<<

Acid Base Disturbance

ภูษิตภูษิต เฟเฟองฟองฟู ู พบพบ.. วววว..ศัศัลยศาตรลยศาตรทั่ทั่วไปวไป,, วววว..เวชบเวชบําบําบัดวัดวิกฤติกฤต กองศกองศัลยกรรมัลยกรรม โรงพยาบาลพระโรงพยาบาลพระมงกมงกุฏุฏเกลเกลาา Overview z BodyBody BufferBuffer SystemSystem z AcidAcid BaseBase disturbancesdisturbances z TreatmentTreatment Definition z AcidsAcids releaserelease HH+ z example:example: HClHCl -->> HH+ ++ ClCl- z BasesBases absorbabsorb HH+ - + z example:example: HCOHCO3 ++ HH -->> HH2COCO3 Introduction z MetabolismMetabolism generatesgenerates HydrogenHydrogen ionsions 4040-- 8080 mmolmmol/day/day z pHpH 7.357.35--7.467.46 retainedretained HH+ withinwithin 3535--4545 nmol/lnmol/l

H+ per day = 40-80 x 1,000,000 nmol/l pH is logarithmic

z pHpH == loglog 1/[H1/[H+]] == -- loglog [H[H+]] == -- loglog 0.000000040.00000004 EqEq/L/L pHpH == 7.47.4

SmallSmall ΔΔpHpH meansmeans pHpH 7.47.4 == 0.000000040.00000004 largelarge ΔΔ[H[H++]] pHpH 7.17.1 == 0.000000080.00000008 Buffer: pH Guardian

H+ Load Distribution and extra- Cellular Cell Respiratory buffering buffering compensation 100 Renal H+ secretion

50

0 61224 72 Hours The ECF accounted for ~43% of total buffering Carbonic acid- Buffer System

- + CO2 + H2O H2CO3 HCO3 + H

CO2 Production Dietary breakdown 14,000-20,000 mM/day 40-80 mEq/day

40 mmHg [H+] = 24 x pCO2 - [HCO3 ] 40 nEq/L 24 mEq/L 40 mmHg [H+] = 24 x pCO2 - [HCO3 ] 40 nEq/L 24 mEq/L

estimated[H+] pH 70 7.10 60 7.20 50 7.30 40 7.40 30 7.50 estimated[H+] pH 70 7.10 60 7.20 CO =11.2 2 50 7.30 + 10 H+ - HCO3 = 14 pH = 6.20 40 7.40 30 7.50

+ 10 CO2 lost CO2 = 1.2 - HCO3 = 24 pH = 7.40

CO =1.2 2 CO2 =0.9 - - HCO3 = 14 HCO3 = 14 pH = 7.17 pH = 7.29 Open Compensated Henderson-Hasselbach Equation

- + CO2 + H2O H2CO3 HCO3 + H

- pH =pK+log [A ] [HA] [HA] = [H2CO3 ] (at equilibrium) = [CO2]dissolved - pH = 6.1 +l og [HCO3 ] [CO2]dissolved SCO2 = 0.03 mmoles CO2/L/mmHg [HCO -] pH = 6.1 +log 3 SCO2 x PCO2

[HCO -] pH = 6.1 +log 3 0.03 x PCO2

pH =pK+log Kidneys Lungs CO2

[] pH ~ ~ [Lung] - + HCO3 + H

- + HCO3 H : Phosphoric + acid, NH4 Respiratory Component

PaCO2 & Minute Ventilation

PaCO2

PaCO2 = 0.8 VCO2 RR(Vt-Vd) 40

Minute Ventilation Renal Component

z Production of “new” bicarbonate via excretion of acid ≈ 70 mEq/day z Reabsorption of filtered bicarbonate ≈ 4,000 mEq/day Acid-base disturbances from Gastrointestinal loss

Vomiting: Loss of H+ leading to

Highly acidic, pH =1.0

- Secretes HCO3

Diarrhea: pH varies from - Loss of HCO3 leading to 4.0 to 8.0 The Big 3 of pH Guardian

