Protocol C4591001

Total Page:16

File Type:pdf, Size:1020Kb

Protocol C4591001 PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 A PHASE 1/2/3, PLACEBO-CONTROLLED, RANDOMIZED, OBSERVER-BLIND, DOSE-FINDING STUDY TO EVALUATE THE SAFETY, TOLERABILITY, IMMUNOGENICITY, AND EFFICACY OF SARS-COV-2 RNA VACCINE CANDIDATES AGAINST COVID-19 IN HEALTHY INDIVIDUALS Study Sponsor: BioNTech Study Conducted By: Pfizer Study Intervention Number: PF-07302048 Study Intervention Name: RNA-Based COVID-19 Vaccines US IND Number: 19736 EudraCT Number: 2020-002641-42 Protocol Number: C4591001 Phase: 1/2/3 Short Title: A Phase 1/2/3 Study to Evaluate the Safety, Tolerability, Immunogenicity, and Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Individuals Page 1 PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 TABLE OF CONTENTS LIST OF TABLES .....................................................................................................................8 1. PROTOCOL SUMMARY .....................................................................................................9 1.1. Synopsis ....................................................................................................................9 1.2. Schema ....................................................................................................................17 1.3. Schedule of Activities .............................................................................................18 1.3.1. Phase 1 ........................................................................................................18 1.3.2. Phase 2/3 .....................................................................................................23 2. INTRODUCTION ...............................................................................................................26 2.1. Study Rationale .......................................................................................................26 2.2. Background .............................................................................................................26 2.2.1. Clinical Overview .......................................................................................27 2.3. Benefit/Risk Assessment .........................................................................................27 2.3.1. Risk Assessment .........................................................................................29 2.3.2. Benefit Assessment .....................................................................................31 2.3.3. Overall Benefit/Risk Conclusion ................................................................31 3. OBJECTIVES, ESTIMANDS, AND ENDPOINTS ...........................................................31 3.1. For Phase 1 ..............................................................................................................31 3.2. For Phase 2/3 ...........................................................................................................33 4. STUDY DESIGN.................................................................................................................36 4.1. Overall Design .........................................................................................................36 4.1.1. Phase 1 ........................................................................................................36 4.1.2. Phase 2/3 .....................................................................................................37 4.2. Scientific Rationale for Study Design .....................................................................39 4.3. Justification for Dose ..............................................................................................39 4.4. End of Study Definition ..........................................................................................40 5. STUDY POPULATION ......................................................................................................40 5.1. Inclusion Criteria .....................................................................................................40 5.2. Exclusion Criteria ....................................................................................................41 Page 2 PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 5.3. Lifestyle Considerations ..........................................................................................44 5.3.1. Contraception ..............................................................................................44 5.4. Screen Failures ........................................................................................................44 5.5. Criteria for Temporarily Delaying Enrollment/Randomization/Study Intervention Administration ......................................................................................44 6. STUDY INTERVENTION ..................................................................................................45 6.1. Study Intervention(s) Administered ........................................................................46 6.1.1. Manufacturing Process ...............................................................................46 6.1.2. Administration ............................................................................................46 6.2. Preparation/Handling/Storage/Accountability ........................................................47 6.2.1. Preparation and Dispensing ........................................................................48 6.3. Measures to Minimize Bias: Randomization and Blinding.....................................48 6.3.1. Allocation to Study Intervention ................................................................48 6.3.2. Blinding of Site Personnel ..........................................................................48 