Monsters and Moonshine

Total Page:16

File Type:pdf, Size:1020Kb

Monsters and Moonshine Monsters and Moonshine lieven le bruyn 2012 universiteit antwerpen neverendingbooks.org CONTENTS 1. Monsters :::::::::::::::::::::::::::::::::::: 4 1.1 The Scottish solids..............................4 1.2 The Scottish solids hoax...........................4 1.3 Conway’s M13 game.............................8 1.4 The 15-puzzle groupoid (1/2).........................9 1.5 The 15-puzzle groupoid (2/2)......................... 11 1.6 Conway’s M13-groupoid (1/2)........................ 14 1.7 Mathieu’s blackjack (1/3)........................... 16 1.8 Mathieu’s blackjack (2/3)........................... 18 1.9 Mathieu’s blackjack (3/3)........................... 20 1.10 Conway’s M13 groupoid (2/2)........................ 22 1.11 Olivier Messiaen and Mathieu 12 ....................... 24 1.12 Galois’ last letter............................... 26 1.13 Arnold’s trinities (1/2)............................ 28 1.14 The buckyball symmetries.......................... 32 1.15 Arnold’s trinities (2/2)............................ 37 1.16 Klein’s dessins d’enfants and the buckyball................. 39 1.17 The buckyball curve.............................. 42 1.18 The ”uninteresting” case p = 5 ........................ 45 1.19 Tetra lattices.................................. 46 1.20 Who discovered the Leech lattice (1/2).................... 47 1.21 Who discovered the Leech lattice (2/2).................... 50 1.22 Sporadic simple games............................ 53 1.23 Monstrous frustrations............................ 57 1.24 What does the monster see?.......................... 57 2. Moonshine ::::::::::::::::::::::::::::::::::: 63 2.1 The secret of 163 ............................... 63 2.2 The Dedekind tessellation........................... 65 Contents 3 2.3 Dedekind or Klein?.............................. 67 2.4 Monsieur Mathieu............................... 69 2.5 The best rejected research proposal, ever................... 72 2.6 The cartographer’s groups (1/2)........................ 75 2.7 The cartographer’s groups (2/2)........................ 79 2.8 Permutation representations of monodromy groups............. 81 2.9 Modular quilts and cuboid tree diagrams................... 84 2.10 Hyperbolic Mathieu polygons........................ 86 2.11 Farey codes.................................. 88 2.12 Generators of modular subgroups....................... 90 2.13 Iguanodon series of simple groups...................... 92 2.14 The iguanodon disected............................ 93 2.15 More iguanodons via kfarey.sage....................... 95 2.16 Farey symbols of sporadic groups...................... 97 2.17 The McKay-Thompson series......................... 99 2.18 Monstrous Easter Egg Race.......................... 101 2.19 The secret revealed.............................. 102 2.20 The monster graph and McKay’s observation................ 103 2.21 Conway’s big picture............................. 106 2.22 Looking for the moonshine picture...................... 108 2.23 E(8) from moonshine groups......................... 111 2.24 Hexagonal moonshine............................ 113 series 1 MONSTERS 1.1 The Scottish solids John McKay pointed me to a few interesting links on ’Platonic’ solids and monstrous moon- shine. If you thought that the ancient Greek discovered the five Platonic solids, think again! They may have been the first to give a correct proof of the classification but the regular solids were already known in 2000BC as some neolithic stone artifacts discovered in Scot- land show. These Scottish solids can be visited at the Ashmolean Museum in Oxford. McKay also points to the paper Polyhedra in physics, chemistry and geometry by Michael Atiyah and Paul Sutcliffe. He also found my posts on a talk I gave on monstrous moonshine for 2nd year students earlier this year and mentionted a few errors and updates. As these posts are on my old weblog I’ll repost and update them here soon. For now you can already hear and see a talk given by John McKay himself 196884=1+196883, a monstrous tale at the Fields Institute. 