N E W S L E T T E R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Classical Biological Control of Arthropods in Australia
Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities. -
Biology of Chrysophtharta Agricola (Coleoptera, Chrysomelidae), a Pest of Eucalyptus Plantations in South-Eastern Australia
Australian Forestry 2004 Vol. 67, No. 1 pp. 59–66 59 Biology of Chrysophtharta agricola (Coleoptera, Chrysomelidae), a pest of Eucalyptus plantations in south-eastern Australia Helen F. Nahrung CRC for Sustainable Production Forestry, GPO Box 252-12, Hobart, Tasmania 7001, Australia, and School of Agricultural Science, University of Tasmania, GPO Box 252-54, Hobart, Tasmania 7001, Australia Current address: School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Email: [email protected] Revised manuscript received 10 September 2003 Summary which had been identified by Chapuis as C. bimaculata. Blackburn (1899) reported that ‘it is difficult to find two specimens absolutely Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae) alike’, which may reflect confusion between teneral (i.e. an adult is a pest of eucalypt production forests in south-eastern Australia. with a soft cuticle, as when it has recently emerged from the pupa) Biological characteristics including high fecundity and adult and mature beetles, as described by de Little (1979) and Selman longevity result in the production of large numbers of offspring, (1994b). Weise (1901) changed its generic placement from despite high levels of offspring mortality from natural enemies. Paropsis to Chrysophtharta Weise, and also erected the sub-tribe Collection records for C. agricola indicate a host range of over Paropsina to which Chrysophtharta belongs (Kelly and Reid 20 eucalypt species and a geographic distribution from northern 1999). The type species for the genus was designated Paropsis New South Wales to southern Tasmania. This paper provides nobilitata Erichson by Kelly and Reid (1999). A taxonomic key estimates of foliage consumption by larvae and reviews the biology to species was produced by de Little (1979), which describes the of C. -
A Magyar Természettudományi Múzeum Évkönyve 79. (Budapest 1987)
ANNALES HISTORICO-NATURALES MUSEI NATIONALIS HUNGARICI Tomus 79. Budapest, 1987 p. 167-178. Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copenhagen by L. RONKAY, Budapest L. RONKAY: Taxonomic and zoogeographical studies on the subfamily Plusiinae (Lepidoptera, Noctuidae). The Palaeotropical, Oriental and Nearctic material of the Zoological Museum, Copen hagen. — Annls hist.-nat. Mus. natn. hung. 1987 79: 167-178. Abstract — Three new genera, Anaplusia gen. n., Extremoplusia gen. n. and Scriptoplusia gen. n. and one new species, Scriptoplusia noona sp. n. are described and an annotated list of 50 species from N America, Africa and the Oriental Region is given. With 26 figures and 1 photoplate. In 1986Ihadtthe opportunity to study the Palaeotropical, Nearctic and Indo-Australian Plusiinae material of the Zoological Museum of Copenhagen. During the course of this work I could study in details some species which had not been relagated to any described genera. These studies, based on the external and genitalic morphology including the characteristics of the vesica, have shown the necessity to erect three new genera for these taxa. — The whole material contains specimens of 50 species, one of them is new for science and there are several previously unknown distribution records of the species. I would like to express my thanks to Dr. Ole Karsholt (Zool. Mus., Copenhagen) for his exten sive help in this work and also to Dr. L. Gozmány (Budapest) for his useful advice. 1. DESCRIPriON OF THE NEW TAXA It is an interesting fact that there are some species, distributed over the Eastern-South eastern border of the Palaearctic Region to Indonesia, Australia and New Guinea, which appear to be remote from any well-known genera of the Eastern Tropical Plusiinae. -
THE LITTLE THINGS THAT RUN the CITY 30 AMAZING INSECTS THAT LIVE in MELBOURNE! © City of Melbourne 2017 First Published May, 2017 ISBN 978-1-74250-900-6
