1 the Dysregulation of the DLK1-MEG3 Locus in Islets from Type 2 Diabetics Is Mimicked by Targeted Epimutation of Its Promoter W

Total Page:16

File Type:pdf, Size:1020Kb

1 the Dysregulation of the DLK1-MEG3 Locus in Islets from Type 2 Diabetics Is Mimicked by Targeted Epimutation of Its Promoter W Page 1 of 33 Diabetes The dysregulation of the DLK1-MEG3 locus in islets from type 2 diabetics is mimicked by targeted epimutation of its promoter with TALE-DNMT constructs Vasumathi Kameswaran1, Maria Golson1, Mireia Ramis Rodriguez2,3,4, Kristy Ou1, Yue J. Wang1, Jia Zhang1, Lorenzo Pasquali2,3,4, Klaus H. Kaestner1* 1 University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, Philadelphia, PA, USA 2Program of Predictive and Personalized Medicine of Cancer (PMPPC), Department of Endocrinology, Germans Trias i Pujol University Hospital and Research Institute, Badalona, Spain 3Josep Carreras Leukaemia Research Institute, Badalona, Spain, 4CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain. *Corresponding author. University of Pennsylvania, Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, 12-126 Translational Research Center, 3400 Civic Center Blvd., Philadelphia, PA 19104-6145, USA. Tel.: +1-215-898-8759. E-mail: [email protected] 1 Diabetes Publish Ahead of Print, published online July 3, 2018 Diabetes Page 2 of 33 Abstract Type 2 diabetes mellitus (T2DM) is characterized by the inability of the insulin-producing β-cells to overcome insulin resistance. We previously identified an imprinted region on chromosome 14, the DLK1-MEG3 locus, as being down-regulated in human T2D islets. Here, using targeted epigenetic modifiers, we prove that increased methylation at the promoter of Meg3 in mouse βTC6 β-cells results in decreased transcription of the maternal transcripts associated with this locus. As a result, the sensitivity of β-cells to cytokine-mediated oxidative stress was increased. Additionally, we demonstrate that an evolutionarily conserved intronic region at the MEG3 locus can function as an enhancer in βTC6 β-cells. Using circular chromosome conformation capture followed by high-throughput sequencing, we demonstrate that the promoter of MEG3 physically interacts with this novel enhancer and other putative regulatory elements in this imprinted region in human islets. Remarkably, this enhancer is bound in an allele-specific manner by the transcription factors FOXA2, PDX1, and NKX2.2. Overall, these data suggest that the intronic MEG3 enhancer plays an important role in the regulation of allele-specific expression at the imprinted DLK1-MEG3 locus in human β-cells, which in turn impacts the sensitivity of β-cells to cytokine-mediated oxidative stress. 2 Page 3 of 33 Diabetes Diabetes mellitus refers to a group of metabolic diseases characterized by an insufficient insulin response to high blood glucose levels. Pancreatic β-cells are critical regulators of glucose homeostasis as they produce, store and secrete insulin to regulate glucose uptake by peripheral tissues. Their autoimmune destruction or functional decline can lead to Type 1 and Type 2 diabetes mellitus (T2DM), respectively. Thus, understanding the molecular mechanisms underlying β-cell physiology is fundamental to improving current diabetes treatment strategies. We previously demonstrated that the imprinted DLK1-MEG3 locus is mis-regulated in islets from T2DM donors (1). This locus consists of the paternally-active DLK1, RTL1 and DIO3 genes, as well as maternally-expressed long non-coding RNAs, MEG3, RTL1as and MEG8, a large miRNA cluster, and several snoRNAs (2; 3). The genes in this locus are active in human β, but not α-cells, at very high levels (1; 4) and repressed in islets from type 2 diabetics (1). This decreased expression correlates with hyper-methylation at the MEG3 promoter. Consistent with these human studies, Meg3 expression is decreased in mouse models of Type 1 and Type 2 diabetes (5). Little is known about the mechanism by which imprinting at the DLK1-MEG3 locus is regulated, particularly in human islets