H+ Load Distribution and extra- Cellular Cell Respiratory buffering buffering compensation 100 Renal H+ secretion

50

0 61224 72 Hours The Four Cardinal Acid Base Disorders

- Disorder pH pCO2 [HCO3 ]

M acidosis ↓↓↓

M alkalosis ↑↑↑

R acidosis ↓ ↑ ↑

R alkalosis ↑ ↓ ↓ Boston approach in Systemic ABG analysis

1.1. CheckCheck arterialarterial pHpH - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis 3.3. CalculateCalculate AGAG 4.4. AssessAssess deltadelta ratioratio 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 77.. FormulateFormulate acidacid--basebase diagnosisdiagnosis 1. Check arterial pH z pH < 7.4 = acidosis pH > 7.4 = alkalosis z Principle – No over-compensation Boston approach in Systemic ABG analysis

√ 1.1. CheckCheck arterialarterial pHpH - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis 3.3. CalculateCalculate AGAG 4.4. AssessAssess deltadelta ratioratio 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 7.7. FormulateFormulate acidacid--basebase diagnosisdiagnosis - 2. [HCO3 ]& PaCO2 analysis for Metabolic Changes z - PaCO2 decreases by 1.2 x the drop in [HCO3 ] - PaCO2 ≈≈ 1.51.5 [HCO[HCO3 ]] ++ 88 z - PaCO2 increases by 0.7 x the rise in [HCO3 ] - PaCO2 ≈ 0.9 [HCO3 ] + 16 Metabolic Compensation for Respiratory Changes z - Acute: [HCO3 ] increases by 0.1 x the rise in PaCO2 - Chronic: [HCO3 ] increases by 0.35 x the rise in

PaCO2 z - Acute: [HCO3 ] decreases by 0.2 x the fall in PaCO2 - Chronic: [HCO3 ] decreases by 0.5 x the fall in PaCO2 - [HCO3 ]& PaCO2 analysis z Both are low The last 2-digit if pH = PaCO2 metabolic acidosis respiratory alkalosis Both are high metabolic alkalosis respiratory acidosis - z Opposite directions [HCO3 ]& PaCO2 Mixed disorder must be present • 60-year-old diabetic with a long history of not taking her insulin. She is admitted to the hospital and you receive the following data on her: - pH 7.26, PaCO2 42, HCO3 17... Metabolic acidosis. • A 1st year resident was anxious about her basic sciences examination. She felt numbness around her mouth and tingling in her hands and went to the clinic. - pH 7.48, PaCO2 30, HCO3 23… Respiratory alkalosis

A 1st year medical student who did really well on his 1st biochemistry test celebrated too much afterwards. After a weekend of atonement, his lab values are: - pH 7.48, PaCO2 51, HCO3 29… Metabolic alkalosis A 40 year-old man with renal failure for 1 year presents with nausea, vomiting and weakness. His blood chemistry reveals

Na 138 mEq/L, K 5.5 mEq/L, Cl 95 mEq/L, HCO3 16 mEq/L

ABG: pH 7.31, PaCO2 31 mmHg The most likely acid-base disorder is

A. Metabolic alkalosis B. Respiratory alkalosis C. Mixed respiratory alkalosis and metabolic acidosis D. Metabolic acidosis E. Mixed respiratory acidosis and metabolic alkalosis A 40 year-old man with renal failure for 1 year presents with nausea, vomiting and weakness. His blood chemistry reveals

Na 138 mEq/L, K 5.5 mEq/L, Cl 95 mEq/L, HCO3 16 mEq/L

ABG: pH 7.31, PaCO2 31 mmHg The most likely acid-base disorder is

A. Metabolic alkalosis B. Respiratory alkalosis C. Mixed respiratory alkalosis and metabolic acidosis D. Metabolic acidosis E. Mixed respiratory acidosis and metabolic alkalosis

