ISS External Payload Proposers Guide

Total Page:16

File Type:pdf, Size:1020Kb

ISS External Payload Proposers Guide GSFC 420-01-09 Rev - Effective Date: 04/30/2015 EXTERNAL PAYLOADS PROPOSER’S GUIDE to the International Space Station Goddard Space Flight Center Greenbelt, Maryland CHECK THE ESP DIVISION WEBSITE AT http://espd.gsfc.nasa.gov/isseppg/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. GSFC 420-01-09 Rev - Effective Date: 04/30/2015 External Payloads Proposer’s Guide to the International Space Station [ This page intentionally left blank] CHECK THE ESP DIVISION WEBSITE AT http://espd.gsfc.nasa.gov/isseppg/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. i GSFC 420-01-09 Rev - Effective Date: 04/30/2015 External Payloads Proposer’s Guide to the International Space Station Acknowledgement This Guide has been developed by the Systems Engineering Working Group (SEWG) of the Earth Systematic Missions Program (ESMP), the Earth Science Systems Pathfinders Program (ESSP), and the International Space Station (ISS) Research Integration Office (formerly known as “Payloads Office”). Several NASA developers of payloads for the ISS reviewed early drafts of the document and provided inputs. Participation of the ESSP included several members of the Common Instrument Interface team. The intent of this document is to level the playing field in competitions for Earth Science funds, and to improve the quality of science being done from the ISS. The problem being addressed is that the ISS has recently become much more available for hosting science payloads, but the science community has widely variable levels of experience and expertise to accommodations information about the ISS. This may unduly favor organizations with past experience in the development of ISS payloads. With this document, scientists and principal investigators and their engineering teams can more readily gain the level of understanding of the ISS needed to develop a winning proposal. This improves the chances of the best science being done from the ISS, reduces workload within the proposal development workforce and reduces the expense of developing a proposal, reduces workload on those within the ISS Research Integration Office who work with proposal teams and review proposals, and reduces post-award surprises which might lead to cost over-runs or cancellation. This initial release is under the configuration control of the ESMP and the GSFC Flight Projects Directorate, Earth Science Projects Division. To ensure you have the current version, visit the web site at the bottom of each page. CHECK THE ESP DIVISION WEBSITE AT http://espd.gsfc.nasa.gov/isseppg/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. iii GSFC 420-01-09 Rev - Effective Date: 04/30/2015 CHANGE RECORD PAGE Document Title: External Payloads Proposer’s Guide to the International Space Station Document Date: April 2015 ISSUE DATE PAGES AFFECTED DESCRIPTION Original April 2015 All Baselined - Approved By CCR# 1014 CHECK THE ESP DIVISION WEBSITE AT http://espd.gsfc.nasa.gov/isseppg/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. vi GSFC 420-01-09 Rev - Effective Date: 04/30/2015 External Payloads Proposer’s Guide to the International Space Station Table of Contents 1.0 Introduction .................................................................................................................. 1 2.0 General Information for Operating on ISS .................................................................. 3 2.1 How to Get Started ............................................................................................. 3 2.2 What You Should Know ...................................................................................... 4 2.3 Roles/Responsibilities of ISS Organizations ........................................................ 5 2.4 Roles /Responsibilities of Payload Providers ...................................................... 6 2.5 Manifesting Process ............................................................................................ 6 3.0 ISS Accommodations ................................................................................................... 7 3.1 Integrated Truss Assembly/ExPRESS Logistics Carrier .................................... 18 Physical Accommodations ................................................................................ 18 Robotics ............................................................................................................ 23 Thermal ............................................................................................................ 25 Power .............................................................................................................. 27 Command and Data Handling (C&DH) .............................................................. 30 Field Of View (FOV) .......................................................................................... 34 Microgravity Environment .................................................................................. 38 Electromagnetic Compatibility/Electromagnetic Interference (EMC/EMI) .......... 41 3.2 Japanese Experiment Module-External Facility (JEM-EF) ................................. 42 Physical Accommodations ................................................................................ 43 Robotics ............................................................................................................ 49 Thermal ............................................................................................................ 52 Power .............................................................................................................. 