1.2 The Scottish solids hoax A truly good math-story gets spread rather than scrutinized. And a good story it was : more than a milenium before Plato, the Neolithic Scottish Math Society classified the five regular solids : tetrahedron, cube, octahedron, dodecahedron and icosahedron. And, we had solid evidence to support this claim : the NSMS mass-produced stone replicas of their finds and about 400 of them were excavated, most of them in Aberdeenshire. Six years ago, Michael Atiyah and Paul Sutcliffe arXived their paper Polyhedra in physics, chemistry and geometry, in which they wrote : ”Although they are termed Platonic solids there is convincing evidence that they were known to the Neolithic people of Scotland at least a thousand years before Plato, as demon- series 1. Monsters 5 strated by the stone models pictured in g. 1 which date from this period and are kept in the Ashmolean Museum in Oxford. ” Fig. 1 is the picture below, which has been copied in numerous blog-posts (including my own, see the previous section) and virtually every talk on regular polyhedra. From left to right, stone-ball models of the cube, tetrahedron, dodecahedron, icosahedron and octahedron, in which ’knobs’ correspond to ’faces’ of the regular polyhedron, as best seen in the central dodecahedral ball. But then ... where’s the icosahedron? The fourth ball sure looks like one but only because someone added ribbons, connecting the centers of the different knobs. If this ribbon-figure is an icosahedron, the ball itself should be another dodecahedron and the ribbons illustrate the fact that icosa- and dodeca-hedron are dual polyhedra. Similarly for the last ball, if the ribbon-figure is an octahedron, the ball itself should be another cube, having exactly 6 knobs. Who did adorn these artifacts with ribbons, thereby multiplying the number of ’found’ regular solids by two (the tetrahedron is self-dual)? The picture appears on page 98 of the book Sacred Geometry (first published in 1979) by Robert Lawlor. He attributes the NSMS-idea to the book Time Stands Still: New Light on Megalithic Science (also published in 1979) by Keith Critchlow. Lawlor writes ”The five regular polyhedra or Platonic solids were known and worked with well before Plato’s time. Keith Critchlow in his book Time Stands Still presents convincing evidence that they were known to the Neolithic peoples of Britain at least 1000 years before Plato. This is founded on the existence of a number of sphericalfstones kept in the Ashmolean Museum at Oxford. Of a size one can carry in the hand, these stones were carved into the precise geometric spherical versions of the cube, tetrahedron, octahedron, icosahedron and dodecahedron, as well as some additional compound and semi-regular solids, such as the cube-octahedron and the icosidodecahedron.” Critchlow says, ’What we have are objects clearly indicative of a degree of mathematical ability so far denied to Neolithic man by any archaeologist or mathematical historian’. He speculates on the possible relationship of these objects to the building of the great astro- nomical stone circles of the same epoch in Britain: ’The study of the heavens is, after all, a spherical activity, needing an understanding of spherical coordinates. If the Neolithic inhabitants of Scotland had constructed Maes Howe before the pyramids were built by the ancient Egyptians, why could they not be studying the laws of three-dimensional coordi- nates? Is it not more than a coincidence that Plato as well as Ptolemy, Kepler and Al-Kindi attributed cosmic significance to these figures?’ ” As Lawlor and Critchlow lean towards mysticism, their claims should not be taken for granted. So, let’s have a look at these famous stones kept in the Ashmolean Museum. The Ashmolean has a page dedicated to their Stone Balls, including the following picture (the Critchlow/Lawlor picture below, for comparison) series 1. Monsters 6 The Ashmolean stone balls are from left to right the artifacts with catalogue numbers : • Stone ball with 7 knobs from Marnoch, Banff (AN1927.2728) • Stone ball with 6 knobs and isosceles triangles between, from Fyvie, Aberdeenshire (AN1927.2731) • Stone ball with 6 knobs and isosceles triangles between, from near Aberdeen (AN1927.2730) • Stone ball with 4 knobs from Auchterless, Aberdeenshire (AN1927.2729) • Stone ball with 14 knobs from Aberdeen (AN1927.2727) Ashmolean’s AN 1927.2729 may very well be the tetrahedron and AN 1927.2727 may be used to forge the ’icosahedron’ (though it has 14 rather than 12 knobs), but the other stones sure look different. In particular, none of the Ashmolean stones has exactly 12 knobs in order to be a dodecahedron. Perhaps the Ashmolean has a larger collection of Scottish balls and today’s selection is different from the one in 1979? Well, if you have the patience to check all 9 pages of the Scottish Ball Catalogue by Dorothy Marshall (the reference-text when it comes to these balls) you will see that the Ashmolean has exactly those 5 balls and no others! The sad lesson to be learned is : whether the Critchlow/Lawlor balls are falsifications or fabrications, they most certainly are NOT the Ashmolean stone balls as they claim! Clearly this does not mean that no neolithic scott could have discovered some regular poly- hedra by accident. They made an enormous amount of these stone balls, with knobs ranging from 3 up to no less than 135! All I claim is that this ball-carving thing was more an artistic endeavor, rather than a mathematical one.