6.3.3. Blinding of the Sponsor ..............................................................................49 6.3.4. Breaking the Blind ......................................................................................50 6.4. Study Intervention Compliance ...............................................................................50 6.5. Concomitant Therapy ..............................................................................................50 6.5.1. Prohibited During the Study .......................................................................50 6.5.2. Permitted During the Study ........................................................................51 6.6. Dose Modification ...................................................................................................51 6.7. Intervention After the End of the Study ..................................................................52 7. DISCONTINUATION OF STUDY INTERVENTION AND PARTICIPANT DISCONTINUATION/WITHDRAWAL ...........................................................................52 7.1. Discontinuation of Study Intervention ....................................................................52 7.2. Participant Discontinuation/Withdrawal From the Study .......................................53 7.2.1. Withdrawal of Consent ...............................................................................53 7.3. Lost to Follow-up ....................................................................................................54 8. STUDY ASSESSMENTS AND PROCEDURES ...............................................................54 8.1. Efficacy and/or Immunogenicity Assessments .......................................................55 8.1.1. Biological Samples .....................................................................................58 8.2. Safety Assessments .................................................................................................58 8.2.1. Clinical Safety Laboratory Assessments (Phase 1 Participants Only) .......59 Page 3 PF-07302048 (BNT162 RNA-Based COVID-19 Vaccines) Protocol C4591001 8.2.2. Electronic Diary ..........................................................................................59 8.2.2.1. Grading Scales ...........................................................................60 8.2.2.2. Local Reactions .........................................................................60 8.2.2.3. Systemic Events ........................................................................61 8.2.2.4. Fever ..........................................................................................62 8.2.2.5. Antipyretic Medication .............................................................62 8.2.3. Phase 1 Stopping Rules ..............................................................................62 8.2.4. Surveillance of Events That Could Represent Enhanced COVID-19 and Phase 2/3 Stopping Rule ...........................................................................64 8.2.5. Randomization and Vaccination After a Stopping Rule Is Met .................64 8.2.6. Pregnancy Testing ......................................................................................65 8.3. Adverse Events and Serious Adverse Events ..........................................................65 8.3.1. Time Period and Frequency for Collecting AE and SAE Information .......65 8.3.1.1. Reporting SAEs to Pfizer Safety ...............................................66 8.3.1.2. Recording Nonserious AEs and SAEs on the CRF ...................66 8.3.2. Method of Detecting AEs and SAEs ..........................................................66 8.3.3. Follow-up of AEs and SAEs
Recommended publications
  • Main Outcomes of Discussion of WHO Consultation on Nucleic Acid
    MAIN OUTCOMES OF DISCUSSION FROM WHO CONSULTATION ON NUCLEIC ACID VACCINES I. Knezevic, R. Sheets 21-23 Feb, 2018 Geneva, Switzerland CONTEXT OF DISCUSSION • WHO Consultation held to determine whether the existing DNA guidelines were due for revision or if they remained relevant with today’s status of nucleic acid vaccine development and maturity towards licensure (marketing authorization) • Presentation will cover alignment to existing guidelines • Current status of development of DNA and RNA vaccines, both prophylactic & therapeutic • Main outcomes of discussion • Next steps already underway & planned STATUS OF DEVELOPMENT OF NUCLEIC ACID VACCINES • First likely candidate to licensure could be a therapeutic DNA vaccine against Human Papilloma Viruses • Anticipated to be submitted for licensure in 3-5 years • Other DNA vaccines are likely to follow shortly thereafter, e.g., Zika prophylaxis • RNA vaccines – less clinical experience, but therapeutic RNAs anticipated in 2021/22 timeframe to be submitted for licensure • For priority pathogens in context of public health emergencies, several candidates under development (e.g., MERS-CoV, Marburg, Ebola) MAIN OUTCOMES - GENERAL • Regulators expressed need for updated DNA guideline for prophylaxis and therapy • Less need at present for RNA vaccines in guideline but need some basic PTC • Flexibility needed now until more experience gained for RNA vaccines that will come in next few years • Revisit need for a more specific guideline at appropriate time for RNA vaccines • Institutional Biosafety Committees are regulated by national jurisdictions & vary considerably • How can WHO assist to streamline or converge these review processes? Particularly, during Public Health Emergency – can anything be done beforehand? MAIN OUTCOMES - DEFINITIONS • Clear Definitions are needed • Proposed definition of DNA vaccine: • A DNA plasmid(s) into which the desired immunogen(s) is (are) encoded and prepared as purified plasmid preparations to be administered in vivo.
