Heterochrony the Evolution 0/ Ontogeny Heterochrony the Evolution of Ontogeny

Total Page:16

File Type:pdf, Size:1020Kb

Heterochrony the Evolution 0/ Ontogeny Heterochrony the Evolution of Ontogeny Heterochrony The Evolution 0/ Ontogeny Heterochrony The Evolution of Ontogeny Michael L. McKinney The University 0/ Tennessee Knoxville, Tennessee and Kenneth J. McNamara Western Australian Museum Perth, Western Austra/ia Australia Springer Science+Business Media, LLC Library of Congress Cataloging in Publidation Data McKinney, Michael L. Heterochrony: the evolution of ontogeny I Michael L. McKinney and Kenneth J. McNamara. p. em. Includes bibliographical references (p. ) and index. ISBN 978-1-4757-0775-5 ISBN 978-1-4757-0773-1 (eBook) DOI 10.1007/978-1-4757-0773-1 I. Heterochrony (Biology). I. McNamara, Kenneth. II. Title. QH395.M34 1991 91-6371 575-dc20 CIP ISBN 978-1-4757-0775-5 © 1991 Springer Science+Business Media New York Originally published by Plenum Press, New York in I 99 I All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher We dedicate this book to our wives, Victoria M. McKinney and Susan Radford, for sharing so much of their ontogenies with ours. Preface and Preview Many readers will have noticed the recent trend toward quotations at the beginnings of chapters in scientijic boons. Often these quotes are sappy, dippy linIe things as if the authors of the boon were strugglingfor profundity. Perhaps they want 10 give their self-indulgent esoteric musings so me hint of relevance to the rapidly deteriorating human candition, to cast a shadow of importanee over the gray wall of clinical facts to follow. Most pathetie of all is the hopeless clod who quotes himself. He is, in eIfeet, baldly stating that he Iws, with his own mind, assembled something profound, clever, or at least amusing to his fellow primates. This kind of canceit will detract from his scientijic standing. Nor should humor be attempted, at any cast; it represents a distraction to the clear , analytical thought necessary for Scientijic Progress. M. L. McKinney, from "Jawless Fish and Hairless Apes: Ruminations from Edge of the Photic Zone" (unpublished) PREFACE In the past, the study of hetcrochrony has becn more conducive to lexicography (or even cryptography) than to improving our understanding of evolution and development. This book is an attempt to correct that. We have tried to say, as directly as possible, what we think heterochrony is, how it works, and what role it plays in evolution. It is written for anyone (students, colleagues in any field) who has an interest in learning more about it. Thus, we have tried to organize the book in a logical, straightforward progression, used boldfaced (for primary emphasis) and italicized (for secondary emphasis) terms, and included a glossary of terms. We have tried to keep [he style informal. Parts are bound to vii viii PREFACE AND PREVIEW seem e1ementary to specialists in those areas, but our purpose is to integrate a broad range of information, not excavate deeply in just one area. In part, then, the book is a primer. However, a book of this nature should not only educate but also stimulate, so that, after presenting the basics, we have tried to delve into the knotty, problematic areas. [nevitably, this grades into speculation at so me points, but this is a necessary part of scientific progress; it helps point out areas of future research, if only by irritating people. The problem of course is just where speculation StopS being creative inference and becomes irresponsible nonsense. We have tried to take a moder­ ate course, but it is particularly difficult in this area of research because so litde is known about major aspects of it. Yet, if science is to tie all the loose ends together, it is going to take so me creative thought. [n any case, even the developmentally informed reader is likely to find a few heresies, and surprising twists and turns in the plot that folIows. Just remember our goal is to inform and stimulate, not assert. The number of "Ioose ends" extends far beyond the " black box" of development and genes when we consider the role of development in evolution, how development can interact with ecology (affecting life history tactics and behavior, not only size and morphology), and its ultima te role in macroevolutionary patterns. How much does devel­ opment " constrain" evolution? (While acknowledging that "constraint" is an overused and misleading term; e.g., why not say that selection "constrains" development?) The role of development is one of the (perhaps "the") fastest growing and most exciting areas of inquiry in evolutionary theory. As Futuyama (1988) has discussed in his presidential address to the Society for the Study of Evolution, we gready need an understanding of the origin of variation to have a complete theory of evolution. Since Darwin, the emphasis has been on selection, yet selection can obviously only act upon variation created by genes and developmental processes. With the growth