Recommended publications
  • Generating the Mathieu Groups and Associated Steiner Systems
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 112 (1993) 41-47 41 North-Holland Generating the Mathieu groups and associated Steiner systems Marston Conder Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand Received 13 July 1989 Revised 3 May 1991 Abstract Conder, M., Generating the Mathieu groups and associated Steiner systems, Discrete Mathematics 112 (1993) 41-47. With the aid of two coset diagrams which are easy to remember, it is shown how pairs of generators may be obtained for each of the Mathieu groups M,,, MIz, Mz2, M,, and Mz4, and also how it is then possible to use these generators to construct blocks of the associated Steiner systems S(4,5,1 l), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. 1. Introduction Suppose you land yourself in 24-dimensional space, and are faced with the problem of finding the best way to pack spheres in a box. As is well known, what you really need for this is the Leech Lattice, but alas: you forgot to bring along your Miracle Octad Generator. You need to construct the Leech Lattice from scratch. This may not be so easy! But all is not lost: if you can somehow remember how to define the Mathieu group Mz4, you might be able to produce the blocks of a Steiner system S(5,8,24), and the rest can follow. In this paper it is shown how two coset diagrams (which are easy to remember) can be used to obtain pairs of generators for all five of the Mathieu groups M,,, M12, M22> Mz3 and Mz4, and also how blocks may be constructed from these for each of the Steiner systems S(4,5,1 I), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively.
    [Show full text]
  • [Math.AG] 1 Nov 2005 Where Uoopimgop Hscntuto Ensahlmrhcperio Holomorphic a Defines Construction This Group
    A COMPACTIFICATION OF M3 VIA K3 SURFACES MICHELA ARTEBANI Abstract. S. Kond¯odefined a birational period map from the moduli space of genus three curves to a moduli space of degree four polarized K3 surfaces. In this paper we extend the period map to a surjective morphism on a suitable compactification of M3 and describe its geometry. Introduction 14 Let V =| OP2 (4) |=∼ P be the space of plane quartics and V0 be the open subvariety of smooth curves. The degree four cyclic cover of the plane branched along a curve C ∈ V0 is a K3 surface equipped with an order four non-symplectic automorphism group. This construction defines a holomorphic period map: P0 : V0 −→ M, where V0 is the geometric quotient of V0 by the action of P GL(3) and M is a moduli space of polarized K3 surfaces. In [15] S. Kond¯oshows that P0 gives an isomorphism between V0 and the com- plement of two irreducible divisors Dn, Dh in M. Moreover, he proves that the generic points in Dn and Dh correspond to plane quartics with a node and to smooth hyperelliptic genus three curves respectively. The moduli space M is an arithmetic quotient of a six dimensional complex ball, hence a natural compactification is given by the Baily-Borel compactification M∗ (see [1]). On the other hand, geometric invariant theory provides a compact pro- jective variety V containing V0 as a dense subset, given by the categorical quotient of the semistable locus in V for the natural action of P GL(3). In this paper we prove that the map P0 can be extended to a holomorphic surjective map P : V −→M∗ on the blowing-up V of V in the point v0 corresponding to the orbit of double arXiv:math/0511031v1 [math.AG] 1 Nov 2005 e conics.