and β-cells. Mono-allelic expression at this locus is established and maintained through specific methylation patterns at two differentially methylated regions (DMRs), the intergenic IG-DMR and MEG3-DMR, overlapping the promoter of the maternal transcript (6; 7). These DMRs are paternally-methylated. While MEG3 promoter hyper- methylation and a concomitant decrease in expression have been reported in several human diseases (8-14), a causal relationship between these observations has not been established. Here, we demonstrate that hyper-methylation of this DMR using targeted DNA methylation in mouse βTC6 β-cells causes decreased transcription of Meg3, and that this repressed expression exacerbates β-cell death, consistent with our observation in islets from human T2DM donors (1). Furthermore, we identified a putative enhancer within an intron of the human MEG3 3 Diabetes Page 4 of 33 gene that is bound by transcription factors that are critical for islet function. We demonstrate that this sequence functions indeed as an active enhancer, and physically interacts with the MEG3 promoter more than 16 kilobases upstream. Intriguingly, this enhancer is bound by islet transcription factors in an allele-specific manner in human islets. Overall, our results suggest an important regulatory function for this newly characterized MEG3 enhancer and provide insights into the mechanism of imprinting at the DLK1-MEG3 locus in β-cells. Research Design and Methods Methods Human Islets Human islets and relevant donor information including age, gender, diabetes status, and BMI were obtained from the Islet Cell Resource Center of the University of Pennsylvania, the NIDDK-supported Integrated Islet Distribution Program (iidp.coh.org) and the National Disease Research Interchange. The donor’s diabetes status was defined by the patient’s medical record, and, when available, the hemoglobin A1c (Supplemental Table 1). TALE experiments TALEs targeting the mouse Meg3-DMR (mm10 chr12:109,540,635-109,540,653) were designed using an online resource and as described before (1). 12x106 βTC6 cells in a 10cm dish were transfected with 12µg of either TALE WT or mutant plasmids using FuGENE HD transfection reagent (Promega). Cells were FACS-sorted for GFP+ cells after 72 hours on Diva 206 (Penn Flow Cytometry and Cell Sorting Facility). After sorting, the cells were pooled for total RNA and genomic DNA extraction using an Allprep DNA/RNA mini kit (QIAGEN). DNA Methylation analysis 4 Page 5 of 33 Diabetes Genomic DNA was isolated with using All Prep DNA/RNA kit (QIAGEN). 325 nanograms of extracted DNA or unsonicated chromatin input were bisulfite treated with the EpiTect Bisulfite kit (QIAGEN) and eluted in 20µl of Buffer EB. PCR and sequencing primers were designed using the PyroMark assay design software version 2.0 (QIAGEN, sequences listed in Supplemental Table 2) to cover CpGs throughout the Meg3-Dlk1 locus. Bisulfite-converted DNA was amplified by PCR using the PyroMark PCR kit (QIAGEN) at 95°C for 15 mins followed by 45 cycles at 95°C for 15s, 57°C for 30s and 72°C for 15s. Biotinylated PCR products were immobilized onto streptavidin-coated sepharose beads (GE Healthcare) and DNA strands were separated using PyroMark denaturation solution (QIAGEN), washed and then neutralized using a vacuum prep station (QIAGEN PyroMark Q96 workstation). After annealing the sequencing primer to the immobilized strand, pyrosequencing was performed on the PyroMark Q96 MD (QIAGEN) using PyroMark Gold CDT kit (QIAGEN) according to the manufacturer’s instructions. Data were analyzed using the Pyro Q-CpG software program (QIAGEN). Gene expression by RT-qPCR Primers used for to quantify gene expression of Meg3 and Dlk1 in TALE experiments are listed in Supplemental table 3. Cell Death Assays βTC6 cells were seeded in six-well plates at a density of 1x10^6 cells per well. The next day, cells were transfected with 1 mg plasmid and 4 mL Lipofectamine 2000 per well. After 72 hours, cells were treated with 20 ng/mL mouse TNFa, 5 ng/mL mouse IL1b, and 10 ng/mL mouse IFNg. 48 hours later, cells were treated with CellROX Deep Red (ThermoFisher) according to manufacturer’s instructions and analyzed for GFP and CellROX fluorescence using a BD LSRII. Dual luciferase reporter assay – enhancer activity 5 Diabetes Page 6 of 33 The human MEG3-DMR (hg19 - chr14: 100,824,307-100,826,452) and MEG3 enhancer (chr14:101,308,419-101,309,405) were subcloned into pGL3-Basic or pGL4.23[luc2/minP] luciferase reporter (Promega). 