    [Show full text]
  • Review of COVID-19 Vaccine Subtypes, Efficacy and Geographical Distributions Andre Ian Francis ‍ ‍ ,1 Saudah Ghany,1 Tia Gilkes,1 Srikanth Umakanthan2
    Review Postgrad Med J: first published as 10.1136/postgradmedj-2021-140654 on 6 August 2021. Downloaded from Review of COVID-19 vaccine subtypes, efficacy and geographical distributions Andre Ian Francis ,1 Saudah Ghany,1 Tia Gilkes,1 Srikanth Umakanthan2 1Department of Clinical Medical ABSTRACT 2021, the Ad26.COV2.S, developed by Janssen Sciences, The Faculty of Medical As of 1 May 2021, there have been 152 661 445 (Johnson & Johnson) and Moderna on 30 April.4 Sciences, The University of the COVAX, coordinated by WHO, Gavi: The West Indies, St. Augustine, Covid-19 cases with 3 202 256 deaths globally. Trinidad and Tobago This pandemic led to the race to discover a vaccine Vaccine Alliance, the Coalition for Epidemic 2Pathology unit, Department to achieve herd immunity and curtail the damaging Preparedness Innovations (CEPI), acts as a of Paraclinical Sciences, The effects of Covid-19. This study aims to discuss the most programme that supports the development of University Of The West Indies, St. COVID-19 vaccine candidates and negotiates their Augustine, Trinidad and Tobago recent WHO-approved Covid-19 vaccine subtypes, their status and geographical scheduled updates as of 4 pricing to ensure low- and- middle- income countries have a fair shot at receiving vaccines.5 Correspondence to May 2021. The keywords “Covid-19, Vaccines, Pfizer, Mr. Andre Ian Francis, The BNT162b2, AstraZeneca, AZD1222, Moderna, mRNA- This article aims at discussing the most recent University of the West Indies, St. 1273, Janssen, Ad26.COV2.S” were typed into PubMed. WHO- approved COVID-19 vaccine subtypes, their Augustine, Trinidad and Tobago; Thirty Two relevant PubMed articles were included in status and geographical scheduled updates as of 4 andre.
    [Show full text]
  • V.5 3/18/2021 1 COVID-19 Vaccine FAQ Sheet
    COVID-19 Vaccine FAQ Sheet (updated 3/18/2021) The AST has received queries from transplant professionals and the community regarding the COVID-19 vaccine. The following FAQ was developed to relay information on the current state of knowledge. This document is subject to change and will be updated frequently as new information or data becomes available. What kinds of vaccines are available or under development to prevent COVID-19? There are currently several vaccine candidates in use or under development. In the United States, the Government is supporting six separate vaccine candidates. Several other vaccines are also undergoing development outside of the United States government sponsorship and further information can be found here: NYTimes Coronavirus Vaccine Tracker: https://www.nytimes.com/interactive/2020/science/coronavirus-vaccine- tracker.html Washington Post Vaccine Tracker: https://www.washingtonpost.com/graphics/2020/health/covid-vaccine-update- coronavirus/ v.5 3/18/2021 1 The types of vaccines are as follows (March 1, 2021) 1: Table 1: Vaccines Under Development or Available Through EUA Vaccine Type Compound Name [Sponsor] Clinical Notes Trial Phase mRNA mRNA-1273 [Moderna] Phase 3 Emergency use in U.S., E.U., other countries Approved in Canada BNT162b2 (Comirnaty) [Pfizer] Phase 2/3 Emergency use in U.S., E.U., other countries Also approved in Canada and other countries Replication- AZD1222 (Covishield) Phase 2/3 Emergency use defective [AstraZeneca] in U.K., India, adenoviral other countries vector (not U.S.) JNJ-78326735/Ad26.COV2.S