58 Command and Data Handling (C&DH) .............................................................. 59 Field of View (FOV) ........................................................................................... 63 Microgravity Environment .................................................................................. 71 Electromagnetic Compatibility/Electromagnetic Interference (EMC/EMI) .......... 73 3.3 Columbus External Payload Facility (Columbus-EPF) ....................................... 73 Physical Accommodations ................................................................................ 76 Robotics (SSRMS/SPDM (Dextre)) ................................................................... 79 Thermal ............................................................................................................ 81 Power (and Electrical Interfaces) ...................................................................... 83 Command and Data Handling (C&DH) .............................................................. 86 Fields of View (FOV) ......................................................................................... 88 Microgravity Environment .................................................................................. 91 Electromagnetic Compatibility/Electromagnetic Interference (EMC/EMI) .......... 92 3.4 Additional Factors Common to All ISS External Sites ........................................ 93 Attitude and Pointing ......................................................................................... 93 Micrometeoroids/Orbital Debris ......................................................................... 94 Magnetic Field and Gravitational Field .............................................................. 95 Atomic Oxygen ................................................................................................. 96 On-orbit Minimum Pressure Environment ......................................................... 96 Space Sink Temperature .................................................................................. 96 Electromagnetic Radiation (EMR) ..................................................................... 96 CHECK THE ESP DIVISION WEBSITE AT http://espd.gsfc.nasa.gov/isseppg/ TO VERIFY THAT THIS IS THE CORRECT VERSION PRIOR TO USE. vii GSFC 420-01-09 Rev - Effective Date: 04/30/2015 Contamination ................................................................................................... 96 Contingency EVA (as required) ....................................................................... 101 End of Mission ................................................................................................ 101 4.0 Integration and Operations ...................................................................................... 102 4.1 Integration ....................................................................................................... 102 Integration Template (Reference Milestones) .................................................. 102 Engineering Integration Process ..................................................................... 104 Verification Interface Testing (Part of Verification Process) ............................. 108 4.2 ISS Operations ............................................................................................... 110 Overview ISS Integrated Mission Elements .................................................. 111 Typical Profile (Day-in-the-Life) ....................................................................... 112 Attitude/Altitude Adjustments/Corrections ....................................................... 113 Visiting Vehicle Timeline ................................................................................. 118 Mission Operations Functions ......................................................................... 120 Payload Developer Requirements for Operations
Recommended publications
  • Endeavour Set to Leave International Space Station Today 24 March 2008
    Endeavour Set to Leave International Space Station Today 24 March 2008 who replaced European Space Agency astronaut Léopold Eyharts on the station. Eyharts is returning to Earth aboard Endeavour. The astronauts also performed five spacewalks while on the station. Endeavour is scheduled to land at Kennedy Space Center, Fla., Wednesday. Source: NASA STS-123 Mission Specialist Léopold Eyharts, pictured in the foreground, and Pilot Gregory H. Johnson work at the robotics station in the International Space Station's U.S. laboratory, Destiny. Credit: NASA The crew of space shuttle Endeavour is slated to leave the International Space Station today. The STS-123 and Expedition 16 crews will bid one another farewell, and the hatches between the two spacecraft will close at 5:13 p.m. EDT. Endeavour is scheduled to undock from the International Space Station at 7:56 p.m., ending its 12-day stay at the orbital outpost. STS-123 arrived at the station March 12, delivering the Japanese Logistics Module - Pressurized Section, the first pressurized component of the Japan Aerospace Exploration Agency’s Kibo laboratory, to the station. The crew of Endeavour also delivered the final element of the station’s Mobile Servicing System, the Canadian-built Dextre, also known as the Special Purpose Dextrous Manipulator. In addition, the STS-123 astronauts delivered Expedition 16 Flight Engineer Garrett Reisman, 1 / 2 APA citation: Endeavour Set to Leave International Space Station Today (2008, March 24) retrieved 24 September 2021 from https://phys.org/news/2008-03-endeavour-international-space-station-today.html This document is subject to copyright.