50,000 βTC6 cells were seeded per well of a 24-well plate and transfected with 500ng of plasmid DNA and 10ng of pRL-SV40 (Promega). Cells were harvested 24 hours post-transfection and processed for luciferase readout. Experiments were performed in triplicates with four technical replicates per experiment. Allele-specific ChIP-PCR Allele-specific ChIP was performed according to the schema in figure 4A. 30ng of genomic DNA from islet donors was used to identify donors heterozygous for the SNP rs3783355. SNP genotyping was performed using Taqman SNP genotyping Assay (ThermoFisher Scientific C_1259770_10, Cat #4351379) and Taqman genotyping Master Mix (ThermoFisher Scientific Cat# 4371353) on a Stratagene Mx3000P thermocycler. Chromatin was extracted from non- diabetic donors’ islets as previously described (2). The ChIP antibodies and conditions used for this experiment were described by (3). The primers used for this experiment are listed in Supplemental Table 4. Following PCR of the input and ChIP DNA, libraries were prepared using the NuGEN Mondrian SP+ system and sequenced on an Illumina MiSeq to obtain approximately 200,000 reads per library (sequence read count ranged from 24,568 to 916096 reads). For the qualitative assay, 300ng of PCR amplified input or FOXA2 ChIP DNA was digested using the restriction enzyme BanII. Uncut PCR product (150 bp) and BanII digested PCR products (113 bp + 37 bp fragments) were run on a 3% gel to visualize differences. Circular chromosome conformation capture (4C-Seq) 4C-Seq was performed on ~10,000 IEQ of human islets using the enzymes DpnII (first enzyme) and NlaIII (second enzyme) according to (4). The libraries were prepared using the BiS-PCR2 protocol 6 Page 7 of 33 Diabetes (1).
Recommended publications
  • Biochemical Mechanisms of Thyroid Hormone Deiodination
    THYROID Volume 15, Number 8, 2005 © Mary Ann Liebert, Inc. Biochemical Mechanisms of Thyroid Hormone Deiodination George G.J.M. Kuiper, Monique H.A. Kester, Robin P. Peeters, and Theo J. Visser Deiodination is the foremost pathway of thyroid hormone metabolism not only in quantitative terms but also because thyroxine (T4) is activated by outer ring deiodination (ORD) to 3,3’,5-triiodothyronine (T3), whereas both T4 and T3 are inactivated by inner ring deiodination (IRD) to 3,3’,5-triiodothyronine and 3,3’- diiodothyronine, respectively. These reactions are catalyzed by three iodothyronine deiodinases, D1-3. Although they are homologous selenoproteins, they differ in important respects such as catalysis of ORD and/or IRD, deiodination of sulfated iodothyronines, inhibition by the thyrostatic drug propylthiouracil, and regulation during fetal and neonatal development, by thyroid state, and during illness. In this review we will briefly discuss recent developments in these different areas. These have resulted in the emerging view that the biological activity of thyroid hormone is regulated locally by tissue-specific regulation of the different deiodinases. HYROID HORMONE is essential for growth, development, thyrostatic drug 6-propyl-2-thiouracil (PTU). D1 activity is Tand regulation of energy metabolism (1–3). Amphibian positively regulated by T3, reflecting regulation of D1 ex- metamorphosis is an important example of thyroid hormone pression by T3 at the pretranslational level. actions on development (4). Equally well known is the crit- In humans, D2 activity is found in brain, anterior pitu- ical role of thyroid hormone in development and function itary, placenta, thyroid and skeletal muscle, and D2 mRNA of the human central nervous system (5,6).