THE littleTHINGS that run the city BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA In partnership with City of Melbourne 30 amazing insects that live in Melbourne! THE LITTLE THINGS THAT RUN THE CITY 30 AMAZING INSECTS THAT LIVE IN MELBOURNE! © City of Melbourne 2017 First published May, 2017 ISBN 978-1-74250-900-6 ABOUT THIS PROJECT This book is an outreach educational resource prepared by Kate Cranney, Sarah Bekessy and Luis Mata for the City of Melbourne. Kate, Sarah and Luis work as part of the Interdisciplinary Conservation Science Research Group at RMIT University in Melbourne, Australia. THE Illustrations: Kate Cranney Ink on paper, www.katecranney.com Photographs: Luis Mata flickr.com/photos/dingilingi/ Graphic Design: Kathy Holowko THANK YOU We wish to acknowledge the support of the Australian Government’s little National Environmental Science Programme - Clean Air and Urban THINGS Landscapes and Threatened Species Hubs, and the Australian Research Council Centre of Excellence for Environmental Decisions. The book was inspired by ‘The Little Things that Run the City – Insect ecology, biodiversity and conservation in the that run the city City of Melbourne’ research project (Mata et al. 2016). We are very grateful to the Australian Museum (http://australianmuseum.net.au/insects), the Museum Victoria BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA (https://museumvictoria.com.au/bugs/), the CSIRO’s ‘What Bug is That’ program (http://anic.ento.csiro.au/insectfamilies/) In partnership with City of Melbourne and ‘The Insects of Australia - A textbook for students and research workers’ book (Naumann et al. 1991). Thank you to Dr. -
Draft Pest Categorisation of Organisms Associated with Washed Ware Potatoes (Solanum Tuberosum) Imported from Other Australian States and Territories
Nucleorhabdovirus Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories This page is intentionally left blank Contributing authors Bennington JMA Research Officer – Biosecurity and Regulation, Plant Biosecurity Hammond NE Research Officer – Biosecurity and Regulation, Plant Biosecurity Poole MC Research Officer – Biosecurity and Regulation, Plant Biosecurity Shan F Research Officer – Biosecurity and Regulation, Plant Biosecurity Wood CE Technical Officer – Biosecurity and Regulation, Plant Biosecurity Department of Agriculture and Food, Western Australia, December 2016 Document citation DAFWA 2016, Draft pest categorisation of organisms associated with washed ware potatoes (Solanum tuberosum) imported from other Australian states and territories. Department of Agriculture and Food, Western Australia, South Perth. Copyright© Western Australian Agriculture Authority, 2016 Western Australian Government materials, including website pages, documents and online graphics, audio and video are protected by copyright law. Copyright of materials created by or for the Department of Agriculture and Food resides with the Western Australian Agriculture Authority established under the Biosecurity and Agriculture Management Act 2007. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the provisions of the Copyright Act 1968, no part may be reproduced or reused for any commercial purposes whatsoever -
Conspicuousness, Phylogenetic Structure, and Origins of Müllerian
www.nature.com/scientificreports OPEN Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions Michal Motyka1, Dominik Kusy1, Michal Masek1, Matej Bocek1, Yun Li1, R. Bilkova1, Josef Kapitán2, Takashi Yagi3 & Ladislav Bocak1* Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals difer in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with diferently coloured unproftable relatives. -
Plant-Animal Interactions Student Activities [Recommended Year 9 - 12]
Plant-Animal Interactions Student Activities [Recommended year 9 - 12] Education @ Adelaide Botanic Garden Map Acknowledgments A publication by: Education @ Adelaide Botanic Garden and Flinders University. And developed by: Kieren Beaumont, Molly Whalen and Duncan Mackay. In collaboration with: Steve Meredith, Michael Yeo, Catherine Stone and Tony Kanellos. Photos: Kieren Beaumont, Duncan Mackay, Molly Whalen and Adelaide Botanic Gardens unless otherwise indicated. Student information & activities 1. Brazil nut tree (Bertholletia excelsa) Large rodents called agoutis are essential for the survival of Brazilnut Guess What trees.Even though they eat Brazil nuts, they help to grow new trees by burying Brazil nuts are the only seed crop seeds. harvested from natural forests and sold all around the world. Pollination Brazilnut trees grow in the tropical forest of South America. They can reach 50 meters tall and can live for more than 650 years. Brazilnut trees rely on large bees to pollinate their flowers. The large bees are strong enough to force their way between the Agoutis help Brazil nut trees petals of the flower into a chamber, http://upload.wikimedia.org/wikipedia/co where they are provided with nectar mmons/7/73/Agouti_.jpg and pollinate the flower. Once a flower has been pollinated, it grows into a large woody fruit. Lost seeds become new trees. Interactions under threat. Most Brazil nuts traded today are collected from natural forests and the multi-million dollar industry provides many locals with an income. The ongoing success of the industry depends on healthy forests that support the animals that Brazilnut trees need and on the sustainable harvesting of the nuts. -
