<<

1

Allioa 1 4 5 7 5 ^

NA1 L IN®T STANDARDS & ii i TECH R.I.C.

All 102145759 /NSRDS-NBS 1964 PLICATIONS NSRDS-NBS 51

* *°*tAU Of

U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards

(Site

N SRP S

Selected Specific Rates of Reactions of Transients from

in Aqueous Solution.

II. Atom

too 513 \o.5

1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau’s overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts

research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and commerce. The Institute consists of a Center for Radiation Research, an Office of Meas- urement Services and the following divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical Physics — Nuclear Sciences 2 — Applied Radiation 2 — Quantum Electronics 3 — Electromagnetics 3 — Time 3 3 3 and Frequency — Laboratory Astrophysics — Cryogenics .

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to improved methods of measurement, standards, and data on the properties of well-characterized materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; and develops, produces, and distributes standard reference materials. The Institute consists of the Office of Standard Reference Materials and the following divisions: Analytical Chemistry — Polymers — Metallurgy — Inorganic Materials — Reactor Radiation — Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote the use of available technology and to facilitate technological innovation in industry and Government; cooperates with public and private organizations leading to the development of technological standards (including mandatory safety standards), codes and methods of test; and provides technical advice and services to Government agencies upon request. The Institute consists of a Center for Building Technology and the following divisions and offices: Engineering and Product Standards — Weights and Measures — Invention and Innova- tion Product Evaluation Technology — Electronic Technology — Technical Analysis — Measurement Engineering — Structures, Materials, and Safety 4 — Building * Environment — Technical Evaluation and Application 4 — Fire Technology.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research and provides technical services designed to aid Government agencies in improving cost effec- tiveness in the conduct of their programs through the selection, acquisition, and effective utilization of automatic data processing equipment; and serves as the principal focus within the executive branch for the development of Federal standards for automatic data processing equipment, techniques, and computer languages. The Institute consists of the following divisions: Computer Services — Systems and Software — Computer Systems Engineering — Informa- tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and accessibility of scientific information generated within NBS and other agencies of the Federal government; promotes the development of the National Standard Reference Data System and a system of information analysis centers dealing with , the broader aspects of the National Measurement System; provides appropriate services to ensure that the NBS staff has optimum accessibility to the scientific information of the world. The Office consists of the following organizational units:

Office of Standard Reference Data — Office of Information Activities — Office of Technical Publications — Library — Office of International Relations.

* Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing* address Washington, D.C. 20234. 2 Part of the Center for Radiation Research. 3 Located at Boulder, Colorado 80302. 4 Part of the Center for Building Technology. 3 rtrt tiurUi toojiLhu .

JUL 8 1975 n'- Selected Specific Rates of Gc. loo

') , US Reactions of Transients From Water

r'€’.S' I in Aqueous Solution. Iq7

C.3- II. Hydrogen Atom *

Michael Anbar

Stanford Research Institute, Menlo Park, Calif. 94025

and

Farhataziz and Alberta B. Ross

Radiation Chemistry Data Center, Radiation Laboratory, University of Notre Dame, Notre Dame, Ind. 46556

U.S. DEPARTMENT OF COMMERCE

NATIONAL BUREAU OF STANDARDS, Richard W. Roberts, Director

Issued May 1975 Library of Congress Catalog Number: 73-600329

NSRDS-NBS 51

Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. (U.S.), 51, 56 pages (May 1975) CODEN: NSRDAP

© 1975 by the Secretary of Commerce on Behalf of the United States Government

U.S. GOVERNMENT PRINTING OFFICE WASHINGTON: 1975

For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 (Order by SD Catalog No. 03.48:51). Price $1.20 Foreword

The National Standard Reference Data System provides access to the quantitative data of phys-

ical science, critically evaluated and compiled for convenience and readily accessible through a variety of distribution channels. The System was established in 1963 by action of the President’s Office of Science and Technology and the Federal Council for Science and Technology, and

responsibility to administer it was assigned to the National Bureau of Standards. NSRDS receives advice and planning assistance from a Review Committee of the National Research Council of the National Academy of Sciences-National Academy of Engineering. A num- ber of Advisory Panels, each concerned with a single technical area, meet regularly to examine major portions of the program, assign relative priorities, and identify specific key problems in need of further attention. For selected specific topics, the Advisory Panels sponsor subpanels which make detailed studies of users’ needs, the present state of knowledge, and existing data re- sources as a basis for recommending one or more data compilation activities. This assembly of advisory services contributes greatly to the guidance of NSRDS activities. The System now includes a complex of data centers and other activities in academic insti- tutions and other laboratories. Components of the NSRDS produce compilations of critically evaluated data, reviews of the state of quantitative knowledge in specialized areas, and computa- tions of useful functions derived from standard reference data. The centers and projects also establish criteria for evaluation and compilation of data and recommend improvements in ex- perimental techniques. They are normally associated with research in the relevant field.

