Pests, Diseases and Disorders of Sweet Corn

Total Page:16

File Type:pdf, Size:1020Kb

Pests, Diseases and Disorders of Sweet Corn Pests, Diseases and Disorders of Sweet Corn A FIELD IDENTIFICATION GUIDE Millimetres 0 10 20 First published June 2015 © Horticulture Innovation Australia Limited. 30 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of Horticulture Innovation Australia Ltd. 40 National Library of Australia Cataloguing-in-Publication entry 50 Author: Jenny Ekman (AHR). Title: Pests, diseases and disorders of sweet corn: a field identification guide ISBN: 978-0-9925251-3-2 (paperback) 60 Subjects: Sweet corn—Diseases and Pests—Australia. Dewey number: 635.672 70 This project has been funded by Horticulture Innovation Australia using the vegetable industry levy and funds from the Australian Government. 80 Guide produced by Applied Horticultural Research Designed by Noel Wendtman Design 90 Disclaimer Horticulture Innovation Australia Limited (HIA Ltd) makes no representations and expressly disclaims all warranties (to the extent permitted by law) about the accuracy, completeness, or 100 currency of information in this book. Reliance on any information provided by HIA Ltd is entirely at your own risk. HIA Ltd is not responsible for, and will not be liable for, any loss, damage, claim, expense, cost (including 110 legal costs) or other liability arising in any way (including from HIA Ltd or any other person’s negligence or otherwise) from your use or non-use of information in this book, or from reliance on information contained in the material or that HIA Ltd provides to you by any other means. 120 130 Pests, Diseases and Disorders of Sweet Corn A FIELD IDENTIFICATION GUIDE Jenny Ekman Contents Acknowledgements INSECTS African black beetle 3 Lacewing 25 This project was made possible by funding from Horticulture Aphid — corn 4 Ladybird 26 Innovation Australia using the national vegetable levy Aphid — green peach 5 Maize leafhopper 28 and matched funds from the Australian Government. Armyworm 6 Maize thrips 29 Production of the guide would not have been possible without Assassin bug 8 Mite — predatory 30 the generous assistance of fellow researchers, agronomists, Big eyed bug 9 Mite — two-spotted 31 extension officers and interested amateur photographers. Black headed mirid 10 Parasitoid wasps 32 Special thanks are due to; Brown marmorated stink bug 11 Pirate bug 34 Jerry Lovatt and John Duff – QDAF Cluster caterpillar 12 Plague soldier beetle 35 Andy Ryland – IPMC Cricket — black field 13 Planthopper 36 Cricket — mole 14 Red and blue beetle 37 Stuart Learmonth – DAFWA Cutworm 15 Red-shouldered leaf beetle 38 Len Tesoriero – NSW DPI Damsel bug 16 Rutherglen bug 39 Dried fruit beetle 17 Sorghum head caterpillar 40 Earwig — black field 18 Symphyla 41 Photographs Earwig — brown 19 Tachinid flies 42 Pictures other than those taken by the author are attributed to Glossy shield bug 20 White fringed weevil 43 the photographer and/or their organisation. Every effort has been Green vegetable bug 21 Wireworms 44 made to contact photographers and obtain their permission Heliothis 22 Yellow peach moth 46 to reproduce material. The publisher apologises for any errors Hoverfly 24 or omissions in attribution and would be grateful if notified of DISEASES corrections that can be incorporated into future editions. Boil smut 48 Northern/Turcicum leaf blight 54 Brown spot 49 Rust — common 55 Abbreviations Damping off 50 Rust — tropical / Polysora 56 Fusarium cob rot 51 Virus — Johnsongrass mosaic 57 CIMMYT International Maize and Wheat Improvement Centre Head smut 52 Virus — maize stripe 58 CSU Colorado State University Java downy mildew 53 DAFWA Department of Agriculture and Food WA DISORDERS IPNI International Plant Nutrition Institute Blanking 60 Phosphorus deficiency 69 MAF Ministry of Agriculture and Food Boron deficiency 61 Potassium deficiency 70 NSW DPI NSW Department of Primary Industries Calcium deficiency 62 Salinity 71 OMAFRA Ontario Ministry of Agriculture, Food and Rural Affairs Copper deficiency 63 Sulphur deficiency 72 Iron