    [Show full text]
  • Correlation of the SAGE III on ISS Thermal Models in Thermal Desktop
    47th International Conference on Environmental Systems ICES-2017-171 16-20 July 2017, Charleston, South Carolina Correlation of the SAGE III on ISS Thermal Models in Thermal Desktop Ruth M. Amundsen1, Warren T. Davis2, and Kaitlin A. K. Liles3 NASA Langley Research Center, Hampton, VA, 23681 and Shawn C. McLeod4 Analytical Mechanics Associates, Inc., Hampton, VA, 23666 The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument is the fifth in a series of instruments developed for monitoring aerosols and gaseous constituents in the stratosphere and troposphere. SAGE III was launched on February 19, 2017 and mounted to the International Space Station (ISS) to begin its three-year mission. A detailed thermal model of the SAGE III payload, which consists of multiple subsystems, has been developed in Thermal Desktop (TD). Correlation of the thermal model is important since the payload will be expected to survive a three-year mission on ISS under varying thermal environments. Three major thermal vacuum (TVAC) tests were completed during the development of the SAGE III Instrument Payload (IP); two subsystem-level tests and a payload-level test. Additionally, a characterization TVAC test was performed in order to verify performance of a system of heater plates that was designed to allow the IP to achieve the required temperatures during payload-level testing; model correlation was performed for this test configuration as well as those including the SAGE III flight hardware. This document presents the methods that were used to correlate the SAGE III models to TVAC at the subsystem and IP level, including the approach for modeling the parts of the payload in the thermal chamber, generating pre-test predictions, and making adjustments to the model to align predictions with temperatures observed during testing.
    [Show full text]
  • STS-134 Press
    CONTENTS Section Page STS-134 MISSION OVERVIEW ................................................................................................ 1 STS-134 TIMELINE OVERVIEW ............................................................................................... 9 MISSION PROFILE ................................................................................................................... 11 MISSION OBJECTIVES ............................................................................................................ 13 MISSION PERSONNEL ............................................................................................................. 15 STS-134 ENDEAVOUR CREW .................................................................................................. 17 PAYLOAD OVERVIEW .............................................................................................................. 25 ALPHA MAGNETIC SPECTROMETER-2 .................................................................................................. 25 EXPRESS LOGISTICS CARRIER 3 ......................................................................................................... 31 RENDEZVOUS & DOCKING ....................................................................................................... 43 UNDOCKING, SEPARATION AND DEPARTURE ....................................................................................... 44 SPACEWALKS ........................................................................................................................
    [Show full text]
  • Robotic Arm.Indd
    Ages: 8-12 Topic: Engineering design and teamwork Standards: This activity is aligned to national standards in science, technology, health and mathematics. Mission X: Train Like an Astronaut Next Generation: 3-5-ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely A Robotic Arm to meet the criteria and constraints of the problem. 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be EDUCATOR SECTION (PAGES 1-7) improved. STUDENT SECTION (PAGES 8-15) Background Why do we need robotic arms when working in space? As an example, try holding a book in your hands straight out in front of you and not moving them for one or two minutes. After a while, do your hands start to shake or move around? Imagine how hard it would be to hold your hands steady for many days in a row, or to lift something really heavy. Wouldn’t it be nice to have a really long arm that never gets tired? Well, to help out in space, scientists have designed and used robotic arms for years. On Earth, scientists have designed robotic arms for everything from moving heavy equipment to performing delicate surgery. Robotic arms are important machines that help people work on Earth as well as in space. Astronaut attached to a robotic arm on the ISS. Look at your arms once again. Your arms are covered in skin for protection.