The technical scope of NSRDS is indicated by the categories of projects active or being planned : nuclear properties, atomic and molecular properties, solid state properties, thermody- namic and transport properties, chemical kinetics, and colloid and surface properties.

Reliable data on the properties of matter and materials is a major foundation of scientific and technical progress. Such important activities as basic scientific research, industrial quality con- trol, development of new materials for building and other technologies, measuring and correcting environmental pollution depend on quality reference data. In NSRDS, the Bureau’s responsibility to support American science, industry, and commerce is vitally fulfilled.

Richard W. Roberts, Director

III Preface

This report is one of a series of data publications on radiation chemistry; the aim of the series is to compile, evaluate, and present the numerical results on processes occurring in systems which have been subjected to ionizing radiation. Various kinds of data are important in radiation chem- istry. The quantities which were measured first were the observed radiation yields or G values (mole- cules formed or destroyed per 100 eV). Various indirect methods based on G values have been used to determine yields of transient species and relative rates of reactions. The spectral properties (optical, electron spin resonance) of transients have provided a direct method for their identification, and rates of thfe very fast reactions of transients which occur in irradiated systems have been measured directly by spectroscopic methods. Conductivity and luminescence methods have also provided a means of measuring properties of transients and their kinetics. Some reactions which occur in irradiated systems have also been studied by other methods, such as photochemistry, electric discharge, ultrasonics, chem- ical initiation, electron impact, etc. The emphasis in these publications is on the data of radiation chemistry, but where other pertinent data exist, they are included.

The data of radiation chemistry are voluminous; thousands of systems have been investigated. As a result there are certain collections, e.g. rate constants of particular types of reactions or certain properties of transients, for which tabulations of the data are considered essential, but for which critical assessment of each value is impossible. On the other hand, certain systems and properties have been studied so extensively that critical examination of these data is desirable and timely. Authors of this series of data publications have been asked to evaluate the extent to which the data can be critically assessed, to describe their criteria for evaluation, and to designate preferred values whenever possible.

IV Contents

Page Foreword Ill Preface IV

Introduction 1 Table 1. Values of k used for normalizing relative rates 4 Table 2. Reactions of H with transients from water (2.1-2.4K 5 Table 3. Reactions of H with inorganic solutes (2.5-2.103) 7 Table 4. Reactions of H with organic solutes (2.104-2.388) 16 Formula Index. 46 References 50

V

Selected Specific Rates of Reactions of Transients

from Water in Aqueous Solution

II. Hydrogen Atom

Michael Anbar

Stanford Research Institute, Menlo Park, Calif. 94025

Farhataziz and Alberta B. Ross

Radiation Chemistry Data Center , Radiation Laboratory ,*

University of Notre Dame, Notre Dame, Ind . 46556

Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic , ions, and transients in aqueous solution have been tabulated. Directly measured rates obtained by kinetic or conductimetric methods, and relative rates determined by competition kinetics are included.

Key words: Aqueous solution; chemical kinetics; data compilation; hydrogen atom; radiation chemistry; rates.

Introduction

The radiolysis of water yields three major intermediates: the hydrogen atom, the hydrated electron,

and the . Tables of rates of hydrated electron reactions comprise part I of this series (73 0030). This compilation contains tables of rates of hydrogen atom reactions in aqueous solution and covers the literature through 1972. The rate data for the hydroxyl radical have been compiled and will be published in part III of this series. The hydrogen atom is the simplest chemical species, carrying a single electron. Being such a fundamental entity, its reactivity with other chemical species is of special interest to theoretical chemists as well as to anyone involved in the research of mechanisms of chemical reactions. In addition, the hydrogen atom is one of the important products of the radiolysis of water and its reactivity determines, therefore, the behavior of radiolyzed systems. As such the hydrogen atom reactions are of great importance to .radiation chemists and radiobiologists. The chemical behavior of hydrogen atoms may be summarized in the following examples:

H + Br2 —> HBr + Br (abstraction)

— H + CH 3 CH 2 OH » H 2 + CH3CHOH (abstraction)

+ H CH 2 =CH-CH 2 CH 3 CH 3 CHCH 2 CH 3 (addition)

—> H + C 6 H 6 C 6 H 7 (addition) — H + H > H 2 (radical combination)

*The Radiation Laboratory is operated under contract with The Atomic Energy Commission. The work of the Center is supported jointly by The National Bureau of Standards,

Office of Standard Reference Data and The Atomic Energy Commission. This is AEC Document COO-38-815.