deficiency 64 Uneven germination/growth 73 PaDIL Pest and Disease Image Library Magnesium deficiency 65 Zinc deficiency 74 QDAF Qld Department of Agriculture and Fisheries Manganese deficiency 66 Nutrient deficiency symptoms 75 USDA ARS United States Department of Agriculture Nitrogen deficiency 67 Agricultural Research Service Overmaturity 68 Problem solver 76 WSU Washington State University INSECTS INSECTS Insects iv 1 African black beetle Heteronychus arator INSECTS DESCRIPTION DAMAGE Larvae: Whitish C-shaped Larvae feed on plant roots, grub up to 30 mm long reducing growth and INSECTS with light brown head potentially killing small and 6 legs. The rear end plants. Adults can cause sometimes has a grey tinge. major damage by chewing the bases of plants and Adult: Shiny black, stout ringbarking seedlings. bodied beetle around 10–15 mm long. Legs are MOST COMMON adapted for digging. Strong Spring and early summer, flier. Mass dispersal flights mainly in coastal areas from by adults occur March–April Victoria to south-east Qld and occasionally in spring. and south-western regions of WA. Favoured by winter rainfall followed by a warm, dry spring and summer. African black beetle larvae or ‘curl grub’ and adult beetle (PaDIL) 2 3 Aphid — corn Aphid — green peach Rhopalosiphum maidis Myzus persicae INSECTS DESCRIPTION DAMAGE DESCRIPTION Nymph: Similar to adult Sucks sap, reducing plant Nymph: Yellowish to green. vigour. Leaves develop yellow though smaller. Adult: Wingless adults INSECTS and brownish-red streaks. Adult: Light to olive are pale yellow to green green with dark purple MOST COMMON and around 2 mm long. spots at the bases of the Spring to autumn, but can Winged females have black rear cornicles (tube-like be found in most growing heads with dark red eyes projections) and dark head. districts throughout the year. and patterned bodies. DAMAGE Causes leaf distortion through feeding and can contaminate cob. MOST COMMON During warmer months on a large range of host plants. Green peach aphid mature adults and nymphs on sowthistle and winged Corn aphids in close-up, and a colony in the emerging tassel form (S Bauer USDA ARS) 4 5 Armyworm — common, African, southern Mythimna convecta, Spodoptera exempta, Persectania ewingii INSECTS DESCRIPTION DAMAGE Egg: Common armyworms Feeding causes characteristic lay clumps of eggs in cracks ragged chewing damage, INSECTS or crevices, often on dry plant starting along the outer edges material. African armyworms of each leaf. Small plants may lay large, irregularly shaped be killed, others severely egg masses topped with damaged. Caterpillars are cottony material. mainly nocturnal and tend to hide in the central leaf Caterpillar: Hairless whorl during the day. caterpillar 30–40 mm long with four central prolegs. MOST COMMON Orange-brown head with Spring to early summer, green to brown body when moths are active. and three obvious white to yellow stripes starting immediately behind the head. Adult: Plain, brownish moth around 20 mm long, wings held flat along body. Armyworm inside corn leaf whorl, showing ragged feeding damage (Uni Delaware) Mature common armyworm (J Wessels QDAF) and African armyworms Adult moths of common, African and southern armyworms (D Hobern, (D Ironside QDAF) B Richardson and D Hobern) 6 7 Assassin bug Beneficial Big eyed bug Beneficial Pristhesancus plagipennis Geocoris spp. insect ✓ insect ✓ INSECTS DESCRIPTION DESCRIPTION BENEFIT Nymph: Similar to 150–200 heliothis caterpillars Nymph: Patterned Adults and nymphs prey adult but wingless. in less than 3 months. brown, pear-shaped with on aphids, mites, heliothis INSECTS prominent eyes. Wing buds eggs and small caterpillars. Adult: Shield-shaped bug MOST COMMON 10–30 mm long with large appearing in later instars. MOST COMMON Any time of year. eyes and powerful, curved, Adult: Black bug around Any time of year. sucking mouthpart. Colour 5 mm long with prominent varies from orange to red dark eyes. Fast moving, and brown, sometimes with with clear wings folded distinct patterning. Strong flat over its back. front legs for