    [Show full text]
  • Kibo HANDBOOK
    Kibo HANDBOOK September 2007 Japan Aerospace Exploration Agency (JAXA) Human Space Systems and Utilization Program Group Kibo HANDBOOK Contents 1. Background on Development of Kibo ............................................1-1 1.1 Summary ........................................................................................................................... 1-2 1.2 International Space Station (ISS) Program ........................................................................ 1-2 1.2.1 Outline.........................................................................................................................1-2 1.3 Background of Kibo Development...................................................................................... 1-4 2. Kibo Elements...................................................................................2-1 2.1 Kibo Elements.................................................................................................................... 2-2 2.1.1 Pressurized Module (PM)............................................................................................ 2-3 2.1.2 Experiment Logistics Module - Pressurized Section (ELM-PS)................................... 2-4 2.1.3 Exposed Facility (EF) .................................................................................................. 2-5 2.1.4 Experiment Logistics Module - Exposed Section (ELM-ES)........................................ 2-6 2.1.5 JEM Remote Manipulator System (JEMRMS)............................................................
    [Show full text]
  • 10Th International Limb Workshop – Scientific Program Greifswald, June 3 – 7, 2019
    10th International Limb Workshop – Scientific program Greifswald, June 3 – 7, 2019 Monday, June 3, 18:00: Icebreaker and Reception Restaurant Campo Alegre (Lange Reihe 1) Session 1: Tuesday, June 4, 08:30 – 10:30 (Chair: Christian von Savigny) Welcome 08:30 – 08:35 Welcome by local organizers (Christian von Savigny) 08:35 – 08:45 Welcome address by representative of the City of Greifswald (Jeanette von Busse) 08:45 – 08:55 Welcome address by University administration (Pro-rector Prof. Katharina Riedel) 08:55 – 09:05 Welcome address by Dr. Christian Suhm (Academic coordinator of Alfried Krupp Institute of Advanced Study) 09:05 – 09:15 Logistics (Christian von Savigny) New missions and mission concepts 09:15 – 09:45 Didier Fussen Forthcoming limb observations with ALTIUS (invited talk) 09:45 – 10:00 Nick Lloyd The Canadian Atmospheric Tomography System (CATS) – The Next Generation OSIRIS Instrument 10:00 – 10:15 Marilee Roell Stratospheric Aerosol and Gas Experiment (SAGE) III installed on the International Space Station (ISS): Mission overview and Science Data Product Validation 10:15 – 10:30 Matthew DeLand MASTAR: Limb Scattering Measurements of Stratospheric Aerosols 10:30 – 11:00 Coffee break 10th International Limb Workshop, June 4 – 7, 2019 Greifswald Session 2: Tuesday, June 4, 11:00 – 13:00 (Chair: Adam Bourassa) New missions and mission concepts 11:00 – 11:25 Christoph R. Englert MIGHTI (Michelson Interferometer for Global High-resolution Thermospheric Imaging): The Wind and Temperature Instrument Onboard the NASA Ionospheric Connection (ICON) Mission (invited talk) 11:25 – 11:50 Donal Murtagh MATS - a micro satellite for studies of Mesospheric Airglow /aerosol by Tomography and Spectroscopy (invited talk) 11:50 – 12:15 Kristell Pérot SIW: a New Satellite Mission to Explore Middle Atmospheric Wind Structure and Composition (invited talk) 12:15 – 12:30 John Burrows A new Concept SLIPSTREAM/SCIA-L2 12:30 – 12:45 William E.
    [Show full text]
  • 2008 Spaceport News Summary
    2008 Spaceport News Summary The 2008 Spaceport News used the above banner for the year. Introduction The first issue of the Spaceport News was December 13, 1962. The 1963, 1964 and 1965 Spaceport News were issued weekly. The Spaceport News was issued every two weeks, starting July 7, 1966, until the last issue on February 24, 2014. Spaceport Magazine, a monthly issue, superseded the Spaceport News in April 2014, until the final issue, Jan./Feb. 2020. The two 1962 Spaceport News issues and the issues from 1996 until the final Spaceport Magazine issue, are available for viewing at this website. The Spaceport News issues from 1963 through 1995 are currently not available online. In this Summary, black font is original Spaceport News text, blue font is something I added or someone else/some other source provided, and purple font is a hot link. All links were working at the time I completed this Spaceport News Summary. The Spaceport News writer is acknowledged, if noted in the Spaceport News article. Followup From the 2007 Spaceport News Summary The followng is in the December 14, 2007, issue of the Spaceport News. Page 1 There is an article in the 2007 Spaceport News Summary about External Tank repairs to ET-124, flown on STS-117, after it was damaged by hail. Below is a photo in the VAB, showing the extent of some of the damage. A lot of scaffolding had to be installed, some of which is in visible in the photo. From The January 11, 2008, Spaceport News On page 1, “Apollo Tribute Bike roars through KSC”, by Linda Herridge, Staff Writer.