of knowledge in genetics and developmental biology, it is time to examine the other side of the dialectic: how much is directionality and rate of evolution " controlled" (or the milder word, " constrained") by the production of variation. That is , how much is "internally" controlled? While this book (and others like it) addresses this, the jury is still out. We need much more empiri­ cal information, especially about the dynamics of development. [n asense, this requires a shift of focus from the genetic level to the cellular (and its collective unit: the tissue) level (e .g., Buss, 1987). Cells are the basic unit of the organism, yet clearly metazoans (and metaphytes) do not consist of or develop by freely moving groups of cells. To understand why (and in what way) they do not, is to understand the dynamics of ontogeny. In this book, such a cellular approach (especially Chapter 3) is promoted. Aside from the growth of new information on development, another stimulus to the rising interest in its role in evolution is the rise of interest among evolutionists in hierar­ chies. It is easy to talk about hierarchies, but people have long known (at least implicitly) that complex phenomena have levels, each with emergent properties. It is only by learning the specifics of those emergent properties that we can create a theory of evolu­ tion that will do what truly complete theory must do: und erstand the connections (or, interactions) among the levels in the hierarchy. The amactive thing to us (and, perhaps, many others) is that the "properties" of development are at an intermediate level which allows such linkage: above the genes but below the individual organism interacting with its ecosystem. PREFACE AND PREVIEW ix PREVIEW We begin (Chapter 1) with an overview of the history of ideas about heterochrony. This is followed (Chapter 2) bya discussion of what heterochrony is: how does one classify and analyze it? We hope that many who have been "turned off" by the past profusion of terms will be helped by our approach. In particular, we use bivariate graphs (both size-shape and size-age) as heuristic lOols; these are also useful in distinguishing be­ tween age-based and size-based heterochrony. This encompasses the key relationship between allometry and heterochrony. We also consider a number of problems, such as determining ontogenetic age and dealing with noncomparable ontogenetic stages. After introducing such basic terms and ideas in Chapter 2, Chapter 3 attempts lo answer the question of what causes heterochrony. This is a much more difficult question than has often been implied. Obviously, genetic changes are the ultima te cause but concepts such as " rate" and " timing" genes have been greatly oversimplified. There are many kinds of "regulatory genes," at many levels in a regulatory hierarchy, in which not only develop­ mental, but also many other kinds Ce.g., physiological) of genes and processes are regu­ lated. Further, many heterochronic genes are not " programmed" lo regulate the "rate" of developmental processes but can affect them indirectly, by changing the flow of information via (e.g.) change in structural parameters. When we turn lo the cellular (tissue) levels of heterochronic causation (also Chapter 3), we find that here loo there has been much oversimplification. In particular, "heter­ ochrony" in the past has been limited lo late-stage allometric (size-shape) changes in ontogeny. Because of this, heterochrony has been little more than a " taxonomy" of patterns rebting simple shape changes between ancestral and descendant ontogenies. Yet, we show [extending the earlier work of Hall (1983, 1984)J that the same kinds of rate/timing changes, when occurring earlier in ontogeny, can cause radical changes in morphology, by changing the time of tissue induction, to create new tissues, eliminate old ones, or just change tissue configuration. This kind of heterochrony we call "differ­ entiative heterochrony" to denote its occurrence before differentiation. Later, more traditional kinds are called "growth heterochronies." Again, we use heuristic tools to illustrate the concepts, this time in the form of morphogenetic trees to represent develop­ ment as cellular assembly with shared, then diverging, histories. In keeping with the cellular view, heterochrony in this light is redefined as change in rate or timing of cell dialogues. Thus, we spend so me time on biochemical media tors and other aspects of how cells communicate, and how changes in this communication can occur (often, not by change in the usual "rate/timing" genes, as noted). In Chapter 4, we leave the classification and mechanisms of ontogenetic change (i.e., the production of variation) and begin to examine how that variation is acted upon. We say " begin" because this is a transitional chapter in that environment is seen not only as a "sieve " selecting intrinsically produced variation, but also as acting directly upon onrogeny to cause heterochronic variation itself.