    [Show full text]
  • The Imprinted DLK1-MEG3 Gene Region on Chromosome 14Q32.2 Alters Susceptibility to Type 1 Diabetes
    LETTERS The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes Chris Wallace, Deborah J Smyth, Meeta Maisuria-Armer, Neil M Walker, John A Todd & David G Clayton Genome-wide association (GWA) studies to map common score tests were based on the Cochran-Armitage test, with a Mantel disease susceptibility loci have been hugely successful, with extension to allow combination over different strata (UK region in over 300 reproducibly associated loci reported to date1. the case of the WTCCC and T1DGC samples, and estimated ancestry However, these studies have not yet provided convincing score derived from principal components in the case of the GoKinD- evidence for any susceptibility locus subject to parent-of-origin NIMH samples3). For imputed SNPs, we calculated the score statistics effects. Using imputation to extend existing GWA datasets2–4, using the expected value of the imputed SNP, given observed SNPs, we have obtained robust evidence at rs941576 for paternally with the expectation calculated under the null hypothesis. inherited risk of type 1 diabetes (T1D; ratio of allelic effects for Overall, there was some overdispersion of test statistics (λ = 1.14 and paternal versus maternal transmissions = 0.75; 95% confidence 1.09 for 1 and 2 degrees of freedom, respectively). This was consistent interval (CI) = 0.71–0.79). This marker is in the imprinted with the large sample size (almost 17,000 samples) and the overdisper- region of chromosome 14q32.2, which contains the functional sion observed in earlier analysis of these data without HapMap imputa- candidate gene DLK1. Our meta-analysis also provided support tion4.
    [Show full text]
  • REVIEW Iodothyronine Deiodinase Structure and Function
    189 REVIEW Iodothyronine deiodinase structure and function: from ascidians to humans Veerle M Darras and Stijn L J Van Herck Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Naamsestraat 61, PO Box 2464, B-3000 Leuven, Belgium (Correspondence should be addressed to V M Darras; Email: [email protected]) Abstract Iodothyronine deiodinases are important mediators of thyroid of each of them, however, varies amongst species, develop- hormone (TH) action. They are present in tissues throughout mental stages and tissues. This is especially true for 0 the body where they catalyse 3,5,3 -triiodothyronine (T3) amphibians, where the impact of D1 may be minimal. D2 production and degradation via, respectively, outer and inner and D3 expression and activity respond to thyroid status in ring deiodination. Three different types of iodothyronine an opposite and conserved way, while the response of D1 is deiodinases (D1, D2 and D3) have been identified in variable, especially in fish. Recently, a number of deiodinases vertebrates from fish to mammals. They share several have been cloned from lower chordates. Both urochordates common characteristics, including a selenocysteine residue and cephalochordates possess selenodeiodinases, although in their catalytic centre, but show also some type-specific they cannot be classified in one of the three vertebrate types. differences. These specific characteristics seem very well In addition, the cephalochordate amphioxus also expresses conserved for D2 and D3, while D1 shows more evolutionary a non-selenodeiodinase. Finally, deiodinase-like sequences diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity have been identified in the genome of non-deuterostome and dependence on dithiothreitol as a cofactor in vitro.