    [Show full text]
  • International Space Station Basics Components of The
    National Aeronautics and Space Administration International Space Station Basics The International Space Station (ISS) is the largest orbiting can see 16 sunrises and 16 sunsets each day! During the laboratory ever built. It is an international, technological, daylight periods, temperatures reach 200 ºC, while and political achievement. The five international partners temperatures during the night periods drop to -200 ºC. include the space agencies of the United States, Canada, The view of Earth from the ISS reveals part of the planet, Russia, Europe, and Japan. not the whole planet. In fact, astronauts can see much of the North American continent when they pass over the The first parts of the ISS were sent and assembled in orbit United States. To see pictures of Earth from the ISS, visit in 1998. Since the year 2000, the ISS has had crews living http://eol.jsc.nasa.gov/sseop/clickmap/. continuously on board. Building the ISS is like living in a house while constructing it at the same time. Building and sustaining the ISS requires 80 launches on several kinds of rockets over a 12-year period. The assembly of the ISS Components of the ISS will continue through 2010, when the Space Shuttle is retired from service. The components of the ISS include shapes like canisters, spheres, triangles, beams, and wide, flat panels. The When fully complete, the ISS will weigh about 420,000 modules are shaped like canisters and spheres. These are kilograms (925,000 pounds). This is equivalent to more areas where the astronauts live and work. On Earth, car- than 330 automobiles.
    [Show full text]
  • STS-132 Mission Summary
    NASA Mission Summary National Aeronautics and Space Administration Washington, D.C. 20546 (202) 358-1100 STS-132 MISSION SUMMARY May 2010 SPACE SHUTTLE ATLANTIS Atlantis’ 12-day mission will deliver the Russian-built Mini Research Module-1 that will provide additional storage space and a new docking port for Russian Soyuz and Progress spacecraft. MRM-1, also known as Rassvet, which means dawn in Russian, will be permanently attached to the bottom port of the station’s Zarya module. MRM-1 will carry important hardware on its exterior including a radiator, airlock and a European robotic arm. Atlantis also will deliver addi- tional station hardware stored inside a cargo carrier. Three spacewalks are planned to stage spare components outside the station, including six spare batteries, a Ku-band antenna and spare parts for the Canadian Dextre robotic arm. Shuttle mission STS-132 is the final sched- uled flight for Atlantis . CREW Ken Ham Tony Antonelli (an-tuh-NEL-lee) Commander (Captain, U.S. Navy) Pilot (Commander, U.S. Navy) ● Veteran of one spaceflight, STS-124 pilot ● Veteran of one spaceflight, STS-119 pilot ● Age: 45, Born: Plainfield, N.J. ● Born: Detroit ● Married with two children ● Married with two children ● Logged 5,000+ hours in 40 different aircraft ● Logged 3,200+ hours in 41 different aircraft ● Call sign: Hock ● Interests include snow boarding and NASCAR Garrett Reisman (REESE-man) Michael Good Mission Specialist-1 Mission Specialist-2 (Col., U.S. Air Force, Ret.) ● Veteran flight engineer on Expedition 16 & 17 ● Veteran of one spaceflight, STS-125 ● Launched on STS-123; returned STS-124 ● Age: 47, Hometown: Broadview Heights, Ohio ● Age: 42, Hometown: Parsippany, N.J.
