Finite Simple Groups and Localization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Alternative Existence Proof of the Geometry of Ivanov–Shpectorov for O'nan's Sporadic Group
Innovations in Incidence Geometry Volume 15 (2017), Pages 73–121 ISSN 1781-6475 An alternative existence proof of the geometry of Ivanov–Shpectorov for O’Nan’s sporadic group Francis Buekenhout Thomas Connor In honor of J. A. Thas’s 70th birthday Abstract We provide an existence proof of the Ivanov–Shpectorov rank 5 diagram geometry together with its boolean lattice of parabolic subgroups and es- tablish the structure of hyperlines. Keywords: incidence geometry, diagram geometry, Buekenhout diagrams, O’Nan’s spo- radic group MSC 2010: 51E24, 20D08, 20B99 1 Introduction We start essentially but not exclusively from: • Leemans [26] giving the complete partially ordered set ΛO′N of conjugacy classes of subgroups of the O’Nan group O′N. This includes 581 classes and provides a structure name common for all subgroups in a given class; • the Ivanov–Shpectorov [24] rank 5 diagram geometry for the group O′N, especially its diagram ∆ as in Figure 1; ′ • the rank 3 diagram geometry ΓCo for O N due to Connor [15]; • detailed data on the diagram geometries for the groups M11 and J1 [13, 6, 27]. 74 F. Buekenhout • T. Connor 4 1 5 0 1 3 P h 1 1 1 2 Figure 1: The diagram ∆IvSh of the geometry ΓIvSh Our results are the following: • we get the Connor geometry ΓCo as a truncation of the Ivanov–Shpectorov geometry ΓIvSh (see Theorem 7.1); • using the paper of Ivanov and Shpectorov [24], we establish the full struc- ture of the boolean lattice LIvSh of their geometry as in Figure 17 (See Section 8); • conversely, within ΛO′N we prove the existence and uniqueness up to fu- ′ sion in Aut(O N) of a boolean lattice isomorphic to LIvSh. -
The Book of Abstracts
1st Joint Meeting of the American Mathematical Society and the New Zealand Mathematical Society Victoria University of Wellington Wellington, New Zealand December 12{15, 2007 American Mathematical Society New Zealand Mathematical Society Contents Timetables viii Plenary Addresses . viii Special Sessions ............................. ix Computability Theory . ix Dynamical Systems and Ergodic Theory . x Dynamics and Control of Systems: Theory and Applications to Biomedicine . xi Geometric Numerical Integration . xiii Group Theory, Actions, and Computation . xiv History and Philosophy of Mathematics . xv Hopf Algebras and Quantum Groups . xvi Infinite Dimensional Groups and Their Actions . xvii Integrability of Continuous and Discrete Evolution Systems . xvii Matroids, Graphs, and Complexity . xviii New Trends in Spectral Analysis and PDE . xix Quantum Topology . xx Special Functions and Orthogonal Polynomials . xx University Mathematics Education . xxii Water-Wave Scattering, Focusing on Wave-Ice Interactions . xxiii General Contributions . xxiv Plenary Addresses 1 Marston Conder . 1 Rod Downey . 1 Michael Freedman . 1 Bruce Kleiner . 2 Gaven Martin . 2 Assaf Naor . 3 Theodore A Slaman . 3 Matt Visser . 4 Computability Theory 5 George Barmpalias . 5 Paul Brodhead . 5 Cristian S Calude . 5 Douglas Cenzer . 6 Chi Tat Chong . 6 Barbara F Csima . 6 QiFeng ................................... 6 Johanna Franklin . 7 Noam Greenberg . 7 Denis R Hirschfeldt . 7 Carl G Jockusch Jr . 8 Bakhadyr Khoussainov . 8 Bj¨ornKjos-Hanssen . 8 Antonio Montalban . 9 Ng, Keng Meng . 9 Andre Nies . 9 i Jan Reimann . 10 Ludwig Staiger . 10 Frank Stephan . 10 Hugh Woodin . 11 Guohua Wu . 11 Dynamical Systems and Ergodic Theory 12 Boris Baeumer . 12 Mathias Beiglb¨ock . 12 Arno Berger . 12 Keith Burns . 13 Dmitry Dolgopyat . 13 Anthony Dooley . -
12.6 Further Topics on Simple Groups 387 12.6 Further Topics on Simple Groups
12.6 Further Topics on Simple groups 387 12.6 Further Topics on Simple Groups This Web Section has three parts (a), (b) and (c). Part (a) gives a brief descriptions of the 56 (isomorphism classes of) simple groups of order less than 106, part (b) provides a second proof of the simplicity of the linear groups Ln(q), and part (c) discusses an ingenious method for constructing a version of the Steiner system S(5, 6, 12) from which several versions of S(4, 5, 11), the system for M11, can be computed. 