Animal and Plant Health Inspection Service, USDA § 319.56–28
Animal and Plant Health Inspection Service, USDA § 319.56–28 (Cucumis melo L. subsp. melo) and wa- tion of Japan or the Republic of Korea. termelon may be imported into the The apples shall be subject to further United States from Peru only in ac- disinfection in the exporting country if cordance with this paragraph and all plant pests are found prior to export. other applicable requirements of this Imported apples inspected in Japan or subpart: the Republic of Korea are also subject (1) The fruit may be imported in com- to inspection and disinfection at the mercial consignments only. port of first arrival, as provided in (2) The fruit must have been grown in § 319.56–3. an area of Peru considered by APHIS (c) Trust fund agreements. The na- to be free of the South American tional plant protection organization of cucurbit fly, must be accompanied by a the exporting country must enter into phytosanitary certificate declaring its a trust fund agreement with APHIS in origin in such an area, and must be accordance with § 319.56–6 before APHIS safeguarded and labeled, each in ac- will provide the services necessary for cordance with § 319.56–5 of this subpart. apples to be imported into the United (3) The phytosanitary certificate re- States from Japan or the Republic of quired under § 319.56–5 must also in- Korea. clude a declaration by the NPPO of Peru indicating that, upon inspection, [72 FR 39501, July 18, 2007, as amended at 75 the fruit was found free of the gray FR 65214, Oct. -
African Butterfly News, All Came from the ABRI Collection in Nairobi
SEPTEMBER 2019 EDITION: AFRICAN ABN 2019 - 5 (JULY AND AUGUST 2019) BUTTERFLY THE LEPIDOPTERISTS’ SOCIETY OF AFRICA NEWS LATEST NEWS Welcome to September’s newsletter! A reminder that this year’s LepSoc Africa Conference will be held in Knysna on Sat 16 and Sun 17 November. Please contact Dave Edge ([email protected]) to confirm your attendance. For those of you looking for accommodation in Knysna, Dave forwarded the flowing link: Places to stay in Knysna We have found, at recent LepSoc Africa Conferences, that presentation of the annual reports of various LSA officers takes up most, if not all, of the three-hours that have traditionally been allocated to the Annual General Meeting. At last year’s conference in Hermannsburg, there was dissatisfaction about the time available for general discussion among members present at the meeting. This year, we are going to do it differently! Using the approach that has been adopted by the Entomological Society of Southern Africa (Entsocsa), the reports of office bearers will be circulated to the entire LepSoc Africa membership at least two weeks before the AGM. At the AGM, a condensed summary of the various reports will be presented for ratification, following which there will be a brief discussion. Significant issues, that require resolution at the AGM, should be raised by LSA members prior to the meeting and the salient points submitted for discussion under Matters Arising. Missing Links… A few people pointed out that a couple of the links in July’s newsletter didn’t work. I’ve corrected this below: Colotis ungemachi Arnold Schultze Steve Collins noted that, in July’s newsletter, I’d correctly captioned a photo from Sudheer Kommana as Baliochila hildegarda, but that this species is not found in Ghana as I’d indicated. -
213 Part 319—Foreign Quarantine Notices