Recommended publications
  • Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
    Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development.
    [Show full text]
  • Review Heterochronic Genes and the Nature of Developmental Time
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Current Biology 17, R425–R434, June 5, 2007 ª2007 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2007.03.043 Heterochronic Genes and the Nature of Review Developmental Time Eric G. Moss that have arisen to solve the problem of regulated tim- ing in animal development. Timing is a fundamental issue in development, with Heterochrony and Developmental Timing a range of implications from birth defects to evolu- in Evolution tion. In the roundworm Caenorhabditis elegans, Changes in developmental timing have long been be- the heterochronic genes encode components of lieved to be a major force in the evolution of morphol- a molecular developmental timing mechanism. This ogy [1]. A variety of changes is encompassed by the mechanism functions in diverse cell types through- concept of ‘heterochrony’ — differences in the relative out the animal to specify cell fates at each larval timing of developmental events between two closely stage. MicroRNAs play an important role in this related species. A classic example of heterochrony is mechanism by stage-specifically repressing cell- the axolotl. This salamander reaches sexual maturity fate regulators. Recent studies reveal the surprising without undergoing metamorphosis, such that its complexity surrounding this regulation — for exam- non-gonadal tissues retain larval features of other ple, a positive feedback loop may make the regula- salamanders. Different species of axolotls exhibit ge- tion more robust, and certain components of the netic differences in the production or activity of thyroid mechanism are expressed in brief periods at each hormones that trigger metamorphosis from aquatic stage.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • An Ontogenetic Switch Drives the Positive and Negative Selection of B Cells
    An ontogenetic switch drives the positive and negative selection of B cells Xijin Xua, Mukta Deobagkar-Lelea, Katherine R. Bulla, Tanya L. Crockforda, Adam J. Meadb, Adam P. Cribbsc, David Simsc, Consuelo Anzilottia, and Richard J. Cornalla,1 aMedical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; bMedical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom; and cMedical Research Council, Weatherall Institute of Molecular Medicine, Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom Edited by Michael Reth, University of Freiburg, Freiburg, Germany, and approved January 6, 2020 (received for review September 3, 2019) + Developing B cells can be positively or negatively selected by self- BM HSCs increased CD5 B-1a B cell development (15), while antigens, but the mechanisms that determine these outcomes are expression of let-7b in FL pro-B cells blocked the development of incompletely understood. Here, we show that a B cell intrinsic B-1 B cells (17). These findings support the notion of hard-wired switch between positive and negative selection during ontogeny differences during ontogeny, but possibly downstream of the HSC is determined by a change from Lin28b to let-7 gene expression. commitment stage. Ectopic expression of a Lin28b transgene in murine B cells restored Several lines of evidence also suggest that B-1 B cells can un- the positive selection of autoreactive B-1 B cells by self-antigen in dergo positive selection, which is linked to their B cell receptor adult bone marrow.