12.6(a) Simple Groups of Order less than 106 The table below and the notes on the following five pages lists the basic facts concerning the non-Abelian simple groups of order less than 106. Further details are given in the Atlas (1985), note that some of the most interesting and important groups, for example the Mathieu group M24, have orders in excess of 108 and in many cases considerably more. Simple Order Prime Schur Outer Min Simple Order Prime Schur Outer Min group factor multi. auto. simple or group factor multi. auto. simple or count group group N-group count group group N-group ? A5 60 4 C2 C2 m-s L2(73) 194472 7 C2 C2 m-s ? 2 A6 360 6 C6 C2 N-g L2(79) 246480 8 C2 C2 N-g A7 2520 7 C6 C2 N-g L2(64) 262080 11 hei C6 N-g ? A8 20160 10 C2 C2 - L2(81) 265680 10 C2 C2 × C4 N-g A9 181440 12 C2 C2 - L2(83) 285852 6 C2 C2 m-s ? L2(4) 60 4 C2 C2 m-s L2(89) 352440 8 C2 C2 N-g ? L2(5) 60 4 C2 C2 m-s L2(97) 456288 9 C2 C2 m-s ? L2(7) 168 5 C2 C2 m-s L2(101) 515100 7 C2 C2 N-g ? 2 L2(9) 360 6 C6 C2 N-g L2(103) 546312 7 C2 C2 m-s L2(8) 504 6 C2 C3 m-s -
Bogomolov F., Tschinkel Yu. (Eds.) Geometric Methods in Algebra And
Progress in Mathematics Volume 235 Series Editors Hyman Bass Joseph Oesterle´ Alan Weinstein Geometric Methods in Algebra and Number Theory Fedor Bogomolov Yuri Tschinkel Editors Birkhauser¨ Boston • Basel • Berlin Fedor Bogomolov Yuri Tschinkel New York University Princeton University Department of Mathematics Department of Mathematics Courant Institute of Mathematical Sciences Princeton, NJ 08544 New York, NY 10012 U.S.A. U.S.A. AMS Subject Classifications: 11G18, 11G35, 11G50, 11F85, 14G05, 14G20, 14G35, 14G40, 14L30, 14M15, 14M17, 20G05, 20G35 Library of Congress Cataloging-in-Publication Data Geometric methods in algebra and number theory / Fedor Bogomolov, Yuri Tschinkel, editors. p. cm. – (Progress in mathematics ; v. 235) Includes bibliographical references. ISBN 0-8176-4349-4 (acid-free paper) 1. Algebra. 2. Geometry, Algebraic. 3. Number theory. I. Bogomolov, Fedor, 1946- II. Tschinkel, Yuri. III. Progress in mathematics (Boston, Mass.); v. 235. QA155.G47 2004 512–dc22 2004059470 ISBN 0-8176-4349-4 Printed on acid-free paper. c 2005 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Springer Science+Business Media Inc., Rights and Permissions, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter de- veloped is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. -
Near Polygons and Fischer Spaces
Near polygons and Fischer spaces Citation for published version (APA): Brouwer, A. E., Cohen, A. M., Hall, J. I., & Wilbrink, H. A. (1994). Near polygons and Fischer spaces. Geometriae Dedicata, 49(3), 349-368. https://doi.org/10.1007/BF01264034 DOI: 10.1007/BF01264034 Document status and date: Published: 01/01/1994 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Title: Algebraic Group Representations, and Related Topics a Lecture by Len Scott, Mcconnell/Bernard Professor of Mathemtics, the University of Virginia
Title: Algebraic group representations, and related topics a lecture by Len Scott, McConnell/Bernard Professor of Mathemtics, The University of Virginia. Abstract: This lecture will survey the theory of algebraic group representations in positive characteristic, with some attention to its historical development, and its relationship to the theory of finite group representations. Other topics of a Lie-theoretic nature will also be discussed in this context, including at least brief mention of characteristic 0 infinite dimensional Lie algebra representations in both the classical and affine cases, quantum groups, perverse sheaves, and rings of differential operators. Much of the focus will be on irreducible representations, but some attention will be given to other classes of indecomposable representations, and there will be some discussion of homological issues, as time permits. CHAPTER VI Linear Algebraic Groups in the 20th Century The interest in linear algebraic groups was revived in the 1940s by C. Chevalley and E. Kolchin. The most salient features of their contributions are outlined in Chapter VII and VIII. Even though they are put there to suit the broader context, I shall as a rule refer to those chapters, rather than repeat their contents. Some of it will be recalled, however, mainly to round out a narrative which will also take into account, more than there, the work of other authors. §1. Linear algebraic groups in characteristic zero. Replicas 1.1. As we saw in Chapter V, §4, Ludwig Maurer thoroughly analyzed the properties of the Lie algebra of a complex linear algebraic group. This was Cheval ey's starting point. -
The Moonshine Module for Conway's Group