grasping prey. BENEFIT Adults and nymphs are aggressive predators on other insects, particularly soft bodied caterpillars. A single nymph may consume Common assassin bug adult (P Chew) and nymph (J Wessels QDAF) Adult big-eyed bug (Alain C Flickr) 8 9 Black headed mirid Beneficial Brown marmorated stink bug Exotic Tytthus chinensis Halyomorpha halys pest ✗ insect ✓ INSECTS DESCRIPTION DESCRIPTION Nymph: Pale green, pear- Nymph: Initially black bugs were first found in shaped bug with dark reddish and orange, progressing the USA in 1998, spread INSECTS eyes and banded antennae. to patterned brown with rapidly and are now a Adult: Slender black bug rust-red markings. major horticultural pest. around 3 mm long with Adult: Brown and white shield MOST COMMON long antennae. Fast moving, shaped bug approximately Not yet in Australia, but with semitransparent wings 17 mm long. Two distinctive has been detected inside held flat along its back. white bands on antennae. shipping containers. Most BENEFIT DAMAGE active during summer. Adults and nymphs Sap sucking by all life stages eat heliothis eggs. on fruit and leaves, including sweet corn kernels, causes MOST COMMON severe damage. Adults Any time of year. overwinter inside buildings. Brown marmorated stink Brown marmorated stink bug on corn (B Little Uni Georgia), an adult, and feeding Adult mirids (American Natural History Museum (top), QDAF) damage to kernels (TP Kuhar Virginia Tech) 10 11 Cluster caterpillar Cricket — black field Spodoptera litura Teleogryllus commodus INSECTS DESCRIPTION MOST COMMON DESCRIPTION DAMAGE Egg: Laid in a large mass, Spring to autumn Nymph: Similar to adult, but Not usually a major problem, usually covered with fluffy in Queensland. with less developed wings. but can cause damage by INSECTS chewing on prop roots. Can light brown material. Adult: Stout, black cricket also damage irrigation by Caterpillar: Initially grey- with large head, short wings chewing on drip tape. green and feeds in a and powerful rear legs. group, but separate as they Females have long ovipositor.
Recommended publications
  • Classical Biological Control of Arthropods in Australia
    Classical Biological Contents Control of Arthropods Arthropod index in Australia General index List of targets D.F. Waterhouse D.P.A. Sands CSIRo Entomology Australian Centre for International Agricultural Research Canberra 2001 Back Forward Contents Arthropod index General index List of targets The Australian Centre for International Agricultural Research (ACIAR) was established in June 1982 by an Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing countries and to commission collaborative research between Australian and developing country researchers in fields where Australia has special competence. Where trade names are used this constitutes neither endorsement of nor discrimination against any product by the Centre. ACIAR MONOGRAPH SERIES This peer-reviewed series contains the results of original research supported by ACIAR, or material deemed relevant to ACIAR’s research objectives. The series is distributed internationally, with an emphasis on the Third World. © Australian Centre for International Agricultural Research, GPO Box 1571, Canberra ACT 2601, Australia Waterhouse, D.F. and Sands, D.P.A. 2001. Classical biological control of arthropods in Australia. ACIAR Monograph No. 77, 560 pages. ISBN 0 642 45709 3 (print) ISBN 0 642 45710 7 (electronic) Published in association with CSIRO Entomology (Canberra) and CSIRO Publishing (Melbourne) Scientific editing by Dr Mary Webb, Arawang Editorial, Canberra Design and typesetting by ClarusDesign, Canberra Printed by Brown Prior Anderson, Melbourne Cover: An ichneumonid parasitoid Megarhyssa nortoni ovipositing on a larva of sirex wood wasp, Sirex noctilio. Back Forward Contents Arthropod index General index Foreword List of targets WHEN THE CSIR Division of Economic Entomology, now Commonwealth Scientific and Industrial Research Organisation (CSIRO) Entomology, was established in 1928, classical biological control was given as one of its core activities.