    [Show full text]
  • Shadow of a Cubic Surface
    Faculteit B`etawetenschappen Shadow of a cubic surface Bachelor Thesis Rein Janssen Groesbeek Wiskunde en Natuurkunde Supervisors: Dr. Martijn Kool Departement Wiskunde Dr. Thomas Grimm ITF June 2020 Abstract 3 For a smooth cubic surface S in P we can cast a shadow from a point P 2 S that does not lie on one of the 27 lines of S onto a hyperplane H. The closure of this shadow is a smooth quartic curve. Conversely, from every smooth quartic curve we can reconstruct a smooth cubic surface whose closure of the shadow is this quartic curve. We will also present an algorithm to reconstruct the cubic surface from the bitangents of a quartic curve. The 27 lines of S together with the tangent space TP S at P are in correspondence with the 28 bitangents or hyperflexes of the smooth quartic shadow curve. Then a short discussion on F-theory is given to relate this geometry to physics. Acknowledgements I would like to thank Martijn Kool for suggesting the topic of the shadow of a cubic surface to me and for the discussions on this topic. Also I would like to thank Thomas Grimm for the suggestions on the applications in physics of these cubic surfaces. Finally I would like to thank the developers of Singular, Sagemath and PovRay for making their software available for free. i Contents 1 Introduction 1 2 The shadow of a smooth cubic surface 1 2.1 Projection of the first polar . .1 2.2 Reconstructing a cubic from the shadow . .5 3 The 27 lines and the 28 bitangents 9 3.1 Theorem of the apparent boundary .
    [Show full text]
  • Unit 6 Visualising Solid Shapes(Final)
    • 3D shapes/objects are those which do not lie completely in a plane. • 3D objects have different views from different positions. • A solid is a polyhedron if it is made up of only polygonal faces, the faces meet at edges which are line segments and the edges meet at a point called vertex. • Euler’s formula for any polyhedron is, F + V – E = 2 Where F stands for number of faces, V for number of vertices and E for number of edges. • Types of polyhedrons: (a) Convex polyhedron A convex polyhedron is one in which all faces make it convex. e.g. (1) (2) (3) (4) 12/04/18 (1) and (2) are convex polyhedrons whereas (3) and (4) are non convex polyhedron. (b) Regular polyhedra or platonic solids: A polyhedron is regular if its faces are congruent regular polygons and the same number of faces meet at each vertex. For example, a cube is a platonic solid because all six of its faces are congruent squares. There are five such solids– tetrahedron, cube, octahedron, dodecahedron and icosahedron. e.g. • A prism is a polyhedron whose bottom and top faces (known as bases) are congruent polygons and faces known as lateral faces are parallelograms (when the side faces are rectangles, the shape is known as right prism). • A pyramid is a polyhedron whose base is a polygon and lateral faces are triangles. • A map depicts the location of a particular object/place in relation to other objects/places. The front, top and side of a figure are shown. Use centimetre cubes to build the figure.
    [Show full text]
  • Atlasrep —A GAP 4 Package
    AtlasRep —A GAP 4 Package (Version 2.1.0) Robert A. Wilson Richard A. Parker Simon Nickerson John N. Bray Thomas Breuer Robert A. Wilson Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~raw Richard A. Parker Email: [email protected] Simon Nickerson Homepage: http://nickerson.org.uk/groups John N. Bray Email: [email protected] Homepage: http://www.maths.qmw.ac.uk/~jnb Thomas Breuer Email: [email protected] Homepage: http://www.math.rwth-aachen.de/~Thomas.Breuer AtlasRep — A GAP 4 Package 2 Copyright © 2002–2019 This package may be distributed under the terms and conditions of the GNU Public License Version 3 or later, see http://www.gnu.org/licenses. Contents 1 Introduction to the AtlasRep Package5 1.1 The ATLAS of Group Representations.........................5 1.2 The GAP Interface to the ATLAS of Group Representations..............6 1.3 What’s New in AtlasRep, Compared to Older Versions?...............6 1.4 Acknowledgements................................... 14 2 Tutorial for the AtlasRep Package 15 2.1 Accessing a Specific Group in AtlasRep ........................ 16 2.2 Accessing Specific Generators in AtlasRep ...................... 18 2.3 Basic Concepts used in AtlasRep ........................... 19 2.4 Examples of Using the AtlasRep Package....................... 21 3 The User Interface of the AtlasRep Package 33 3.1 Accessing vs. Constructing Representations...................... 33 3.2 Group Names Used in the AtlasRep Package..................... 33 3.3 Standard Generators Used in the AtlasRep Package.................. 34 3.4 Class Names Used in the AtlasRep Package...................... 34 3.5 Accessing Data via AtlasRep ............................