    [Show full text]
  • Sonic Hedgehog Signaling in Limb Development
    REVIEW published: 28 February 2017 doi: 10.3389/fcell.2017.00014 Sonic Hedgehog Signaling in Limb Development Cheryll Tickle 1* and Matthew Towers 2* 1 Department of Biology and Biochemistry, University of Bath, Bath, UK, 2 Department of Biomedical Science, The Bateson Centre, University of Sheffield, Western Bank, Sheffield, UK The gene encoding the secreted protein Sonic hedgehog (Shh) is expressed in the polarizing region (or zone of polarizing activity), a small group of mesenchyme cells at the posterior margin of the vertebrate limb bud. Detailed analyses have revealed that Shh has the properties of the long sought after polarizing region morphogen that specifies positional values across the antero-posterior axis (e.g., thumb to little finger axis) of the limb. Shh has also been shown to control the width of the limb bud by stimulating mesenchyme cell proliferation and by regulating the antero-posterior length of the apical ectodermal ridge, the signaling region required for limb bud outgrowth and the laying down of structures along the proximo-distal axis (e.g., shoulder to digits axis) of the limb. It has been shown that Shh signaling can specify antero-posterior positional values in Edited by: limb buds in both a concentration- (paracrine) and time-dependent (autocrine) fashion. Andrea Erika Münsterberg, University of East Anglia, UK Currently there are several models for how Shh specifies positional values over time in the Reviewed by: limb buds of chick and mouse embryos and how this is integrated with growth. Extensive Megan Davey, work has elucidated downstream transcriptional targets of Shh signaling. Nevertheless, it University of Edinburgh, UK Robert Hill, remains unclear how antero-posterior positional values are encoded and then interpreted University of Edinburgh, UK to give the particular structure appropriate to that position, for example, the type of digit.
    [Show full text]
  • Avian Tail Ontogeny, Pygostyle Formation, and Interpretation of Juvenile Mesozoic Specimens Received: 27 March 2018 Dana J
    www.nature.com/scientificreports OPEN Avian tail ontogeny, pygostyle formation, and interpretation of juvenile Mesozoic specimens Received: 27 March 2018 Dana J. Rashid1, Kevin Surya2, Luis M. Chiappe3, Nathan Carroll3, Kimball L. Garrett4, Bino Accepted: 23 May 2018 Varghese5, Alida Bailleul6,7, Jingmai K. O’Connor 7, Susan C. Chapman 8 & John R. Horner1,9 Published: xx xx xxxx The avian tail played a critical role in the evolutionary transition from long- to short-tailed birds, yet its ontogeny in extant birds has largely been ignored. This defcit has hampered eforts to efectively identify intermediate species during the Mesozoic transition to short tails. Here we show that fusion of distal vertebrae into the pygostyle structure does not occur in extant birds until near skeletal maturity, and mineralization of vertebral processes also occurs long after hatching. Evidence for post-hatching pygostyle formation is also demonstrated in two Cretaceous specimens, a juvenile enantiornithine and a subadult basal ornithuromorph. These fndings call for reinterpretations of Zhongornis haoae, a Cretaceous bird hypothesized to be an intermediate in the long- to short-tailed bird transition, and of the recently discovered coelurosaur tail embedded in amber. Zhongornis, as a juvenile, may not yet have formed a pygostyle, and the amber-embedded tail specimen is reinterpreted as possibly avian. Analyses of relative pygostyle lengths in extant and Cretaceous birds suggests the number of vertebrae incorporated into the pygostyle has varied considerably, further complicating the interpretation of potential transitional species. In addition, this analysis of avian tail development reveals the generation and loss of intervertebral discs in the pygostyle, vertebral bodies derived from diferent kinds of cartilage, and alternative modes of caudal vertebral process morphogenesis in birds.
    [Show full text]
  • 2019.12.20.883900V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Sequence heterochrony led to a gain of functionality in an immature 3 stage of the central complex: a fly-beetle insight 4 Short title: Sequence heterochrony in central complex evolution 5 6 Authors: 7 Max S. Farnwortha,c, Kolja N. Eckermannb,c, Gregor Buchera,* 8 9 a Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, 10 University of Göttingen, Göttingen, Germany, b Department of Developmental Biology, Johann-Friedrich- 11 Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany, c Göttingen Graduate Center for 12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany 13 14 * Corresponding author: Gregor Bucher 15 Email: [email protected] 16 17 ORCID: Max S. Farnworth https://orcid.org/0000-0003-2418-3203, Gregor Bucher 18 https://orcid.org/0000-0002-4615-6401 19 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883900; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 20 Abstract 21 Animal behavior is guided by the brain.