    [Show full text]
  • Imprinted Gene Expression at the Dlk1-Dio3 Cluster Is Controlled by Both Maternal and Paternal
    bioRxiv preprint doi: https://doi.org/10.1101/536102; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Imprinted gene expression at the Dlk1-Dio3 cluster is controlled by both maternal and paternal IG-DMRs in a tissue-specific fashion. Katherine A. Alexander 2 and María J. García-García 1* 1 Department of Molecular Biology and Genetics, Cornell University. Ithaca. NY. 14853. USA 2 Current address: Department of Cellular and Developmental Biology, University of Pennsylvania. Philadelphia PA, 19103, USA * corresponding author: [email protected] Short title: Tissue-specific imprinting control Keywords: imprinting, TRIM28, IG-DMR, Dlk1, Gtl2, PRO-seq 1 bioRxiv preprint doi: https://doi.org/10.1101/536102; this version posted January 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Imprinting at the Dlk1-Dio3 cluster is controlled by the IG-DMR, an imprinting control region differentially methylated between maternal and paternal chromosomes. The maternal IG-DMR is essential for imprinting control, functioning as a cis enhancer element. Meanwhile, DNA methylation at the paternal IG-DMR is thought to prevent enhancer activity. To explore whether suppression of enhancer activity at the methylated IG-DMR requires the transcriptional repressor TRIM28, we analyzed Trim28chatwo embryos and performed epistatic experiments with IG-DMR deletion mutants. We found that while TRIM28 regulates the enhancer properties of the paternal IG-DMR, it also controls imprinting through other mechanisms.
    [Show full text]
  • Decreased Expression of the Thyroid Hormone-Inactivating Enzyme Type
    www.nature.com/scientificreports OPEN Decreased expression of the thyroid hormone‑inactivating enzyme type 3 deiodinase is associated with lower survival rates in breast cancer Iuri Martin Goemann1, Vicente Rodrigues Marczyk1,5, Mariana Recamonde‑Mendoza2,3, Simone Magagnin Wajner1,5, Marcia Silveira Graudenz4,5 & Ana Luiza Maia 1,5* Thyroid hormones (THs) are critical regulators of cellular processes, while changes in their levels impact all the hallmarks of cancer. Disturbed expression of type 3 deiodinase (DIO3), the main TH‑inactivating enzyme, occurs in several human neoplasms and has been associated with adverse outcomes. Here, we investigated the patterns of DIO3 expression and its prognostic signifcance in breast cancer. DIO3 expression was evaluated by immunohistochemistry in a primary cohort of patients with breast cancer and validated in a second cohort using RNA sequencing data from the TCGA database. DNA methylation data were obtained from the same database. DIO3 expression was present in normal and tumoral breast tissue. Low levels of DIO3 expression were associated with increased mortality in the primary cohort. Accordingly, low DIO3 mRNA levels were associated with an increased risk of death in a multivariate model in the validation cohort. DNA methylation analysis revealed that the DIO3 gene promoter is hypermethylated in tumors when compared to normal tissue. In conclusion, DIO3 is expressed in normal and tumoral breast tissue, while decreased expression relates to poor overall survival in breast cancer patients. Finally, loss of DIO3 expression is associated with hypermethylation of the gene promoter and might have therapeutic implications. Breast cancer is the most common cancer in women worldwide, accounting for more than two million new cancer cases and 14.9% of all cancer-related deaths in women in 2018 1.