- Winter’s formula: PaCO2 = 1.5 [HCO3 ] + 8 = 1.5[16] + 8 = 32 AnAn acutelyacutely--illill 5050--yearyear--oldold womanwoman withwith aa historyhistory ofof severesevere vomitingvomiting forfor thethe pastpast 44 days.days. PhysicalPhysical examinationexamination profoundprofound lethargy,lethargy, aa pulsepulse raterate ofof 120/min,a120/min,a respirationrespiration raterate ofof 12/min,12/min, andand BPBP ofof 80/5080/50 mmHg.mmHg. SerumSerum electrolyteselectrolytes SodiumSodium 140140 meqmeq/L/L PotassiumPotassium 3.33.3 meqmeq/L/L ChlorideChloride 8585 meqmeq/L/L BicarbonateBicarbonate 2525 meqmeq/L/L ArterialArterial bloodblood studiesstudies onon roomroom air:air: pHpH 7.407.40 1 PaCOPaCO2 4141 mmHg,mmHg, AnAn acutelyacutely--illill 5050--yearyear--oldold womanwoman withwith aa historyhistory ofof severesevere vomitingvomiting forfor thethe pastpast 44 days.days. PhysicalPhysical examinationexamination profoundprofound lethargy,lethargy, aa pulsepulse raterate ofof 120/min,a120/min,a respirationrespiration raterate ofof 12/min,12/min, andand BPBP ofof 80/5080/50 mmHg.mmHg. SerumSerum electrolyteselectrolytes SodiumSodium 140140 meqmeq/L/L PotassiumPotassium 3.33.3 meqmeq/L/L ChlorideChloride 8585 meqmeq/L/L BicarbonateBicarbonate 2525 meqmeq/L/L 2 ArterialArterial bloodblood studiesstudies onon roomroom air:air: pHpH 7.407.40

PaCOPaCO2 4141 mmHg,mmHg, 1 Boston approach in Systemic ABG analysis

√ 1.1. CheckCheck arterialarterial pHpH √ - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis 3.3. CalculateCalculate AGAG 4.4. AssessAssess deltadelta ratioratio 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 7.7. FormulateFormulate acidacid--basebase diagnosisdiagnosis 3. Calculate “

z Unmeasured cations UC UA K+, Ca++, and Mg++ account for about 11 mEq/L. AG z Unmeasured anions 3- 2- HCO - (PO4) , SO4 , and some 3 organic acids, accounting for 20 to 24 mEq/L. Na+ z Typical anion gap is 23 − 11 = 12 mEq/L. z The anion gap can be affected by increases or decreases in the UC or UA. Cl- Decreased anion gap

UC UA z ↑ Unmeasured cations K+, Ca++, and Mg++ AG gamma globulin HCO - z ↓ Unmeasured anions 3 (PO4)3- , SO42-, albumin and some organic acids, + Na z The effect of low albumin can be accounted for by adjusting the normal

- range for the anion gap 2.5 mEq/L Cl upward for every 1-g/dL fall in albumin. Normal anion gap Metabolic acidosis

~ 10-12 mEq/L ≡ [Na+] - ([Cl-] + [HCO -]) AG 3

HCO - - 3 HCO loss 3

Na+ = Normal AG Metabolic acidosis • Occur in GI tract or Renal Cl- Causes of a “Normal anion gap” (hyperchloremic) metabolic acidosis 1. GI bicarbonate loss: villous adenoma pancreatic fistulae uretero-sigmoidostomy obstructed uretero-ileostomy 2. Renal bicarbonate (or equivalent) loss proximal RTA, distal RTA and type IV RTA early renal failure 3. Ingestions & infusions ammonium hyperalimentation (arginine/lysine-rich) - Diarrhea Causes Loss of HCO3