    [Show full text]
  • An Update on Self-Amplifying Mrna Vaccine Development
    Review An Update on Self-Amplifying mRNA Vaccine Development Anna K. Blakney 1,* , Shell Ip 2 and Andrew J. Geall 2 1 Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2 Precision NanoSystems Inc., Vancouver, BC V6P 6T7, Canada; [email protected] (S.I.); [email protected] (A.J.G.) * Correspondence: [email protected] Abstract: This review will explore the four major pillars required for design and development of an saRNA vaccine: Antigen design, vector design, non-viral delivery systems, and manufacturing (both saRNA and lipid nanoparticles (LNP)). We report on the major innovations, preclinical and clinical data reported in the last five years and will discuss future prospects. Keywords: RNA; self-amplifying RNA; replicon; vaccine; drug delivery 1. Introduction: The Four Pillars of saRNA Vaccines In December 2019, the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) virus emerged, causing a respiratory illness, coronavirus disease 2019 (COVID-19), in Hubei province, China [1,2]. The virus has spread globally, with the World Health Organization (WHO) declaring it a Public Health Emergency of International concern on 30 January 2020 and a pandemic officially on 7 March 2020 [3]. There is a strong consensus globally that a COVID-19 vaccine is likely the most effective approach to sustainably controlling the COVID-19 pandemic [4]. There has been an unprecedented research effort and global Citation: Blakney, A.K.; Ip, S.; Geall, coordination which has resulted in the rapid development of vaccine candidates and A.J. An Update on Self-Amplifying initiation of human clinical trials.
    [Show full text]
  • 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant
    medRxiv preprint doi: https://doi.org/10.1101/2021.05.14.21257248; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. 1 Title: Interim Report of a Phase 2 Randomized Trial of a Plant-Produced Virus-Like Particle 2 Vaccine for Covid-19 in Healthy Adults Aged 18-64 and Older Adults Aged 65 and Older 3 Authors: Philipe Gobeil1, Stéphane Pillet1, Annie Séguin1, Iohann Boulay1, Asif Mahmood1, 4 Donald C Vinh 2, Nathalie Charland1, Philippe Boutet3, François Roman3, Robbert Van Der 5 Most4, Maria de los Angeles Ceregido Perez3, Brian J Ward1,2†, Nathalie Landry1† 6 Affiliations: 1 Medicago Inc., 1020 route de l’Église office 600, Québec, QC, Canada, G1V 7 3V9; 2 Research Institute of the McGill University Health Centre, 1001 Decarie St, Montreal, 8 QC H4A 3J1; 3 GlaxoSmithKline Biologicals SA (Vaccines), Avenue Fleming 20, 1300 Wavre, 9 Belgium; 4 GlaxoSmithKline Biologicals SA (Vaccines), rue de l’Institut 89, 1330 Rixensart, 10 Belgium; † These individuals are equally credited as senior authors. 11 * Corresponding author: Nathalie Landry, 1020 Route de l’Église, Bureau 600, Québec, Qc, 12 Canada, G1V 3V9; Tel. 418 658 9393; Fax. 418 658 6699; [email protected] 13 Abstract 14 The rapid spread of SARS-CoV-2 globally continues to impact humanity on a global scale with 15 rising morbidity and mortality. Despite the development of multiple effective vaccines, new 16 vaccines continue to be required to supply ongoing demand.