    [Show full text]
  • DLK (DLK1) (NM 003836) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC202923 DLK (DLK1) (NM_003836) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: DLK (DLK1) (NM_003836) Human Tagged ORF Clone Tag: Myc-DDK Symbol: DLK1 Synonyms: Delta1; DLK; DLK-1; FA1; pG2; Pref-1; PREF1; ZOG Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC202923 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGACCGCGACCGAAGCCCTCCTGCGCGTCCTCTTGCTCCTGCTGGCTTTCGGCCACAGCACCTATGGGG CTGAATGCTTCCCGGCCTGCAACCCCCAAAATGGATTCTGCGAGGATGACAATGTTTGCAGGTGCCAGCC TGGCTGGCAGGGTCCCCTTTGTGACCAGTGCGTGACCTCTCCCGGCTGCCTTCACGGACTCTGTGGAGAA CCCGGGCAGTGCATTTGCACCGACGGCTGGGACGGGGAGCTCTGTGATAGAGATGTTCGGGCCTGCTCCT CGGCCCCCTGTGCCAACAACGGGACCTGCGTGAGCCTGGACGATGGCCTCTATGAATGCTCCTGTGCCCC CGGGTACTCGGGAAAGGACTGCCAGAAAAAGGACGGGCCCTGTGTGATCAACGGCTCCCCCTGCCAGCAC GGAGGCACCTGCGTGGATGATGAGGGCCGGGCCTCCCATGCCTCCTGCCTGTGCCCCCCTGGCTTCTCAG GCAATTTCTGCGAGATCGTGGCCAACAGCTGCACCCCCAACCCATGCGAGAACGACGGCGTCTGCACTGA CATCGGGGGCGACTTCCGCTGCCGGTGCCCAGCCGGCTTCATCGACAAGACCTGCAGCCGCCCGGTGACC AACTGCGCCAGCAGCCCGTGCCAGAACGGGGGCACCTGCCTGCAGCACACCCAGGTGAGCTACGAGTGTC TGTGCAAGCCCGAGTTCACAGGTCTCACCTGTGTCAAGAAGCGCGCGCTGAGCCCCCAGCAGGTCACCCG TCTGCCCAACGGCTATGGGCTGGCCTACCGCCTGACCCCTGGGGTGCACGAGCTGCCGGTGCAGCAGCCG
    [Show full text]
  • The Lncrna Toolkit: Databases and in Silico Tools for Lncrna Analysis
    non-coding RNA Review The lncRNA Toolkit: Databases and In Silico Tools for lncRNA Analysis Holly R. Pinkney † , Brandon M. Wright † and Sarah D. Diermeier * Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand; [email protected] (H.R.P.); [email protected] (B.M.W.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 29 November 2020; Accepted: 15 December 2020; Published: 16 December 2020 Abstract: Long non-coding RNAs (lncRNAs) are a rapidly expanding field of research, with many new transcripts identified each year. However, only a small subset of lncRNAs has been characterized functionally thus far. To aid investigating the mechanisms of action by which new lncRNAs act, bioinformatic tools and databases are invaluable. Here, we review a selection of computational tools and databases for the in silico analysis of lncRNAs, including tissue-specific expression, protein coding potential, subcellular localization, structural conformation, and interaction partners. The assembled lncRNA toolkit is aimed primarily at experimental researchers as a useful starting point to guide wet-lab experiments, mainly containing multi-functional, user-friendly interfaces. With more and more new lncRNA analysis tools available, it will be essential to provide continuous updates and maintain the availability of key software in the future. Keywords: non-coding RNAs; long non-coding RNAs; databases; computational analysis; bioinformatic prediction software; RNA interactions; coding potential; RNA structure; RNA function 1. Introduction For decades, the human genome was thought to be a desert of ‘junk DNA’ with sporadic oases of transcriptionally active genes, most of them coding for proteins.