Normal Diarrhea Pancreas Pancreas HCO - HCO - 3 Ileum 3 - HCO3 Ileum Cl- Cl-

- Colon + - Colon Cl K HCO3

Normal AG acidosis and Hypo-K or transplant

Pancreas

- HCO3 Ileum Cl-

Skin or urinary bladder Obstructed Uretero-ileostomy

Skin - Ureter HCO3

Cl- Cl-

Ileal loop Obstructed ileal loop Wide-anion gap Metabolic acidosis

~ 10-12 mEq/L ≡ [Na+] - ([Cl-] + [HCO -]) AG 3 A- เติมกรด HA → H+ + A- HCO - 3 • Organic acid load: Shock, Renal Na+ failure, DKA • Toxic ingextation: ASA, Alcohol etc. Cl- = Wide AG Metabolic acidosis ~ 10-12 mEq/L ≡ [Na+] - ([Cl-] + [HCO -]) AG 3 A- - • AG elevated HCO3 Na+ in either acidosis or alkalosis • AG > 20 Cl- 67% likelihood of metabolic acidosis • AG > 30 ~ 100% likelihood of metabolic acidosis AnAn acutelyacutely--illill 5050--yearyear--oldold womanwoman withwith aa historyhistory ofof severesevere vomitingvomiting forfor thethe pastpast 44 days.days. PhysicalPhysical examinationexamination profoundprofound lethargy,lethargy, aa pulsepulse raterate ofof 120/min,a120/min,a respirationrespiration raterate ofof 12/min,12/min, andand BPBP ofof 80/5080/50 mmHg.mmHg. SerumSerum electrolyteselectrolytes SodiumSodium 140140 meqmeq/L/L PotassiumPotassium 3.33.3 meqmeq/L/L ChlorideChloride 8585 meqmeq/L/L BicarbonateBicarbonate 2525 meqmeq/L/L 2 ArterialArterial bloodblood studiesstudies onon roomroom air:air: pHpH 7.407.40

PaCOPaCO2 4141 mmHg,mmHg, 1 3. AG = 140 – 85 -25 = 30 Boston approach in Systemic ABG analysis

√ 1.1. CheckCheck arterialarterial pHpH √ - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis √ 3.3. CalculateCalculate AGAG 4.4. AssessAssess deltadelta ratioratio 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 7.7. FormulateFormulate acidacid--basebase diagnosisdiagnosis Assess

+ - AG z ↑Δ↑ΔHH == ↓↓ΔΔ HCOHCO3 z TheThe deltadelta--deltadelta ratio,ratio, toto determinedetermine ifif aa A- - secondsecond metabolicmetabolic disorderdisorder isis present.present. HCO3 z Delta gap = Anion gap – 12 Na+ Delta gap = Anion gap – 12 - ΔΔ [HCO[HCO3 ]]

Cl- Assess deltaAssess ratiodelta ratio

AG AG z Delta gap = ↑ΔH+ - - A ↓Δ HCO3 - - = Anion gap – 12 HCO3 HCO3 + + - Na Na Δ [HCO3 ]

Cl- Cl- 1to2= Pure Anion Gap Acidosis

AG Met NORMAL Acidosis Assess deltaAssess ratiodelta ratio

AG AG z Delta gap = ↑ΔH+ - - - HCO ↓Δ HCO3 3 HCO3 = Anion gap – 12 + + - Na Na Δ [HCO3 ] < 0.4 Normal AG acidosis Cl- Cl- 1to2= Pure Anion Gap Acidosis

AG Met NORMAL Acidosis Assess delta ratio

AG z Delta gap = ↑ΔH+ - - A ↓Δ HCO3 - = Anion gap – 12 HCO3 + - Na Δ [HCO3 ]