    [Show full text]
  • Biology of Chrysophtharta Agricola (Coleoptera, Chrysomelidae), a Pest of Eucalyptus Plantations in South-Eastern Australia
    Australian Forestry 2004 Vol. 67, No. 1 pp. 59–66 59 Biology of Chrysophtharta agricola (Coleoptera, Chrysomelidae), a pest of Eucalyptus plantations in south-eastern Australia Helen F. Nahrung CRC for Sustainable Production Forestry, GPO Box 252-12, Hobart, Tasmania 7001, Australia, and School of Agricultural Science, University of Tasmania, GPO Box 252-54, Hobart, Tasmania 7001, Australia Current address: School of Natural Resource Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Email: [email protected] Revised manuscript received 10 September 2003 Summary which had been identified by Chapuis as C. bimaculata. Blackburn (1899) reported that ‘it is difficult to find two specimens absolutely Chrysophtharta agricola (Chapuis) (Coleoptera: Chrysomelidae) alike’, which may reflect confusion between teneral (i.e. an adult is a pest of eucalypt production forests in south-eastern Australia. with a soft cuticle, as when it has recently emerged from the pupa) Biological characteristics including high fecundity and adult and mature beetles, as described by de Little (1979) and Selman longevity result in the production of large numbers of offspring, (1994b). Weise (1901) changed its generic placement from despite high levels of offspring mortality from natural enemies. Paropsis to Chrysophtharta Weise, and also erected the sub-tribe Collection records for C. agricola indicate a host range of over Paropsina to which Chrysophtharta belongs (Kelly and Reid 20 eucalypt species and a geographic distribution from northern 1999). The type species for the genus was designated Paropsis New South Wales to southern Tasmania. This paper provides nobilitata Erichson by Kelly and Reid (1999). A taxonomic key estimates of foliage consumption by larvae and reviews the biology to species was produced by de Little (1979), which describes the of C.
    [Show full text]
  • THE LITTLE THINGS THAT RUN the CITY 30 AMAZING INSECTS THAT LIVE in MELBOURNE! © City of Melbourne 2017 First Published May, 2017 ISBN 978-1-74250-900-6
    THE littleTHINGS that run the city BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA In partnership with City of Melbourne 30 amazing insects that live in Melbourne! THE LITTLE THINGS THAT RUN THE CITY 30 AMAZING INSECTS THAT LIVE IN MELBOURNE! © City of Melbourne 2017 First published May, 2017 ISBN 978-1-74250-900-6 ABOUT THIS PROJECT This book is an outreach educational resource prepared by Kate Cranney, Sarah Bekessy and Luis Mata for the City of Melbourne. Kate, Sarah and Luis work as part of the Interdisciplinary Conservation Science Research Group at RMIT University in Melbourne, Australia. THE Illustrations: Kate Cranney Ink on paper, www.katecranney.com Photographs: Luis Mata flickr.com/photos/dingilingi/ Graphic Design: Kathy Holowko THANK YOU We wish to acknowledge the support of the Australian Government’s little National Environmental Science Programme - Clean Air and Urban THINGS Landscapes and Threatened Species Hubs, and the Australian Research Council Centre of Excellence for Environmental Decisions. The book was inspired by ‘The Little Things that Run the City – Insect ecology, biodiversity and conservation in the that run the city City of Melbourne’ research project (Mata et al. 2016). We are very grateful to the Australian Museum (http://australianmuseum.net.au/insects), the Museum Victoria BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA (https://museumvictoria.com.au/bugs/), the CSIRO’s ‘What Bug is That’ program (http://anic.ento.csiro.au/insectfamilies/) In partnership with City of Melbourne and ‘The Insects of Australia - A textbook for students and research workers’ book (Naumann et al. 1991). Thank you to Dr.
    [Show full text]
  • Conspicuousness, Phylogenetic Structure, and Origins of Müllerian
    www.nature.com/scientificreports OPEN Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions Michal Motyka1, Dominik Kusy1, Michal Masek1, Matej Bocek1, Yun Li1, R. Bilkova1, Josef Kapitán2, Takashi Yagi3 & Ladislav Bocak1* Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals difer in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with diferently coloured unproftable relatives.
    [Show full text]
  • Assessing Insect Responses to Climate Change: What Are We Testing For? Where Should We Be Heading?