    [Show full text]
  • The Long Non-Coding RNA Meg3 Is Dispensable for Hematopoietic Stem Cells
    www.nature.com/scientificreports OPEN The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells Received: 10 October 2018 Pia Sommerkamp1,2,3, Simon Renders1,2, Luisa Ladel1,2, Agnes Hotz-Wagenblatt 4, Accepted: 2 January 2019 Katharina Schönberger1,2,5, Petra Zeisberger1,2, Adriana Przybylla1,2, Markus Sohn1,2, Published: xx xx xxxx Yunli Zhou6, Anne Klibanski6, Nina Cabezas-Wallscheid1,2,5 & Andreas Trumpp1,2 The long non-coding RNA (lncRNA) Maternally Expressed Gene 3 (Meg3) is encoded within the imprinted Dlk1-Meg3 gene locus and is only maternally expressed. Meg3 has been shown to play an important role in the regulation of cellular proliferation and functions as a tumor suppressor in numerous tissues. Meg3 is highly expressed in mouse adult hematopoietic stem cells (HSCs) and strongly down-regulated in early progenitors. To address its functional role in HSCs, we used MxCre to conditionally delete Meg3 in the adult bone marrow of Meg3mat-fox/pat-wt mice. We performed extensive in vitro and in vivo analyses of mice carrying a Meg3 defcient blood system, but neither observed impaired hematopoiesis during homeostatic conditions nor upon serial transplantation. Furthermore, we analyzed VavCre Meg3mat-fox/pat-wt mice, in which Meg3 was deleted in the embryonic hematopoietic system and unexpectedly this did neither generate any hematopoietic defects. In response to interferon-mediated stimulation, Meg3 defcient adult HSCs responded highly similar compared to controls. Taken together, we report the fnding, that the highly expressed imprinted lncRNA Meg3 is dispensable for the function of HSCs during homeostasis and in response to stress mediators as well as for serial reconstitution of the blood system in vivo.
    [Show full text]
  • The Dlk1 and Gtl2 Genes Are Linked and Reciprocally Imprinted
    Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press RESEARCH COMMUNICATION entially methylated cis-acting imprinting control ele- The Dlk1 and Gtl2 genes are ment (Thorvaldson et al. 1998). Third, a majority of im- linked and reciprocally printed genes for which a function has been identified imprinted code for proteins involved in the control of embryonic growth (Tilghman 1999). Jennifer V. Schmidt,1,2 Paul G. Matteson,2 Given the role of imprinted genes in fetal growth it is Beverly K. Jones, Xiao-Juan Guan, not surprising that they are often expressed in the pla- and Shirley M. Tilghman3 centa, the primary tissue regulating nutrient transfer be- tween mother and fetus. To identify new imprinted Howard Hughes Medical Institute and Department genes, we designed an allelic differential display strategy of Molecular Biology, Princeton University, Princeton, (Hagiwara et al. 1997) using placental mRNA derived New Jersey 08544 USA from two closely related species of North American deer mice, Peromyscus maniculatus (BW) and Peromyscus Genes subject to genomic imprinting exist in large chro- polionotus (PO). These mice display a high degree of mosomal domains, probably reflecting coordinate regu- polymorphism (Vrana et al. 1998), making them useful lation of the genes within a cluster. Such regulation has for screens that depend on allelic differences. been demonstrated for the H19, Igf2, and Ins2 genes that We report here the paternal-specific expression of the share a bifunctional imprinting control region. We have Delta-like (Dlk1) gene in both Peromyscus and the labo- identified the Dlk1 gene as a new imprinted gene that is ratory mouse genus Mus.
    [Show full text]
  • Dysfunction of the WT1-MEG3 Signaling Promotes AML Leukemogenesis Via P53-Dependent and -Independent Pathways
    OPEN Leukemia (2017) 31, 2543–2551 www.nature.com/leu ORIGINAL ARTICLE Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways YLyu1,2,7, J Lou1,3,7, Y Yang1,2,7, J Feng1,7, Y Hao1, S Huang1, L Yin1,2,JXu1, D Huang1,2,BMa1,3, D Zou1, Y Wang1,2, Y Zhang1, B Zhang3, P Chen4,KYu5, EW-F Lam6, X Wang1, Q Liu1,JYan1,2 and B Jin1 Long non-coding RNAs (lncRNAs) play a pivotal role in tumorigenesis, exemplified by the recent finding that lncRNA maternally expressed gene 3 (MEG3) inhibits tumor growth in a p53-dependent manner. Acute myeloid leukemia (AML) is the most common malignant myeloid disorder in adults, and TP53 mutations or loss are frequently detected in patients with therapy-related AML or AML with complex karyotype. Here, we reveal that MEG3 is significantly downregulated in AML and suppresses leukemogenesis not only in a p53-dependent, but also a p53-independent manner. In addition, MEG3 is proven to be transcriptionally activated by Wilms’ tumor 1 (WT1), dysregulation of which by epigenetic silencing or mutations is causally involved in AML. Therefore MEG3 is identified as a novel target of the WT1 molecule. Ten–eleven translocation-2 (TET2) mutations frequently occur in AML and significantly promote leukemogenesis of this disorder. In our study, TET2, acting as a cofactor of WT1, increases MEG3 expression. Taken together, our work demonstrates that TET2 dysregulated WT1-MEG3 axis significantly promotes AML leukemogenesis, paving a new avenue for diagnosis and treatment of AML patients.