    [Show full text]
  • Revision Rápida
    REVISION RÁPIDA EVALUACIÓN DE LAS CARACTERÍSTICAS DE ALMACENAMIENTO, TRANSPORTE Y DISTRIBUCIÓN DE LAS VACUNAS COVID-19 EN ESTUDIO, Y LAS CARACTERÍSTICAS CLÍNICAS DE LA POBLACIÓN CANDIDATA A VACUNACIÓN Noviembre de 2020 El Instituto de Evaluación Tecnológica en Salud – IETS, es una corporación sin ánimo de lucro, de participación mixta y de carácter privado, con patrimonio propio, creado según lo estipulado en la Ley 1438 de 2011. Su misión es contribuir al desarrollo de mejores políticas públicas y prácticas asistenciales en salud, mediante la producción de información basada en evidencia, a través de la evaluación de tecnologías en salud y guías de práctica clínica, con rigor técnico, independencia y participación. Sus miembros son el Ministerio de Salud y Protección Social – MinSalud, el Departamento Administrativo de Ciencia, Tecnología e Innovación – Colciencias, el Instituto Nacional de Vigilancia de Medicamentos y Alimentos – INVIMA, el Instituto Nacional de Salud – INS, la Asociación Colombiana de Facultades de Medicina – ASCOFAME y la Asociación Colombiana de Sociedades Científicas – ACSC. Autores Lucas López Quiceno. Médico y cirujano, Especialista en Epidemiología, Magister en Epidemiología, Magíster en economía de la salud (c). Instituto de Evaluación Tecnológica en Salud - IETS. Jhyld Carolaind Camacho Barbosa, Nutricionista y Dietista, Magister en Epidemiología. Instituto de Evaluación Tecnológica en Salud - IETS. Kelly Estrada-Orozco. Médica, Magister en Epidemiología Clínica, Magister en Neurociencia. Doctorado en Salud Pública (actual). Doctorado en Epidemiología Clínica (actual). Instituto de Evaluación Tecnológica en Salud - IETS. Revisores Cortes-Muñoz, Ani Julieth. Bacterióloga y laboratorista clínica. MSc. Epidemiología. Instituto de Evaluación Tecnológica en salud - IETS. Ospina-Lizarazo, Nathalie. Nutricionista Dietista. MSc. Epidemiología Clínica. Instituto de Evaluación Tecnológica en salud - IETS.
    [Show full text]
  • Developing a Protocol
    FACILITATOR/MENTOR GUIDE Developing a Protocol Created: 2013 Developing a Protocol. Atlanta, GA: Centers for Disease Control and Prevention (CDC), 2013. DEVELOPING A PROTOCOL Table of Contents LEARNING OBJECTIVES ................................................................................................... 3 ESTIMATED COMPLETION TIME ........................................................................................ 3 TARGET AUDIENCE ......................................................................................................... 3 PRE-WORK AND PREREQUISITES ..................................................................................... 3 MATERIALS .................................................................................................................... 4 OPTIONS FOR FACILITATING THIS TRAINING ....................................................................... 4 ICON GLOSSARY ............................................................................................................ 5 ACKNOWLEDGEMENTS .................................................................................................... 5 FACILITATOR RESPONSIBILITIES ...................................................................................... 7 SECTIONS 1 & 2: INTRODUCTION AND OVERVIEW .............................................................. 8 SECTION 3: WRITING A PROPOSAL OR CONCEPT PAPER ..................................................... 9 SECTION 4: WRITING A DRAFT OF THE PROTOCOL ...........................................................