    Assessing insect responses to climate change: What are we testing for? Where should we be heading? Nigel R. Andrew1,2 , Sarah J. Hill2, Matthew Binns1,2 , Md Habibullah Bahar1,5 , Emma V. Ridley3, Myung-Pyo Jung1,4 , Chris Fyfe2, Michelle Yates1,2 and Mohammad Khusro1 1 Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, Australia 2 School of Environmental and Rural Sciences, University of New England, Armidale, Australia 3 Department of Biology, University of York, York, UK 4 Department of Agricultural Biology, National Academy of Agricultural Science, Suwon, South Korea 5 Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada ABSTRACT To understand how researchers are tackling globally important issues, it is crucial to identify whether current research is comprehensive enough to make substantive predictions about general responses. We examined how research on climate change aVecting insects is being assessed, what factors are being tested and the localities of studies, from 1703 papers published between 1985 and August 2012. Most published research (64%) is generated from Europe and North America and being dedicated to core data analysis, with 29% of the studies analysed dedicated to Lepidoptera and 22% Diptera: which are well above their contribution to the currently identified in- sect species richness (estimated at 13% and 17% respectively). Research publications on Coleoptera fall well short of their proportional contribution (19% of publications but 39% of insect species identified), and to a lesser extent so do Hemiptera, and Hymenoptera. Species specific responses to changes in temperature by assessing Submitted 12 November 2012 distribution/range shifts or changes in abundance were the most commonly used Accepted 31 December 2012 methods of assessing the impact of climate change on insects.
    [Show full text]
  • The Little Things That Run the City: 30 Amazing Insects That Live
    THE littleTHINGS that run the city BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA In partnership with City of Melbourne 30 amazing insects that live in Melbourne! THE LITTLE THINGS THAT RUN THE CITY 30 AMAZING INSECTS THAT LIVE IN MELBOURNE! © City of Melbourne 2017 First published May, 2017 ISBN 978-1-74250-900-6 ABOUT THIS PROJECT This book is an outreach educational resource prepared by Kate Cranney, Sarah Bekessy and Luis Mata for the City of Melbourne. Kate, Sarah and Luis work as part of the Interdisciplinary Conservation Science Research Group at RMIT University in Melbourne, Australia. THE Illustrations: Kate Cranney Ink on paper, www.katecranney.com Photographs: Luis Mata flickr.com/photos/dingilingi/ Graphic Design: Kathy Holowko THANK YOU We wish to acknowledge the support of the Australian Government’s little National Environmental Science Programme - Clean Air and Urban THINGS Landscapes and Threatened Species Hubs, and the Australian Research Council Centre of Excellence for Environmental Decisions. The book was inspired by ‘The Little Things that Run the City – Insect ecology, biodiversity and conservation in the that run the city City of Melbourne’ research project (Mata et al. 2016). We are very grateful to the Australian Museum (http://australianmuseum.net.au/insects), the Museum Victoria BY KATE CRANNEY, SARAH BEKESSY AND LUIS MATA (https://museumvictoria.com.au/bugs/), the CSIRO’s ‘What Bug is That’ program (http://anic.ento.csiro.au/insectfamilies/) and ‘The Insects of Australia - A textbook for students and research workers’ book (Naumann et al. 1991). Thank you to Dr. Marie Quinn for providing valuable feedback on the text.
    [Show full text]
  • Little Critters Toolkit Yarra Riverkeeper Association
    Little Critters Toolkit Yarra Riverkeeper Association 3 Acknowledgment of Country The Yarra Riverkeeper Association acknowledges that the Yarra Catchment is the traditional land and waters of the Wurundjeri Woi-wurrung people of the Kulin nation. We pay our respect to Elders who have cared for country since time began, to the Elders who are healing country today, and to the emerging Elders, who continue the journey of enriching culture. We acknowledge that the river now called the Yarra is traditionally known as the Birrarung and that name has never ceased to be the name of the river. 2 Photo | Anthony Despotellis Bugs are all around us. They contribute significantly to the health of ecosystems but are often discounted and forgotten about in the discussion and focus of our interest in the natural world around us. But, when you consider the ratio of bugs to humans being well over a billion to one, it’s pretty easy to understand that, while small in stature, these organisms have a huge impact on the world around us. This toolkit will help open the door to the world of critters running the show from behind the scenes. A better understanding of conservation and ecological health hinges on understanding life at all levels, doing the jobs we don’t even recognise yet. Introduction Photo | Andrew Allen Little Critters toolkit | YRKA 5 Insects, Bugs and Ecosystems Energy Bugs play a huge role in ecosystem balance Bugs are significant primary consumers in and maintenance. They fill a number of ecosystems, feeding on plant matter - the key roles in ecosystems, including energy producers - that have converted the Sun’s Tertiary .1% and nutrient cycling, pollination and pest energy into digestible energy through Consumers control.
