including theoretical physics. The book by Conway and Sloane [5] is a good introduction to this lattice and its many applications. It is not surprising therefore that there is a huge literature on the Leech lattice, not just within mathematics but in the physics literature too.
    [Show full text]
  • THERE IS NO Sz(8) in the MONSTER 1. Introduction The
    THERE IS NO Sz(8) IN THE MONSTER ROBERT A. WILSON Abstract. As a contribution to an eventual solution of the problem of the determination of the maximal subgroups of the Monster we show that there is no subgroup isomorphic to Sz(8). This also completes the determination of exactly which simple groups are subgroups of which of the 26 sporadic simple groups. The proof is largely, though not entirely, computer-free. 1. Introduction The Fischer{Griess Monster group M is the largest of the 26 sporadic simple groups, and was first constructed by Griess [6] in 1982. A simplified construction along the same general lines was given by Conway [2]. One of the major problems in group theory today is that of classifying the max- imal subgroups of the finite simple groups and their automorphism groups (see, for example, [1]). Much work has been done over many years attempting to determine the maximal subgroups of M, but it is still the only sporadic group whose maximal subgroups are not completely classified (see [23] and references therein). The maximal p-local subgroups of the Monster were classified in [22, 15, 16], and much theoretical work on non-local subgroups was accomplished in [17, 18]. Following successful computer constructions of the Monster [14, 8] other techniques became available, and further progress was made [9, 11, 7, 19, 26, 27], including discovery of five previously unknown maximal subgroups, isomorphic to PSL2(71), PSL2(59), PSL2(41), PGL2(29), PGL2(19). The cases left open by this previous work are possible maximal subgroups with socle isomorphic to one of the following simple groups: PSL2(8); PSL2(13); PSL2(16); PSU3(4); PSU3(8); Sz(8): Of these, PSL2(8) and PSL2(16) have been classified in unpublished work of P.
    [Show full text]
  • The Characteristic Masses of Niemeier Lattices Gaetan Chenevier
    The characteristic masses of Niemeier lattices Gaetan Chenevier To cite this version: Gaetan Chenevier. The characteristic masses of Niemeier lattices. Journal de Théorie des Nombres de Bordeaux, Société Arithmétique de Bordeaux, In press. hal-02915029 HAL Id: hal-02915029 https://hal.archives-ouvertes.fr/hal-02915029 Submitted on 13 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The characteristic masses of Niemeier lattices Gaëtan Chenevier∗ April 27, 2020 Abstract n Let L be an integral lattice in the Euclidean space R and W an n irreducible representation of the orthogonal group of R . We give an implemented algorithm computing the dimension of the subspace of invariants in W under the isometry group O(L) of L. A key step is the determination of the number of elements in O(L) having any given characteristic polynomial, a datum that we call the characteristic masses of L. As an application, we determine the characteristic masses of all the Niemeier lattices, and more generally of any even lattice of determinant ≤ 2 in dimension n ≤ 25. For Niemeier lattices, as a verification, we provide an alternative (human) computation of the characteristic masses.
    [Show full text]
  • Sporadic and Exceptional
    Sporadic and Exceptional Yang-Hui He1 & John McKay2 1 Department of Mathematics, City University, London, EC1V 0HB, UK and Merton College, University of Oxford, OX14JD, UK and School of Physics, NanKai University, Tianjin, 300071, P.R. China [email protected] 2 Department of Mathematics and Statistics, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec, H3G 1M8, Canada [email protected] Abstract We study the web of correspondences linking the exceptional Lie algebras E8;7;6 and the sporadic simple groups Monster, Baby and the largest Fischer group. This is done via the investigation of classical enumerative problems on del Pezzo surfaces in relation to the cusps of certain subgroups of P SL(2; R) for the relevant McKay- Thompson series in Generalized Moonshine. We also study Conway's sporadic group, as well as its association with the Horrocks-Mumford bundle. arXiv:1505.06742v1 [math.AG] 25 May 2015 1 Contents 1 Introduction and Summary 3 2 Rudiments and Nomenclature 5 2.1 P SL(2; Z) and P SL(2; R)............................6 2.2 The Monster . 11 2.2.1 Monstrous Moonshine . 14 2.3 Exceptional Affine Lie Algebras . 15 2.4 Classical Enumerative Geometry . 18 3 Correspondences 20 3.1 Desire for Adjacency . 21 3.1.1 Initial Observation on M and Ec8 .................... 21 3.1.2 The Baby and Ec7 ............................. 22 3.1.3 Fischer and Ec6 .............................. 22 3.2 Cusp Numbers . 23 3.2.1 Cusp Character . 24 3.3 The Baby and E7 again . 28 3.4 Fischer's Group . 30 3.5 Conway's Group .
    [Show full text]
  • Arxiv:1211.5531V2 [Math.RT] 15 Mar 2013 Much Ado About Mathieu
    Much ado about Mathieu Terry Gannon Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1 e-mail: [email protected] March 18, 2013 Abstract Eguchi, Ooguri and Tachikawa have observed that the elliptic genus of type II string theory on K3 surfaces appears to possess a Moonshine for the largest Mathieu group. Subsequent work by several people established a candidate for the elliptic genus twisted by each element of M24. In this paper we prove that the resulting sequence of class functions are true characters of M24, proving the Eguchi-Ooguri-Tachikawa conjecture. The integrality of multiplicities is proved using a small generalisation of Sturm’s Theorem, while positivity in- volves a modification of a method of Hooley. We also prove the evenness prop- erty of the multiplicities, as conjectured by several authors. We also identify the role group cohomology plays in both K3-Mathieu Moonshine and Mon- strous Moonshine; in particular this gives a cohomological interpretation for the non-Fricke elements in Norton’s Generalised Monstrous Moonshine con- jecture. We investigate the proposal of Gaberdiel-Hohenegger-Volpato that K3-Mathieu Moonshine lifts to the Conway group Co1. Contents arXiv:1211.5531v2 [math.RT] 15 Mar 2013 1 Introduction 2 2 K3-Mathieu Moonshine: Review 5 3 Weak K3-Mathieu Moonshine I: Integrality 11 4 Weak Mathieu Moonshine II: Positivity 17 5 Is the Conway group the stringy symmetry? 30 6 Speculations 33 References 37 1 1 Introduction The elliptic genus (a.k.a. partition function) of a nonlinear sigma model with K3 target space is a very special function.
    [Show full text]