    [Show full text]
  • Covid-19 Messenger Rna Vaccine
    COVID-19 MESSENGER RNA VACCINE A Piece of the Coronavirus The SARS-CoV-2 virus is studded with proteins that it uses to enter human cells. These so-called spike proteins make a tempting target for potential vaccines and treatments. Image of Coronavirus and spike proteins. Spike CORONAVIRUS protein Spikes gene Like the Pfizer vaccine, Moderna’s vaccine is based on the virus’s genetic instructions for building the spike protein. mRNA Inside an Oily Shell The vaccine uses messenger RNA, genetic material that our cells read to make proteins. The molecule — called mRNA for short — is fragile and would be chopped to pieces by our natural enzymes if it were injected directly into the body. To protect their vaccine, Pfizer and BioNTech wrap mRNA in oily bubbles made of lipid nanoparticles. Lipid nanoparticles surrounding mRNA Entering a Cell After injection, the vaccine particles bump into cells and fuse to them, releasing mRNA. The cell’s molecules read its sequence and build spike proteins. The mRNA from the vaccine is eventually destroyed by the cell, leaving no permanent trace. Vaccine Particle Translating mRNA fuses into Spike Spike Protien, which beaks it into Protein fragmentsmRNA and then destroyed by the Translatingcell nucleus. mRNA Spike Three spike Proteins Combine Cell Nucleus Spike Proteins and Fragments Protruding Displaying Protein Fragments Spikes Some of the spike proteins form spikes that migrate to the surface of the cell and stick out their tips. The vaccinated cells also break up some of the proteins into fragments, which they present on their surface. These protruding spikes and spike protein fragments can then be recognized by the immune system.
    [Show full text]
  • Sample Size for Clinical Trials Martin Bland Prof
    British Standards Institution Study Day Sample size for clinical trials Martin Bland Prof. of Health Statistics University of York http://martinbland.co.uk Outcome variables for trials An outcome variable is one which we hope to change, predict or estimate in a trial. Examples: • Systolic blood pressure in a hypertension trial • Caesarean section rate in an obstetric trial • Survival time in a cancer trial How many outcome variables should I have? If we have many outcome variables: • all possibilities would be covered, • we would be less likely to miss something, • the risk of false positives, finding an apparent effect when there is none in reality, would be increased. If we have few outcome variables: • the trial would be easier and quicker to check and analyse, • the trial would be cheaper, • the trial would be easier for research subjects, • we would avoid multiple testing and the high risk of a false positive result. We get round the problem of multiple testing by having one outcome variable on which the main conclusion stands or falls, the primary outcome variable. If we do not find an effect for this variable, the study has a negative result. Usually we have several secondary outcome variables, to answer secondary questions. A significant difference for one of these would generate further questions to investigate rather than provide clear evidence for a treatment effect. The primary outcome variable must relate to the main aim of the study. Choose one and stick to it. How large a sample should I take? A significance test for comparing two means is more likely to detect a large difference between two populations than a small one.
    [Show full text]
  • Phase 3 Clinical Study Protocol
    ModernaTX, Inc. 20 Aug 2020 Protocol mRNA-1273-P301, Amendment 3 mRNA-1273 CLINICAL STUDY PROTOCOL Protocol Title: A Phase 3, Randomized, Stratified, Observer-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine in Adults Aged 18 Years and Older Protocol Number: mRNA-1273-P301 Sponsor Name: ModernaTX, Inc. Legal Registered Address: 200 Technology Square Cambridge, MA 02139 Sponsor Contact and Tal Zaks, MD, PhD, Chief Medical Officer Medical Monitor: ModernaTX, Inc. 200 Technology Square, Cambridge, MA 02139 Telephone: 1-617-209-5906 e-mail: [email protected] Regulatory Agency Identifier Number(s): IND: 19745 Amendment Number: 3 Date of Amendment 3: 20 Aug 2020 Date of Amendment 2: 31 Jul 2020 Date of Amendment 1: 26 Jun 2020 Date of Original Protocol: 15 Jun 2020 CONFIDENTIAL All financial and nonfinancial support for this study will be provided by ModernaTX, Inc. The concepts and information contained in this document or generated during the study are considered proprietary and may not be disclosed in whole or in part without the expressed written consent of ModernaTX, Inc. The study will be conducted according to the International Council for Harmonisation (ICH) Technical Requirements for Registration of Pharmaceuticals for Human Use, E6(R2) Good Clinical Practice (GCP) Guidance. Confidential Page 1 ModernaTX, Inc. 20 Aug 2020 Protocol mRNA-1273-P301, Amendment 3 mRNA-1273 PROTOCOL APPROVAL – SPONSOR SIGNATORY Study Title: A Phase 3, Randomized, Stratified, Observer-Blind, Placebo-Controlled Study to Evaluate the Efficacy, Safety, and Immunogenicity of mRNA-1273 SARS-CoV-2 Vaccine in Adults Aged 18 Years and Older Protocol Number: mRNA-1273-P301 Protocol Version Date: 20 Aug 2020 Protocol accepted and approved by: See esignature and date signed on last page of document.