    [Show full text]
  • 12.6 Further Topics on Simple Groups 387 12.6 Further Topics on Simple Groups
    12.6 Further Topics on Simple groups 387 12.6 Further Topics on Simple Groups This Web Section has three parts (a), (b) and (c). Part (a) gives a brief descriptions of the 56 (isomorphism classes of) simple groups of order less than 106, part (b) provides a second proof of the simplicity of the linear groups Ln(q), and part (c) discusses an ingenious method for constructing a version of the Steiner system S(5, 6, 12) from which several versions of S(4, 5, 11), the system for M11, can be computed. 12.6(a) Simple Groups of Order less than 106 The table below and the notes on the following five pages lists the basic facts concerning the non-Abelian simple groups of order less than 106. Further details are given in the Atlas (1985), note that some of the most interesting and important groups, for example the Mathieu group M24, have orders in excess of 108 and in many cases considerably more. Simple Order Prime Schur Outer Min Simple Order Prime Schur Outer Min group factor multi. auto. simple or group factor multi. auto. simple or count group group N-group count group group N-group ? A5 60 4 C2 C2 m-s L2(73) 194472 7 C2 C2 m-s ? 2 A6 360 6 C6 C2 N-g L2(79) 246480 8 C2 C2 N-g A7 2520 7 C6 C2 N-g L2(64) 262080 11 hei C6 N-g ? A8 20160 10 C2 C2 - L2(81) 265680 10 C2 C2 × C4 N-g A9 181440 12 C2 C2 - L2(83) 285852 6 C2 C2 m-s ? L2(4) 60 4 C2 C2 m-s L2(89) 352440 8 C2 C2 N-g ? L2(5) 60 4 C2 C2 m-s L2(97) 456288 9 C2 C2 m-s ? L2(7) 168 5 C2 C2 m-s L2(101) 515100 7 C2 C2 N-g ? 2 L2(9) 360 6 C6 C2 N-g L2(103) 546312 7 C2 C2 m-s L2(8) 504 6 C2 C3 m-s
    [Show full text]
  • The Sphere Packing Problem in Dimension 8 Arxiv:1603.04246V2
    The sphere packing problem in dimension 8 Maryna S. Viazovska April 5, 2017 8 In this paper we prove that no packing of unit balls in Euclidean space R has density greater than that of the E8-lattice packing. Keywords: Sphere packing, Modular forms, Fourier analysis AMS subject classification: 52C17, 11F03, 11F30 1 Introduction The sphere packing constant measures which portion of d-dimensional Euclidean space d can be covered by non-overlapping unit balls. More precisely, let R be the Euclidean d vector space equipped with distance k · k and Lebesgue measure Vol(·). For x 2 R and d r 2 R>0 we denote by Bd(x; r) the open ball in R with center x and radius r. Let d X ⊂ R be a discrete set of points such that kx − yk ≥ 2 for any distinct x; y 2 X. Then the union [ P = Bd(x; 1) x2X d is a sphere packing. If X is a lattice in R then we say that P is a lattice sphere packing. The finite density of a packing P is defined as Vol(P\ Bd(0; r)) ∆P (r) := ; r > 0: Vol(Bd(0; r)) We define the density of a packing P as the limit superior ∆P := lim sup ∆P (r): r!1 arXiv:1603.04246v2 [math.NT] 4 Apr 2017 The number be want to know is the supremum over all possible packing densities ∆d := sup ∆P ; d P⊂R sphere packing 1 called the sphere packing constant. For which dimensions do we know the exact value of ∆d? Trivially, in dimension 1 we have ∆1 = 1.