    [Show full text]
  • Homeobox Genes D11–D13 and A13 Control Mouse Autopod Cortical
    Research article Homeobox genes d11–d13 and a13 control mouse autopod cortical bone and joint formation Pablo Villavicencio-Lorini,1,2 Pia Kuss,1,2 Julia Friedrich,1,2 Julia Haupt,1,2 Muhammed Farooq,3 Seval Türkmen,2 Denis Duboule,4 Jochen Hecht,1,5 and Stefan Mundlos1,2,5 1Max Planck Institute for Molecular Genetics, Berlin, Germany. 2Institute for Medical Genetics, Charité, Universitätsmedizin Berlin, Berlin, Germany. 3Human Molecular Genetics Laboratory, National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan. 4National Research Centre Frontiers in Genetics, Department of Zoology and Animal Biology, University of Geneva, Geneva, Switzerland. 5Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité, Universitätsmedizin Berlin, Berlin, Germany. The molecular mechanisms that govern bone and joint formation are complex, involving an integrated network of signaling pathways and gene regulators. We investigated the role of Hox genes, which are known to specify individual segments of the skeleton, in the formation of autopod limb bones (i.e., the hands and feet) using the mouse mutant synpolydactyly homolog (spdh), which encodes a polyalanine expansion in Hoxd13. We found that no cortical bone was formed in the autopod in spdh/spdh mice; instead, these bones underwent trabecular ossification after birth. Spdh/spdh metacarpals acquired an ovoid shape and developed ectopic joints, indicating a loss of long bone characteristics and thus a transformation of metacarpals into carpal bones. The perichon- drium of spdh/spdh mice showed abnormal morphology and decreased expression of Runt-related transcription factor 2 (Runx2), which was identified as a direct Hoxd13 transcriptional target. Hoxd11–/–Hoxd12–/–Hoxd13–/– tri- ple-knockout mice and Hoxd13–/–Hoxa13+/– mice exhibited similar but less severe defects, suggesting that these Hox genes have similar and complementary functions and that the spdh allele acts as a dominant negative.
    [Show full text]
  • Evolutionary Developmental Biology 573
    EVOC20 29/08/2003 11:15 AM Page 572 Evolutionary 20 Developmental Biology volutionary developmental biology, now often known Eas “evo-devo,” is the study of the relation between evolution and development. The relation between evolution and development has been the subject of research for many years, and the chapter begins by looking at some classic ideas. However, the subject has been transformed in recent years as the genes that control development have begun to be identified. This chapter looks at how changes in these developmental genes, such as changes in their spatial or temporal expression in the embryo, are associated with changes in adult morphology. The origin of a set of genes controlling development may have opened up new and more flexible ways in which evolution could occur: life may have become more “evolvable.” EVOC20 29/08/2003 11:15 AM Page 573 CHAPTER 20 / Evolutionary Developmental Biology 573 20.1 Changes in development, and the genes controlling development, underlie morphological evolution Morphological structures, such as heads, legs, and tails, are produced in each individual organism by development. The organism begins life as a single cell. The organism grows by cell division, and the various cell types (bone cells, skin cells, and so on) are produced by differentiation within dividing cell lines. When one species evolves into Morphological evolution is driven another, with a changed morphological form, the developmental process must have by developmental evolution changed too. If the descendant species has longer legs, it is because the developmental process that produces legs has been accelerated, or extended over time.