< 0.4 Normal anion gap acidosis Cl- 1 to 2 Pure Anion Gap Acidosis

> 2 High AG acidosis combined with metabolic alkalosis or pre-existing compensated respiratory acidosis AnAn acutelyacutely--illill 5050--yearyear--oldold womanwoman withwith aa historyhistory ofof severesevere vomitingvomiting forfor thethe pastpast 44 days.days. PhysicalPhysical examinationexamination profoundprofound lethargy,lethargy, aa pulsepulse raterate ofof 120/min,a120/min,a respirationrespiration raterate ofof 12/min,12/min, andand BPBP ofof 80/5080/50 mmHg.mmHg. SerumSerum electrolyteselectrolytes SodiumSodium 140140 meqmeq/L/L PotassiumPotassium 3.33.3 meqmeq/L/L ChlorideChloride 8585 meqmeq/L/L BicarbonateBicarbonate 2525 meqmeq/L/L 2 ArterialArterial bloodblood studiesstudies onon roomroom air:air: pHpH 7.407.40

PaCOPaCO2 4141 mmHg,mmHg, 1 3. AG = 140 – 85 -25 = 30 4. ΔGap = 30-12/25-24 = 18 140 meq/L 3.3 meq/L Chloride 85 meq/L Bicarbonate 25 meq/L Arterial blood studies on room air: pH 7.40 3. AG = 140 – 85 -25 = 30 PaCO2 41 mmHg 4. ΔGap = 30-12/25-24 = 18 The most like acid-base disorder is: A Metabolic acidosis B Metabolic alkalosis C Respiratory acidosis and metabolic alkalosis D Metabolic acidosis and metabolic alkalosis E Respiratory alkalosis A 42-year-old man is admitted to the hospital with dehydration and hypotension.

Na 165 mEq/L, K 4.0 mEq/L, Cl 112 mEq/L ,HCO3 32 mEq/L No arterial blood gas is obtained. What is acid-base disturbance?

HCO3 32 mEq/L → Met alkalosis Vs Resp acidosis

Anion gap: 165 - (32 + 112) = 21 mEq/L → Wide gap met acidosis Δ gap = 21-12 = 9

→ HCO3 should be 24 – 9 = 15

The co-existence of met acidosis and met alkalosis Boston approach in Systemic ABG analysis

√ 1.1. CheckCheck arterialarterial pHpH √ - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis √ 3.3. CalculateCalculate AGAG √ 4.4. AssessAssess deltadelta ratioratio 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 7.7. FormulateFormulate acidacid--basebase diagnosisdiagnosis Pertinent Clues

z Hyperglycaemia DKA z Hypo-K Suggests metabolic alkalosis z Hyper-K Suggests metabolic acidosis z Hyperchloremia Common with normal AG metabolic acidosis z Elevated Uraemic acidosis or hypovolaemia Boston approach in Systemic ABG analysis

√ 1.1. CheckCheck arterialarterial pHpH √ - 22.. [[HCOHCO3 ]] && PaCOPaCO2 analysisanalysis √ 3.3. CalculateCalculate AGAG √ 4.4. AssessAssess deltadelta ratioratio √ 5.5. CheckCheck ““cluesclues”” 6.6. AssessAssess compensatorycompensatory responsesresponses 7.7. FormulateFormulate acidacid--basebase diagnosisdiagnosis The Four Cardinal Acid Base Disorders

- Disorder pH pCO2 [HCO3 ]