Forum of Mathematics, Sigma (2015), Vol. 3, e10, 52 pages 1 doi:10.1017/fms.2015.7 THE MOONSHINE MODULE FOR CONWAY’S GROUP JOHN F. R. DUNCAN and SANDER MACK-CRANE Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106, USA; email: [email protected], [email protected] Received 26 September 2014; accepted 30 April 2015 Abstract We exhibit an action of Conway’s group – the automorphism group of the Leech lattice – on a distinguished super vertex operator algebra, and we prove that the associated graded trace functions are normalized principal moduli, all having vanishing constant terms in their Fourier expansion. Thus we construct the natural analogue of the Frenkel–Lepowsky–Meurman moonshine module for Conway’s group. The super vertex operator algebra we consider admits a natural characterization, in direct analogy with that conjectured to hold for the moonshine module vertex operator algebra. It also admits a unique canonically twisted module, and the action of the Conway group naturally extends. We prove a special case of generalized moonshine for the Conway group, by showing that the graded trace functions arising from its action on the canonically twisted module are constant in the case of Leech lattice automorphisms with fixed points, and are principal moduli for genus-zero groups otherwise. 2010 Mathematics Subject Classification: 11F11, 11F22, 17B69, 20C34 1. Introduction Taking the upper half-plane H τ C (τ/ > 0 , together with the Poincare´ 2 2 2 2 VD f 2 j = g metric ds y− .dx dy /, we obtain the Poincare´ half-plane model of the D C hyperbolic plane. -
The Mathieu Groups (Simple Sporadic Symmetries)
The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 1 / 15 The Mathieu Groups (Simple Sporadic Symmetries) Scott Harper (University of St Andrews) Tomorrow's Mathematicians Today 21st February 2015 Scott Harper The Mathieu Groups 21st February 2015 2 / 15 1 2 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the 4 3 symmetry group of the object. Symmetry group: D4 The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A symmetry is a structure preserving permutation of the underlying set. A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. ∼ h(1 2 3 4)i = C4 Subgroup fixing 1: h(2 4)i Symmetry 1 2 4 3 Symmetry group: D4 Scott Harper The Mathieu Groups 21st February 2015 3 / 15 A group acts faithfully on an object if it is isomorphic to a subgroup of the symmetry group of the object. The stabiliser of a point in a group G is Group of rotations: the subgroup of G which fixes x. -
Recent Progress in the Symmetric Generation of Groups, to Appear in the Proceedings of the Conference Groups St Andrews 2009 [28] B
RECENT PROGRESS IN THE SYMMETRIC GENERATION OF GROUPS BEN FAIRBAIRN Abstract. Many groups possess highly symmetric generating sets that are naturally endowed with an underlying combinatorial struc- ture. Such generating sets can prove to be extremely useful both theoretically in providing new existence proofs for groups and prac- tically by providing succinct means of representing group elements. We give a survey of results obtained in the study of these symmet- ric generating sets. In keeping with earlier surveys on this matter, we emphasize the sporadic simple groups. ADDENDUM: This is an updated version of a survey article orig- inally accepted for inclusion in the proceedings of the 2009 ‘Groups St Andrews’ conference [27]. Since [27] was accepted the author has become aware of other recent work in the subject that we incorporate to provide an updated version here (the most notable addition being the contents of Section 3.4). 1. Introduction This article is concerned with groups that are generated by highly symmetric subsets of their elements: that is to say by subsets of el- ements whose set normalizer within the group they generate acts on them by conjugation in a highly symmetric manner. Rather than inves- tigate the behaviour of known groups we turn this procedure around and ask what groups can be generated by a set of elements that pos- sesses a certain assigned set of symmetries. This enables constructions arXiv:1004.2272v2 [math.GR] 21 Apr 2010 by hand of a number of interesting groups, including many of the spo- radic simple groups. Much of the emphasis of the research project to date has been concerned with using these techniques to construct spo- radic simple groups, and this article will emphasize this important spe- cial case. -
Quadratic Forms and Their Applications