    [Show full text]
  • Epigenetics and the Biological Definition of Gene × Environment
    Child Development, January/February 2010, Volume 81, Number 1, Pages 41–79 Epigenetics and the Biological Definition of Gene · Environment Interactions Michael J. Meaney McGill University Variations in phenotype reflect the influence of environmental conditions during development on cellular functions, including that of the genome. The recent integration of epigenetics into developmental psychobiol- ogy illustrates the processes by which environmental conditions in early life structurally alter DNA, provid- ing a physical basis for the influence of the perinatal environmental signals on phenotype over the life of the individual. This review focuses on the enduring effects of naturally occurring variations in maternal care on gene expression and phenotype to provide an example of environmentally driven plasticity at the level of the DNA, revealing the interdependence of gene and environmental in the regulation of phenotype. The nature–nurture debate is essentially a question prevention and intervention programs. In the social of the determinants of individual differences in the sciences, and particularly psychology, there has expression of specific traits among members of the generally been an understandable bias in favor of same species. The origin of the terms nature and explanations derived from the ‘‘nurture’’ perspec- nurture has been credited to Richard Mulcaster, a tive, which emphasizes the capacity for environ- British teacher who imagined these influences as mentally induced plasticity in brain structure and collaborative forces that shape child development function. Nevertheless, over recent decades there (West & King, 1987). History has conspired to per- has been a gradual, if at times reluctant acceptance vert Mulcaster’s intent, casting genetic and environ- that genomic variations contribute to individual dif- mental influences as independent agents in the ferences in brain development and function.
    [Show full text]
  • Evolution of Morphology: Modifications to Size and Pattern
    Evolution of Morphology: Modifications to Size and Pattern The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Uygur, Aysu N. 2014. Evolution of Morphology: Modifications to Size and Pattern. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274611 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Evolution of Morphology: Modifications to Size and Pattern A dissertation presented by Aysu N. Uygur to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Genetics Harvard University Cambridge, Massachusetts May, 2014 iii © 2014 by Aysu N. Uygur All Rights Reserved iv Dissertation Advisor: Dr. Clifford J. Tabin Aysu N. Uygur Evolution of Morphology: Modifications to Size and Pattern Abstract A remarkable property of developing organisms is the consistency and robustness within the formation of the body plan. In many animals, morphological pattern formation is orchestrated by conserved signaling pathways, through a process of strict spatio-temporal regulation of cell fate specification. Although morphological patterns have been the focus of both classical and recent studies, little is known about how this robust process is modified throughout evolution to accomodate different morphological adaptations. In this dissertation, I first examine how morphological patterns are conserved throughout the enourmous diversity of size in animal kingdom.
    [Show full text]
  • The Evolutionary Embryologist Gavin Rylands De Beer (1899–1972)
    Homology and Heterochrony: The Evolutionary Embryologist Gavin Rylands de Beer (1899–1972) Ingo Brigandt Department of History and Philosophy of Science University of Pittsburgh 1017 Cathedral of Learning Pittsburgh, PA 15260 USA E-mail: [email protected] Preprint of an article published in 2006 in the Journal of Experimental Zoology (Part B: Molecular and Developmental Evolution) 306B: 317–328 www.interscience.Wiley.com GAVIN RYLANDS DE BEER (1899–1972) 2 Abstract The evolutionary embryologist Gavin Rylands de Beer can be viewed as one of the forerunners of modern evolutionary developmental biology in that he posed crucial questions and proposed relevant answers about the causal relationship between ontogeny and phylogeny. In his developmental approach to the phylogenetic phenomenon of homology, he emphasized that homology of morphological structures is to be identified neither with the sameness of the underlying developmental processes nor with the homology of the genes that are in involved in the development of the structures. De Beer’s work on developmental evolution focused on the notion of heterochrony, arguing that paedomorphosis increases morphological evolvability and is thereby an important mode of evolution that accounts for the origin of many taxa, including higher taxa. GAVIN RYLANDS DE BEER (1899–1972) 3 Gavin Rylands de Beer (Fig. 1) was born in England in 1899, but spent the first 13 years of his life in France, where his father worked as a correspondent of a telegraph company. After returning to England, he went to Harrow School, where he became interested in zoology. In 1917 he entered Magdalen College at Oxford, graduating in 1922 after a leave for serving in the British Army during World War I.
    [Show full text]