M acidosis ↓↓↓

M alkalosis ↑↑↑

R acidosis ↓↑↑

R alkalosis ↑↓↓ Rule of Metabolic acidosis

z MechanismMechanism == ↓↓HCOHCO3-- z 1.2(1.2( Δ↓Δ↓HCOHCO3--)) == Δ↓Δ↓PaCOPaCO2 z AnionAnion gap:gap: IfIf ΔΔ AGAG >> 2020 metmet acidosisacidosis 67%67% IfIf ΔΔ AGAG >> 3030 metmet acidosisacidosis 100%100% z WideWide gapgap →→ ΔΔ GapGap z NormalNormal gapgap →→ UrineUrine AGAG WhatWhat areare thethe acidacid--basebase disordersdisorders inin aa 2828--yearyear--oldold manman whowho presentspresents toto thethe EDED withwith severalseveral daysdays ofof vomiting,vomiting, nauseanausea andand abdominalabdominal painpain.. HisHis bloodblood pressurepressure isis lowlow andand hehe hashas tentingtenting ofof thethe skinskin.. HeHe hashas thethe followingfollowing electrolyteselectrolytes:: NaNa 144144 mEqmEq//LL AG = 144 - (95 + 14) = 35 KK 4.24.2 mEqmEq//LL ClCl 9595 mEqmEq//LL Δ AG = 35 - 12 = 23 Δ HCO3 = 27 - 14 = 13 COCO2 1414 mEqmEq//LL Combined wide gap met acidosis (from dehydration and poor perfusion) and a met alkalosis (from vomiting and loss of stomach acid) AA 2727--yearyear--oldold womanwoman withwith acuteacute renalrenal failure:failure: NaNa 140140 mEqmEq//LL KK 44 mEqmEq//LL ClCl 115115 mEqmEq//LL

COCO2 55 mEqmEq//LL ABG:ABG:pHpH 7.127.12,, PaCOPaCO2 1313 mmHgmmHg,, HCOHCO3 44 mEqmEq//LL

Met acidosis: AG = 140 -(115 + 5) = 20 ΔAG = 20-12 = 8

ΔHCOHCO3 =20→ Delta ratio = 0.4 Combined wide-gap and normal-gap Met acidosis Differential Dx of high-anion gap acidosis

Lactic acidosis Salicylates intoxication Paint sniffing (toluene) Ethylene glycol intoxication DKA or alcoholic

Type A = increased O2 demand or decreased O2 delivery

Type B = Malignancies (lymphoma) Phenformin, hepatic failure acute respiratory alkalosis (salicylates) glycogen storage disease type I etc Salicylates - ± Hx ingestion, nausea, tinnitus, unexplained hyperventilation, noncardiogenic pulmonary edema, elevated prothrombin time

Usually: mixed respiratory alkalosis & metabolic acidosis (rare: pure metabolic acidosis)

Toxic at < 5 mEq/l, so no anionic contribute to AG

No increase in osmolal gap ([ASA] < 5 mM) Treatment for salicylate intoxication:

Un-ionized form (protonated) enters the brain and is excreted poorly

Rx….alkalinize (HCO3 infusion) to maximize renal excretion (dialysis) Uremia is indicated by BUN, creatinine (chronicity by kidney size and Hct).

Methanol - presents with ± abdominal pain, vomiting, headache; CT: BL putamen infarcts visual disturbance (optic neuritis) Anion gap may be > 50 Osmolal gap > 10 mOsm Paint sniffing (“huffing”) (toluene) may present as either anion gap acidosis or normal gap acidosis Anion = hippurate

No increase in osmolal gap Ethylene glycol - presents with ± CNS disturbances, cardiovascular collapse, respiratory failure, renal failure

Oxalate crystals (octahedral or dumbell) in are diagnostic

Anion gap may be > 50

Osmolal gap > 10 mOsm -

Key clinical features are:

type I DM (i.e. no insulin)

a trigger: e.g. sepsis, fracture, stroke

ECF vol depletion & renal insufficiency

acetoacetic- and β hydroxybutyric- acids - recent stopping ingestion of ethanol, , and contracted ECF (usually due to vomiting) Initial administration of fluid during the resuscitation of a patient who has a gun short wound of the thorax and abdomen results in a rise in blood presssure to 110/80 mmHg. At this point, arterial blood gases are pH, 7.25; PO2, 95 mmHg; - PCO2 25 mmHg; HCO3 15 mEq/L. The patient's metabolic acidosis would be treated best with A. Tromethamine (Tham) B. Sodium bicarbonate C. Dextran 70 D. Balanced salt solution E. Hyperventilation Metabolic alkalosis may be caused by all of the following EXCEPT A. Gastric outlet obstruction with vomiting B. Diarrhea C. Magnesium deficiency D. Diuretics E. Cushing syndrome The Four Cardinal Acid Base Disorders