    [Show full text]
  • Coleoptera, Cantharidae)
    Morphometric analysis, mimicry, and color polymorphism in five species of Chauliognathus Hentz (Coleoptera, Cantharidae) Vilmar Machado 1 Aldo M. de Araujo 2 Cieri S. Mosmann 1 ABSTRACT. This study presents data on morphometric variation [or length and width or elytra in live sympatric species of the genus Chauliogna/hus I-lentz, 1830: C. j1avipes Fabricius, 1781, C. oc/omaclila/us Pic, 1915, C. expanslls Waterhouse, 1878, C. jallax Germar, 1824 and C. linea/lis Zwetsch & Machado, 2000. The meaning of this variation is discussed in the light o[ the theOly o[ mimicly and visual communi­ cation between prey and predator. Females are larger than males in all species, except C. expanslis. The analysis of variance for length ofelytron as well as for width showed that the differences between species are significant for males and females; significant interaction (sex x species) was also found. The similarity in color pattern of these species, as well as similarities in the morphometric analysis, suggests that they could form a mimetic ring of the MUllerian type, which the authors suggest be called, a "yellow-black " complex. KEY WORDS. Coleoptera, Cantharidae, Chauliogl/o/hus, morphometlY, color po­ lymorphism The occurrence in a given place ofdifferent species of the same genus with a similar color pattern suggests either plesiomorphism or convergence due to natural selection, constituting then an example of mimicI)'. This could evolve as a response to visually oriented predators or, on theoretical grounds, it could be a true convergence (ifthe prey is unpalatable-classic MUllerian mimicry) onheevolution toward a pattern of the protected species (Satesian mimicIY).
    [Show full text]
  • A Case Study of Dingroo and Kamal Pur Canal, Faisalabad, Pakistan
    GSC Biological and Pharmaceutical Sciences, 2019, 06(01), 007–015 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e-ISSN: 2581-3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (RESEARCH ARTICLE) Diversity of foliage insects around different canal territories: A case study of Dingroo and Kamal Pur canal, Faisalabad, Pakistan Majeed Waqar *, Rana Naureen, Qamar Safi Ur Rehman, Nargis Shahla, Raja Imran Ahmed, Kanwal Sobia and Naseem Rimsha Department of Zoology, Wildlife and Fisheries, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Punjab, Pakistan. Publication history: Received on 16 December 2018; revised on 11 January 2019; accepted on 15 January 2019 Article DOI: https://doi.org/10.30574/gscbps.2019.6.1.0161 Abstract Diversity Indices are key components to draw the natural lines regarding taxa composition pertaining to any managed or unmanaged landscaping. They consist of diversity, evenness, dominance and richness of inhabiting taxa in that area. This study was carried out to check the diversity among species of class insecta near Kamal Pur canal and Dingroo canal of District Faisalabad, Punjab, Pakistan. Total 117 specimens were collected belonging to 7 orders, 17 families, 22 genera and 27 species from Dingroo canal while total 140 specimens were collected belonging to 7 orders, 23 families, 29 genera and 32 species from Kamal Pur canal. So, keeping in view the importance of these aspects, calculations were made as per Shannon Diversity Index and SPDIVERS.BAS software. Diversity was recorded maximum in Kamal Pur canal (1.0350) while least diversity was recorded for Dingroo canal (1.0293).