Animal and Plant Health Inspection Service, USDA Pt. 319 States, or the continental United 319.8–14 Mexican cotton and covers not oth- States.’’ erwise enterable. [24 FR 10777, Dec. 29, 1959, as amended at 66 MISCELLANEOUS PROVISIONS FR 21054, Apr. 27, 2001] 319.8–16 Importation into United States of cotton and covers exported therefrom. PART 319—FOREIGN QUARANTINE 319.8–17 Importation for exportation, and importation for transportation and ex- NOTICES portation; storage. 319.8–18 Samples. Subpart—Preemption 319.8–19–20 [Reserved] 319.8–21 Release of cotton and covers after 319.1 Preemption of State and local laws. 18 months’ storage. 319.8–22 Ports of entry or export. Subpart—Requests To Amend The 319.8–23 Treatment. Regulations 319.8–24 Collection and disposal of waste. 319.8–25 Costs and charges. 319.5 Requirements for submitting requests 319.8–26 Material refused entry. to change the regulations in 7 CFR part 319. Subpart—Sugarcane Subpart—Controlled Import Permits 319.15 Notice of quarantine. 319.15a Administrative instructions and in- 319.6 Controlled import permits. terpretation relating to entry into Guam of bagasse and related sugarcane prod- Subpart—Permits: Application, Issuance, ucts. Denial, and Revocation 319.7 Definitions. Subpart—Citrus Canker and Other Citrus 319.7–1 Applying for a permit. Diseases 319.7–2 Issuance of permits and labels. 319.19 Notice of quarantine. 319.7–3 Denial of permits. 319.7–4 Withdrawal, cancellation, and rev- Subpart—Corn Diseases ocation of permits. 319.7–5 Appeal of denial or revocation. QUARANTINE Subpart—Foreign Cotton and Covers 319.24 Notice of quarantine. -
PACIFIC INSECTS MONOGRAPH Ll
PACIFIC INSECTS MONOGRAPH ll Lepidoptera of American Samoa with particular reference to biology and ecology By John Adams Comstock Published by Entomology Department, Bernice P. Bishop Museum Honolulu, Hawaii, U. S. A. 1966 PACIFIC INSECTS MONOGRAPHS Published by Entomology Department, Bernice P. Bishop Museum, Honolulu, Hawaii, 96819, U. S. A. Editorial Committee: J. L. Gressitt, Editor (Honolulu), S. Asahina (Tokyo), R. G. Fennah (London), R. A. Harrison (Christchurch), T. C. Maa (Honolulu & Taipei), C. W. Sabrosky (Washington, D. C), R. L. Usinger (Berkeley), J. van der Vecht (Leiden), K. Yasumatsu (Fukuoka), E. C. Zimmerman (New Hampshire). Assistant Editors: P. D. Ashlock (Honolulu), Carol Higa (Honolulu), Naoko Kunimori (Fukuoka), Setsuko Nakata (Honolulu), Toshi Takata (Fukuoka). Business Manager: C. M. Yoshimoto (Honolulu). Business Assistant: Doris Anbe (Honolulu). Business Agent in Japan: K. Yasumatsu (Fukuoka). Entomological staff, Bishop Museum, 1966: Doris Anbe, Hatsuko Arakaki, P. D. Ashlock, S. Azuma, Madaline Boyes, Candida Cardenas, Ann Cutting, M. L. Goff, J. L. Gressitt (Chairman), J. Harrell, Carol Higa, Y. Hirashima, Shirley Hokama, E. Holzapfel, Dorothy Hoxie, Helen Hurd, June Ibara, Naoko Kuni mori, T. C. Maa, Grace Nakahashi, Setsuko Nakata (Adm. Asst.), Tulene Nonomura, Carol Okuma, Ka tharine Pigue, Linda Reineccius, T. Saigusa, I. Sakakibara, Judy Sakamoto, G. A. Samuelson, Sybil Seto, W. A. Steffan, Amy Suehiro, Grace Thompson, Clara Uchida, J. R. Vockeroth, Nixon Wilson, Mabel Ya- tsuoka, C. M. Yoshimoto, E. C. Zimmermann. Field associates: M. J. Fitzsimons, E. E. Gless, G. E. Lip- pert, V. Peckham, D. S. Rabor, J. Sedlacek, M. Sedlacek, P. Shanahan, R. Straatman, J. Strong, H. M. Tor- revillas, A. -
Molecular Phylogeny and Systematics of the Pieridae (Lepidoptera: Papilionoidea): Higher Classification and Biogeography
Blackwell Publishing LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2006? 2006 147? 239275 Original Article PHYLOGENY AND SYSTEMATICS OF THE PIERIDAEM. F. BRABY ET AL. Zoological Journal of the Linnean Society, 2006, 147, 239–275. With 8 figures Molecular phylogeny and systematics of the Pieridae (Lepidoptera: Papilionoidea): higher classification and Downloaded from https://academic.oup.com/zoolinnean/article-abstract/147/2/239/2631026 by Harvard Library user on 21 November 2018 biogeography MICHAEL F. BRABY1,2*, ROGER VILA1 and NAOMI E. PIERCE1 1Museum of Comparative Zoology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA 2School of Botany and Zoology, The Australian National University, Canberra, ACT 0200, Australia Received May 2004; accepted for publication October 2005 The systematic relationships of the butterfly family Pieridae are poorly understood. Much of our current under- standing is based primarily on detailed morphological observations made 50–70 years ago. However, the family and its putative four subfamilies and two tribes, have rarely been subjected to rigorous phylogenetic analysis. Here we present results based on an analysis of molecular characters used to reconstruct the phylogeny of the Pieridae in order to infer higher-level classification above the generic level and patterns of historical biogeography. Our sample contained 90 taxa representing 74 genera and six subgenera, or 89% of all genera recognized in the family. Three complementary approaches were