- Disorder pH pCO2 [HCO3 ]

M acidosis ↓↓↓

M alkalosis ↑↑↑

R acidosis ↓↑↑

R alkalosis ↑↓↓ Vomiting Chloride loss H+ loss Na+ loss K+ loss, TG K + intake feedback Plasma pH ECF and HCO3 volume

Distal pCO Distal K+ K+ depletion Sympathetic 2 chloride secretion tone delivery Local + NH3/NH4 Ang II secretion GFR Systemic Ang II + + H /K High HCO3 Tm GFR x ATPase Low filtered PHCO3 HCO3 load CCD HCO3 CCD HCO 3 Secretion resorption (β IC cell)

Renal HCO3 resorption DIFFERENTIAL DIAGNOSIS OF METABOLIC ALKALOSIS USING URINE Cl

Low Urine [Cl-] Normal Urine [Cl-]

Vomiting Mineralocorticoidism NG suction RAS, aldosteronism 11-bDH deficiencies Diuretics (late) Bartter’s

Posthypercapnia Diuretics (early) Cystic fibrosis Severe K+ depletion Low Cl- intake A 54 year-old man has been vomiting for three days and has lost 5% of his body weight. His serum electrolytes are as follow: Na 136 mEq/L, K 3.1

mEq/L, Cl 88 mEq/L, HCO3 37 mEq/L Which of the following is most helpful in determining the cause of his acid-base disorder? A. Urine Sodium B. Urine Creatinine C. Urine Chloride D. E. Urine pH The most important to replace in a patient dehydrated after several days of emesis from an obstructing pyloric channel ulcer is A. bicarbonate B. chloride C. hydrogen D. potassium E. sodium The Four Cardinal Acid Base Disorders

- Disorder pH pCO2 [HCO3 ]

M acidosis ↓↓↓

M alkalosis ↑↑↑

R acidosis ↓↑↑

R alkalosis ↑↓↓

Causes of Respiratory Acidosis

Acute Chronic

10 mm Hg ↑ pCO2 → 10 mm Hg ↑ pCO2 → - - 1 mEq/L ↑ HCO3 3.5 mEq/L ↑ HCO3

Asthma Chronic Obstructive Pulmonary Disease Pulmonary edema (COPD) Drug overdose Obesity/Pickwickian

Cardiac arrest Neuromuscular (e.g. Lou-Gehrig’s) Sleep apnea Acute Vs Chronic Respiratory Acidosis

pCO2 isobars 60 40 20

- HCO3 25

7.40 pH Triple Ripple

- Disorder pH pCO2 [HCO3 ]

M acidosis ↓↓↓

M alkalosis ↑↑↑

R acidosis ↓↑↑

R alkalosis ↑↓↓ WHAT IS THE ACID-BASE DISTURBANCE?

145 95 30 RA-ABG: 7.50 /pCO2 33 /pO2 105 3.5 25 1.8

1. Respiratory alkalosis

2. Anion gap = 145 - (95+25) = 25 → Wide-gap met acidosis

3. Δ Gap = 25-12 = 13

Δ HCO3 = 1pH is high = metabolic alkalosis

This is the “Triple Ripple” z A 60-yr-old man with the odor of alcohol on his breath is brought to ER. He is hypotensive, hypothermic, and tachycardia. At admission, laboratory documented : Na 135, K 3.9, Cl 90, HCO3 15 BUN 42 Cr 2.0 Blood Sugar 120 AG = 30 ABG : pH 7.36 pO2 80 pCO2 40 Which of the following is the most accurate description of this patient's acid-base disorder ?

A. Simple metabolic acidosis B. Respiratory acidosis and metabolic acidosis C. Metabolic acidosis and respiratory alkalosis D. Met acidosis, met alkalosis, and respiratory acidosis E. Met acidosis, respiratory alkalosis, and respiratory acidosis ThankThank YouYou