    [Show full text]
  • The Interaction Between P53 and Mdm2 Is Independent of MEG3–P53 Association
    bioRxiv preprint doi: https://doi.org/10.1101/857912; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The interaction between p53 and Mdm2 is independent of MEG3–p53 association Nicholas C. Bauera, Anli Yangb,†,§, Xin Wangb,†,‖, Yunli Zhoub, Anne Klibanskib,‡,¶, Roy J. Sobermana,*,‡ a Division of Nephrology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129 b Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114 * To whom correspondence should be addressed. Tel: +1 617-455-2003; Email: [email protected] † These authors contributed equally to the work ‡ These authors contributed equally to the work § Current affiliation: Department of Histology and Embryology, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China ‖ Current affiliation: Department of Breast Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China ¶ Current affiliation: Partners Healthcare, Somerville, MA bioRxiv preprint doi: https://doi.org/10.1101/857912; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Bauer et al. – Page 2 ABSTRACT The ability of the long noncoding RNA MEG3 to suppress cell proliferation led to its recognition as a tumor suppressor.
    [Show full text]
  • New Mesh Headings for 2018 Single Column After Cutover
    New MeSH Headings for 2018 Listed in alphabetical order with Heading, Scope Note, Annotation (AN), and Tree Locations 2-Hydroxypropyl-beta-cyclodextrin Derivative of beta-cyclodextrin that is used as an excipient for steroid drugs and as a lipid chelator. Tree locations: beta-Cyclodextrins D04.345.103.333.500 D09.301.915.400.375.333.500 D09.698.365.855.400.375.333.500 AAA Domain An approximately 250 amino acid domain common to AAA ATPases and AAA Proteins. It consists of a highly conserved N-terminal P-Loop ATPase subdomain with an alpha-beta-alpha conformation, and a less-conserved C- terminal subdomain with an all alpha conformation. The N-terminal subdomain includes Walker A and Walker B motifs which function in ATP binding and hydrolysis. Tree locations: Amino Acid Motifs G02.111.570.820.709.275.500.913 AAA Proteins A large, highly conserved and functionally diverse superfamily of NTPases and nucleotide-binding proteins that are characterized by a conserved 200 to 250 amino acid nucleotide-binding and catalytic domain, the AAA+ module. They assemble into hexameric ring complexes that function in the energy-dependent remodeling of macromolecules. Members include ATPASES ASSOCIATED WITH DIVERSE CELLULAR ACTIVITIES. Tree locations: Acid Anhydride Hydrolases D08.811.277.040.013 Carrier Proteins D12.776.157.025 Abuse-Deterrent Formulations Drug formulations or delivery systems intended to discourage the abuse of CONTROLLED SUBSTANCES. These may include physical barriers to prevent chewing or crushing the drug; chemical barriers that prevent extraction of psychoactive ingredients; agonist-antagonist combinations to reduce euphoria associated with abuse; aversion, where controlled substances are combined with others that will produce an unpleasant effect if the patient manipulates the dosage form or exceeds the recommended dose; delivery systems that are resistant to abuse such as implants; or combinations of these methods.
    [Show full text]