    [Show full text]
  • Cunninghamia Date of Publication: July 2019 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: July 2019 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) A Preliminary Checklist of Flower-visiting Insects from Syzygium floribundum, Syzygium smithii and Tristaniopsis laurina: three members of the Myrtle Rust-vulnerable plant family Myrtaceae. Geoff Williams1 and Paul Adam2 1Lorien Wildlife Refuge and Conservation Area, Lansdowne via Taree, NSW 2430. Honorary Research Associate, Australian Museum, College Street, Sydney, NSW 2000 AUSTRALIA. 2School of Biological, Earth and Environmental Science, University of New South Wales, Kensington, NSW 2052 AUSTRALIA. Abstract: Insects visiting flowering trees of Syzygium floribundum, Syzygium smithii and Tristaniopsis laurina (Myrtaceae) were recorded in lowland subtropical rainforest communities in the Manning Valley, mid-north coast of New South Wales. These species are visited by a taxonomically broad assemblage of insects, many of which are known to frequent other rainforest- and open forest- flowering plant species. Consequently there is likely to be a regional pool of potential pollinators found throughout the range of each plant. Key Words: Syzygium floribundum, Syzygium smithii, Tristaniopsis laurina, Myrtaceae, endangered ecological communities, subtropical rainforest, wet sclerophyll forest, pollination, anthophilous insects, Myrtle rust, Austropuccinia psidii, extinction events. Cunninghamia (2019) 19: 057–074 doi:10.7751/cunninghamia.2019.19.005 Cunninghamia: a journal of plant ecology for eastern
    [Show full text]
  • 'Tasmanian Museum and Art Gallery's Expedition of Discovery I – the Flora
    Papers and Proceedings of the Royal Society of Tasmania, Volume 153, 2019 5 TASMANIAN MUSEUM AND ART GALLERY’S EXPEDITION OF DISCOVERY I – THE FLORA AND FAUNA OF WIND SONG, LITTLE SWANPORT, TASMANIA by Matthew Baker, Simon Grove, Miguel de Salas, Catherine Byrne, Lyn Cave, Kevin Bonham, Kirrily Moore and Gintaras Kantvilas (with 15 plates, two tables and an appendix) Baker, M.L., Grove, S., de Salas, M.F., Byrne, C., Cave, L., Bonham, K., Moore, K. & Kantvilas, G. 2019 (14:xii): Tasmanian Museum and Art Gallery’s Expedition of Discovery I – The flora and fauna of Wind Song, Little Swanport, Tasmania. Papers and Proceedings of the Royal Society of Tasmania 153: 5–30. https://doi.org/10.26749/rstpp.153.5 ISSN 0080–4703. Tasmanian Museum and Art Gallery, GPO Box 1164, Hobart, Tasmania 7001, Australia (MLB*, SG, MFS, CB, LC, KB, KM, GK). *Author for correspondence. Email: [email protected] A flora and fauna survey was conducted at the east coast Tasmanian property Wind Song in 2017 as part of the Tasmanian Museum and Art Gallery’s ongoing research, collection-building and nature-discovery program. The survey recorded 885 taxa, primarily from the targeted groups of vascular plants, bryophytes, lichens, butterflies, moths, beetles, snails and slugs. Several of the taxa recorded, chiefly lichens and invertebrates, are new to science or new records for Tasmania. The survey provides a benchmark for further work and serves as an indicator of the biodiversity of a former farming property on Tasmania’s east coast. Key Words: species discovery, biodiversity, Tasmania, lichens, multidisciplinary survey.
    [Show full text]
  • (Coleoptera : Chrysomelidae) in New Zealand
    Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Aspects of the Ecology of Trachymela catenata Chapuis (Coleoptera : Chrysomelidae) in New Zealand. A thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Ecology at Massey University Douglas Paul Barrett 1998 Table of Contents Abstract lV Acknowledgements v Chapter 1. Introduction 1 The Eucalypts 1 Eucalypt forest insects 3 Eucalypt plantation forest pests and biocontrol 7 The Paropsina 14 History of Trachymela catenata in New Zealand 17 Study sites 18 References 22 Chapter 2. Ecology of the recently established paropsine 32 Trachymela catenata Chapuis (Coleoptera: Chrysomelidae) in New Zealand: Life history, Phenology, Mortality and Development. Abstract 32 Introduction 33 Methods 36 Results 45 Discussion 56 References 68 Chapter 3. Larval performance and oviposition preferences 73 of Trachyrnela catenata Chapuis (Coleoptera: Chrysomelidae) on eight species of Eucalyptus. Abstract 73 Introduction 74 Methods 77 Results 81 Discussion 87 References 93 Chapter 4. Comparative studies of the effects of the parasitoid 98 Enoggera nassaui Girault (Hymenoptera: Pteromalidae) on Trachyrnela catenata Chapuis and Paropsis charybdis Stahl (Coleoptera: Chrysomelidae). Abstract 98 Introduction 99 Methods 104 Results 106 Discussion 109 References 113 Chapter 5. Conclusions 117 Location of Plates Plates 1, 2, 3 and 4 between pages 21-22 " 5 and 6 " " " " " 38-39 iv Abstract A member of the Eucalyptus defoliating Australian tortoise beetles Trachymela catenata was recorded in New Zealand in December 1992.
    [Show full text]