    [Show full text]
  • Sphere Packing, Lattice Packing, and Related Problems
    Sphere packing, lattice packing, and related problems Abhinav Kumar Stony Brook April 25, 2018 Sphere packings Definition n A sphere packing in R is a collection of spheres/balls of equal size which do not overlap (except for touching). The density of a sphere packing is the volume fraction of space occupied by the balls. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. Sphere packing problem n Problem: Find a/the densest sphere packing(s) in R . In dimension 1, we can achieve density 1 by laying intervals end to end. In dimension 2, the best possible is by using the hexagonal lattice. [Fejes T´oth1940] Sphere packing problem II In dimension 3, the best possible way is to stack layers of the solution in 2 dimensions. This is Kepler's conjecture, now a theorem of Hales and collaborators. mmm m mmm m There are infinitely (in fact, uncountably) many ways of doing this! These are the Barlow packings. Face centered cubic packing Image: Greg A L (Wikipedia), CC BY-SA 3.0 license But (until very recently!) no proofs. In very high dimensions (say ≥ 1000) densest packings are likely to be close to disordered.
    [Show full text]
  • Classifying Spaces, Virasoro Equivariant Bundles, Elliptic Cohomology and Moonshine
    CLASSIFYING SPACES, VIRASORO EQUIVARIANT BUNDLES, ELLIPTIC COHOMOLOGY AND MOONSHINE ANDREW BAKER & CHARLES THOMAS Introduction This work explores some connections between the elliptic cohomology of classifying spaces for finite groups, Virasoro equivariant bundles over their loop spaces and Moonshine for finite groups. Our motivation is as follows: up to homotopy we can replace the loop group LBG by ` the disjoint union [γ] BCG(γ) of classifying spaces of centralizers of elements γ representing conjugacy classes of elements in G. An elliptic object over LBG then becomes a compatible family of graded infinite dimensional representations of the subgroups CG(γ), which in turn E ∗ defines an element in J. Devoto's equivariant elliptic cohomology ring ``G. Up to localization (inversion of the order of G) and completion with respect to powers of the kernel of the E ∗ −! E ∗ ∗ homomorphism ``G ``f1g, this ring is isomorphic to E`` (BG), see [5, 6]. Moreover, elliptic objects of this kind are already known: for example the 2-variable Thompson series forming part of the Moonshine associated with the simple groups M24 and the Monster M. Indeed the compatibility condition between the characters of the representations of CG(γ) mentioned above was originally formulated by S. Norton in an Appendix to [21], independently of the work on elliptic genera by various authors leading to the definition of elliptic cohom- ology (see the various contributions to [17]). In a slightly different direction, J-L. Brylinski [2] introduced the group of Virasoro equivariant bundles over the loop space LM of a simply connected manifold M as part of his investigation of a Dirac operator on LM with coefficients in a suitable vector bundle.
    [Show full text]
  • On Quadruply Transitive Groups Dissertation
    ON QUADRUPLY TRANSITIVE GROUPS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By ERNEST TILDEN PARKER, B. A. The Ohio State University 1957 Approved by: 'n^CLh^LaJUl 4) < Adviser Department of Mathematics Acknowledgment The author wishes to express his sincere gratitude to Professor Marshall Hall, Jr., for assistance and encouragement in the preparation of this dissertation. ii Table of Contents Page 1. Introduction ------------------------------ 1 2. Preliminary Theorems -------------------- 3 3. The Main Theorem-------------------------- 12 h. Special Cases -------------------------- 17 5. References ------------------------------ kZ iii Introduction In Section 3 the following theorem is proved: If G is a quadruplv transitive finite permutation group, H is the largest subgroup of G fixing four letters, P is a Sylow p-subgroup of H, P fixes r & 1 2 letters and the normalizer in G of P has its transitive constituent Aj. or Sr on the letters fixed by P, and P has no transitive constituent of degree ^ p3 and no set of r(r-l)/2 similar transitive constituents, then G is. alternating or symmetric. The corollary following the theorem is the main result of this dissertation. 'While less general than the theorem, it provides arithmetic restrictions on primes dividing the order of the sub­ group fixing four letters of a quadruply transitive group, and on the degrees of Sylow subgroups. The corollary is: ■ SL G is. a quadruplv transitive permutation group of degree n - kp+r, with p prime, k<p^, k<r(r-l)/2, rfc!2, and the subgroup of G fixing four letters has a Sylow p-subgroup P of degree kp, and the normalizer in G of P has its transitive constituent A,, or Sr on the letters fixed by P, then G is.