    [Show full text]
  • Space Reporter's Handbook Mission Supplement Shuttle Mission STS
    CBS News Space Reporter's Handbook - Mission Supplement! Page 1 The CBS News Space Reporter's Handbook Mission Supplement Shuttle Mission STS-134/ISS-ULF6: International Space Station Assembly and Resupply Written and Produced By William G. Harwood CBS News Space Analyst [email protected] CBS News!!! 4/26/11 Page 2 ! CBS News Space Reporter's Handbook - Mission Supplement Revision History Editor's Note Mission-specific sections of the Space Reporter's Handbook are posted as flight data becomes available. Readers should check the CBS News "Space Place" web site in the weeks before a launch to download the latest edition: http://www.cbsnews.com/network/news/space/current.html DATE RELEASE NOTES 03/18/11 Initial STS-134 release 04/27/11 Updating throughout Introduction This document is an outgrowth of my original UPI Space Reporter's Handbook, prepared prior to STS-26 for United Press International and updated for several flights thereafter due to popular demand. The current version is prepared for CBS News. As with the original, the goal here is to provide useful information on U.S. and Russian space flights so reporters and producers will not be forced to rely on government or industry public affairs officers at times when it might be difficult to get timely responses. All of these data are available elsewhere, of course, but not necessarily in one place. The STS-134 version of the CBS News Space Reporter's Handbook was compiled from NASA news releases, JSC flight plans, the Shuttle Flight Data and In-Flight Anomaly List, NASA Public Affairs and the Flight Dynamics office (abort boundaries) at the Johnson Space Center in Houston.
    [Show full text]
  • Space Exploration Contract Nnj09ga04b
    NNJ09GA04B Table of Contents 1 Standard Form 1449 ................................................................................................................ ii 2 Model Contract: Contract Terms and Conditions ................................................................... 1 3 Section IV Offer Representations and Certifications/Minimum Requirements / Representations and Warranties ............................................. ErrorZ Bookmark not defined. 4 Deviations, Exceptions and Conditional Assumptions ....................................................... 149 Pagel i NNJ09GA04B 1 StandardForm 1449 Pagelii NNJ09GA04B 2 ModelContract:ContractTermsand Conditions Table of Contents 1 Standard Form 1449 ................................................................................................................ii 2 Model Contract: Contract Terms and Conditions ................................................................... 1 I.A. Addendum to Standard Form 1449 ......................................................................................... 5 I.A.1 Schedule of Supplies and/or Services to be Provided ...................................................... 5 I.A.2 Period Covered by Procurement ...................................................................................... 5 I.A.3 Indefinite Delivery IndefiniteQuantity(IDIQ), Firm Fixed Price Contract ................... 5 I.A.4 Contract Line Items (CLINs)........................................................................................... 5 The parties
    [Show full text]
  • See How the Flow
    Integrated Defense Systems BOEING FRONTIERS s ewith- o in that re- g gion are a man- ageable 2,000 to 3,000 owdegrees, while just a few inches fl away from the orbiter’s surface the full e signed a force of heating results in a total tempera- h ture of up to 10,000 degrees. t special 6-inch-by- w As long as the orbiter’s surface is ho 6-inch (15.2-centemeter-by-15.2- e smooth, the boundary layer keeps the tiles’ Se centimeter) test tile, to be installed on the lower side of the orbiter port-side wing temperature within the limits of their de- Test tile to measure near the main landing gear door. The tile sign. But any interruption in the air fl ow will test airfl ow on three upcoming shut- causes a boundary layer “trip,” where tur- shuttle’s re-entry airfl ow tle fl ights, beginning with the STS-119 bulence behind the trip point brings down Discovery fl ight this December. The goal to the surface of the shuttle the extreme BY ED MEMI is to understand boundary layer transi- heat that was outside the laminar boundary layer. This could cause the tiles to overheat hen the Space Shuttle re-enters tions, and the data from this experiment will help NASA in its efforts to develop and damage the underlying surface. Earth’s atmosphere at 25 times The phenomenon is similar to a smooth the speed of sound, its Thermal new spacecraft such as the Orion crew ex- W ploration vehicle.
    [Show full text]