Quadratic Forms and Their Applications Proceedings of the Conference on Quadratic Forms and Their Applications July 5{9, 1999 University College Dublin Eva Bayer-Fluckiger David Lewis Andrew Ranicki Editors Published as Contemporary Mathematics 272, A.M.S. (2000) vii Contents Preface ix Conference lectures x Conference participants xii Conference photo xiv Galois cohomology of the classical groups Eva Bayer-Fluckiger 1 Symplectic lattices Anne-Marie Berge¶ 9 Universal quadratic forms and the ¯fteen theorem J.H. Conway 23 On the Conway-Schneeberger ¯fteen theorem Manjul Bhargava 27 On trace forms and the Burnside ring Martin Epkenhans 39 Equivariant Brauer groups A. FrohlichÄ and C.T.C. Wall 57 Isotropy of quadratic forms and ¯eld invariants Detlev W. Hoffmann 73 Quadratic forms with absolutely maximal splitting Oleg Izhboldin and Alexander Vishik 103 2-regularity and reversibility of quadratic mappings Alexey F. Izmailov 127 Quadratic forms in knot theory C. Kearton 135 Biography of Ernst Witt (1911{1991) Ina Kersten 155 viii Generic splitting towers and generic splitting preparation of quadratic forms Manfred Knebusch and Ulf Rehmann 173 Local densities of hermitian forms Maurice Mischler 201 Notes towards a constructive proof of Hilbert's theorem on ternary quartics Victoria Powers and Bruce Reznick 209 On the history of the algebraic theory of quadratic forms Winfried Scharlau 229 Local fundamental classes derived from higher K-groups: III Victor P. Snaith 261 Hilbert's theorem on positive ternary quartics Richard G. Swan 287 Quadratic forms and normal surface singularities C.T.C. Wall 293 ix Preface These are the proceedings of the conference on \Quadratic Forms And Their Applications" which was held at University College Dublin from 5th to 9th July, 1999. -
The Purpose of These Notes Is to Explain the Outer Automorphism Of
The Goal: The purpose of these notes is to explain the outer automorphism of the symmetric group S6 and its connection to the Steiner (5, 6, 12) design and the Mathieu group M12. In view of giving short proofs, we often appeal to a mixture of logic and direct computer-assisted enumerations. Preliminaries: It is an exercise to show that the symmetric group Sn ad- mits an outer automorphism if and only if n = 6. The basic idea is that any automorphism of Sn must map the set of transpositions bijectively to the set of conjugacy classes of a single permutation. A counting argument shows that the only possibility, for n =6 6, is that the automorphism maps the set of transpositions to the set of transpositions. From here it is not to hard to see that the automorphism must be an inner automorphism – i.e., conjugation by some element of Sn. For n = 6 there are 15 transpositions and also 15 triple transpositions, permutations of the form (ab)(cd)(ef) with all letters distinct. This leaves open the possibility of an outer automorphism. The Steiner Design: Let P1(Z/11) denote the projective line over Z/11. The group Γ = SL2(Z/11) consists of those transformations x → (ax + b)/(cx + d) with ad − bc ≡ 1 mod 11. There are 660 = (12 × 11 × 10)/2 elements in this group. Let B∞ = {1, 3, 4, 5, 9, ∞} ⊂ P1(Z/11) be the 6-element subset consisting of the squares mod 11 and the element ∞. Let Γ∞ ⊂ Γ be the stabilizer of B∞. -
2020 Ural Workshop on Group Theory and Combinatorics
Institute of Natural Sciences and Mathematics of the Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center 2020 Ural Workshop on Group Theory and Combinatorics Yekaterinburg – Online, Russia, August 24-30, 2020 Abstracts Yekaterinburg 2020 2020 Ural Workshop on Group Theory and Combinatorics: Abstracts of 2020 Ural Workshop on Group Theory and Combinatorics. Yekaterinburg: N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences, 2020. DOI Editor in Chief Natalia Maslova Editors Vladislav Kabanov Anatoly Kondrat’ev Managing Editors Nikolai Minigulov Kristina Ilenko Booklet Cover Desiner Natalia Maslova c Institute of Natural Sciences and Mathematics of Ural Federal University named after the first President of Russia B.N.Yeltsin N.N. Krasovskii Institute of Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences The Ural Mathematical Center, 2020 2020 Ural Workshop on Group Theory and Combinatorics Conents Contents Conference program 5 Plenary Talks 8 Bailey R. A., Latin cubes . 9 Cameron P. J., From de Bruijn graphs to automorphisms of the shift . 10 Gorshkov I. B., On Thompson’s conjecture for finite simple groups . 11 Ito T., The Weisfeiler–Leman stabilization revisited from the viewpoint of Terwilliger algebras . 12 Ivanov A. A., Densely embedded subgraphs in locally projective graphs . 13 Kabanov V. V., On strongly Deza graphs . 14 Khachay M. Yu., Efficient approximation of vehicle routing problems in metrics of a fixed doubling dimension .