    [Show full text]
  • Arxiv:1911.10534V3 [Math.AT] 17 Apr 2020 Statement
    THE ANDO-HOPKINS-REZK ORIENTATION IS SURJECTIVE SANATH DEVALAPURKAR Abstract. We show that the map π∗MString ! π∗tmf induced by the Ando-Hopkins-Rezk orientation is surjective. This proves an unpublished claim of Hopkins and Mahowald. We do so by constructing an E1-ring B and a map B ! MString such that the composite B ! MString ! tmf is surjective on homotopy. Applications to differential topology, and in particular to Hirzebruch's prize question, are discussed. 1. Introduction The goal of this paper is to show the following result. Theorem 1.1. The map π∗MString ! π∗tmf induced by the Ando-Hopkins-Rezk orientation is surjective. This integral result was originally stated as [Hop02, Theorem 6.25], but, to the best of our knowledge, no proof has appeared in the literature. In [HM02], Hopkins and Mahowald give a proof sketch of Theorem 1.1 for elements of π∗tmf of Adams-Novikov filtration 0. The analogue of Theorem 1.1 for bo (namely, the statement that the map π∗MSpin ! π∗bo induced by the Atiyah-Bott-Shapiro orientation is surjective) is classical [Mil63]. In Section2, we present (as a warmup) a proof of this surjectivity result for bo via a technique which generalizes to prove Theorem 1.1. We construct an E1-ring A with an E1-map A ! MSpin. The E1-ring A is a particular E1-Thom spectrum whose mod 2 homology is given by the polynomial subalgebra 4 F2[ζ1 ] of the mod 2 dual Steenrod algebra. The Atiyah-Bott-Shapiro orientation MSpin ! bo is an E1-map, and so the composite A ! MSpin ! bo is an E1-map.
    [Show full text]
  • Our Mathematical Universe: I. How the Monster Group Dictates All of Physics
    October, 2011 PROGRESS IN PHYSICS Volume 4 Our Mathematical Universe: I. How the Monster Group Dictates All of Physics Franklin Potter Sciencegems.com, 8642 Marvale Drive, Huntington Beach, CA 92646. E-mail: [email protected] A 4th family b’ quark would confirm that our physical Universe is mathematical and is discrete at the Planck scale. I explain how the Fischer-Greiss Monster Group dic- tates the Standard Model of leptons and quarks in discrete 4-D internal symmetry space and, combined with discrete 4-D spacetime, uniquely produces the finite group Weyl E8 x Weyl E8 = “Weyl” SO(9,1). The Monster’s j-invariant function determines mass ratios of the particles in finite binary rotational subgroups of the Standard Model gauge group, dictates Mobius¨ transformations that lead to the conservation laws, and connects interactions to triality, the Leech lattice, and Golay-24 information coding. 1 Introduction 5. Both 4-D spacetime and 4-D internal symmetry space are discrete at the Planck scale, and both spaces can The ultimate idea that our physical Universe is mathematical be telescoped upwards mathematically by icosians to at the fundamental scale has been conjectured for many cen- 8-D spaces that uniquely combine into 10-D discrete turies. In the past, our marginal understanding of the origin spacetime with discrete Weyl E x Weyl E symmetry of the physical rules of the Universe has been peppered with 8 8 (not the E x E Lie group of superstrings/M-theory). huge gaps, but today our increased understanding of funda- 8 8 mental particles promises to eliminate most of those gaps to 6.
    [Show full text]