    [Show full text]
  • Chapter 13*: EPIDEMIOLOGY
    Monitoring Bathing Waters - A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes Edited by Jamie Bartram and Gareth Rees © 2000 WHO. ISBN 0-419-24390-1 Chapter 13*: EPIDEMIOLOGY * This chapter was prepared by D. Kay and A. Dufour Epidemiological data are frequently used to provide a basis for public health decisions and as an aid to the regulatory process. This is certainly true when developing safeguards for recreational waters where hazardous substances or pathogens discharged to coastal and inland waters may pose a serious risk of illness to individuals who use the waters. Epidemiological studies of human populations not only provide evidence that swimming-associated illness is related to environmental exposure, but also can establish an exposure-response gradient which is essential for developing risk- based regulations. Epidemiology has played a significant role in providing information that characterises risks associated with exposure to faeces contaminated recreational waters. The use of epidemiological studies to define risk associated with swimming in contaminated waters has been criticised because the approach used to collect the data is not experimental in nature. This perception is unlikely to change, given the highly variable environments where recreational exposures take place. Although the variables may be difficult to control, it is possible to carry out credible studies by following certain standard practices that are given below. This Chapter discusses the place of epidemiological investigations in providing information to support recreational water management and the scientific basis of "health-based" regulation. 13.1 Methods employed in recreational water studies Epidemiology is the scientific study of disease patterns in time and space.
    [Show full text]
  • Sample Research Protocol
    Protocol REVITA 2018 April 9, 2018 A Clinical Investigation Evaluating Efficacy of a Full- Thickness Placental Allograft (Revita®) in Lumbar Microdiscectomy Outcomes Primary Investigator: Thomas Morrison III, MD Northside Hospital 1000 Johnson Ferry RD. N.E., Atlanta, GA 30342 Phone: 404-256-2633 Fax: 404-255-6532 Sponsor: StimLabs 1225 Northmeadow Parkway, Suite 104, Roswell, GA 30076 Phone: 888-346-9802 Fax: 470-719-2085 Confidential Page 1 of 19 Protocol REVITA 2018 April 9, 2018 STUDY SUMMARY A Clinical Investigation Evaluating Efficacy of a Full-Thickness Title Placental Allograft (Revita) in Lumbar Microdiscectomy Outcomes Methodology Randomized, controlled trial, blind study Estimated duration for the main protocol (e.g. from start of Study Duration screening to last subject processed and finishing the study) is approximately 2.5 years Multi-center (Polaris Spine and Neurosurgery Center, Atlanta, GA Study Center(s) and Northside Hospital, Atlanta, GA) Primary Objective: To evaluate the efficacy of Revita full thickness placental allograft in improving back and leg pain post- microdiscectomy Objectives Secondary Objectives: To evaluate post-microdiscectomy reherniation rate in patients treated with Revita Number of 182 randomized patients in two arms; Treatment and Control Subjects Inclusion Criteria - Male and female patients, 18-70 years old, in any distribution. - Symptomatic with radiating low back and leg pain for greater than 6 months prior to surgery with a clinical diagnosis of lumbar protruding disc. Diagnosis and - Consent and compliance with all aspects of the study Main Inclusion protocol, methods, providing data during follow-up contact Criteria - See methods section for full list of inclusion criteria Exclusion Criteria - Male and female patients younger than 18 years old or older than 70 years old.
    [Show full text]