1 H + 0 2 -> H0 2 (addition)

2+ + + H + Cu —» Cu + H (charge transfer) — H + OH" + H 2 0

These reacuons include abstraction reactions, some of which — like hydrogen abstraction — may be defined as oxidation processes. Additions to double bonds or aromatic rings and to free radicals or biradicals may be considered as reducing processes. The third category of H atom reactions are reduction - processes which proceed probably via electron transfer mechanisms. Finally there are the H + OH and H + F" reactions which yield hydrated electrons and which have no simple analog in chemistry. In acid solutions hydrated electrons are converted into hydrogen atoms,

+ + -> H H.q

10 3 with a specific rate of 2.3 x 10 dm /mol*s. In alkaline solutions hydrogen atoms are converted into hydrated electrons (see 2.90);

+ -* e; H OH' q thus, the amount of H present in strongly alkaline solutions is very small, but irradiated acidic and neutral aqueous solutions contain hydrogen atoms which react with each other, with other transients from water, and with organic and inorganic materials in the solution. A large number of such reactions have been studied, although the number of H atom reactions for which rates are available is less than the nearly 700 e~ reactions listed in part I. One reason for the larger number of hydrated electron rates is the ease of q their direct measurement by kinetic spectroscopy. Hydrogen atom reactions have been studied in a number of ways, but only a few of the data have been obtained by direct methods.

Methods for Specific Rate Determination

Generation of H by pulse radiolysis of aqueous solutions and direct observations of the hydrogen atom by esr or optical spectroscopy, by conductivity methods, as well as by measurements on transients produced by H addition or abstraction, can be used in some cases to determine rates. — The reaction H + H » H 2 has been measured directly by following the decay of the optical 2 absorption of the hydrogen atom at 200 nm. The rate law is -d[H]/dt = 2k[H] . In this compilation, values of k are reported. In other cases, absolute specific rates of reactions have been measured by following the growth of the optical absorption signal due to a product of the reaction. For reactions, where none of the products has optical absorption, the relative rates have been measured by competition with reactions which produce products with optical absorption. Interference by OH, or transients from OH reactions, must be avoided in all optical studies by removing the OH from the solution. Alcohols such as /er/-butanol and

CD 3 OH, which react much more slowly with H than with OH, have been used as scavengers for OH: another method for removing OH is saturation with H 2 at high pressures which converts OH to H hv the reaction OH + H 2 —» H + H 2 0. The esr signals of hydrogen atoms are observed in irradiated aqueous solutions as a result of their enhancement by spin polarization effects. These signals decrease with time because of relaxation processes. This relaxation has been used to measure relative and absolute rates of reactions of the hydrogen atom bv steady state and pulse radiolysis, respectively. There are about 60 reacuons in these tables for which specific rates have been determined directly; the rates are listed in the column under k. More commonly, the kinetics of reactions of H are studied indirectly by steady state radiolysis, or in a few cases by atomized hydrogen gas flow techniques, by comparing measurements made on two reactants. The result is a ratio of rate constants obtained by analyzing the data assuming a kinetic mechanism. The majority of the nearly 400 reactions in these table? list relative rates which have been determined by competition kinetics, either by steady state or pulse techniques. The measured rate ratios are included in the column under Ratio and are given in the form

2 k/k is { is reactant. x , where kx k H + X) and X the competing Certain values of k have been chosen for normalization of the relative data; those values are listed in table 1. Values of k are calculated from the ratios using those values and are designated as relative (rel.). The values listed in table 1 have been chosen either because they are directly measured values or because they give the best agreement among various values of relative rates. These values, some of which had to be chosen arbitrarily, are not presented as recommended values and are open for revision. Abbreviations used for X, and other abbreviations and symbols used in the tables, are collected at the end of this section.

Arrangement of Tables

Arrangement of these tables is similar to the arrangement in part I; reactions of H with other transients from water are in table 2. Reactions of H with inorganic solutes are listed in table 3 in alphabetical order by main element. Reactions of H with organic solutes are listed in table 4 in alphabetical order by name. In most cases IUPAC nomenclature has been used. All reported values of specific rates have been included except when a measurement has been superseded by a more reliable measurement by the same author. In a few cases values were omitted because it was apparent that the reported value did not refer to the stated reaction or that the value was completely out of line with a number of well- established superseding measurements. Within the tables both solute and reaction have been included when product identification has been made; otherwise only the solute is listed. Columns are included identifying the source of the radical and the method of measurement; other descriptive information is given under Comments. The serial number used in the Radiation Chemistry Data Center files has been used for citing references; the first two digits of the number specify year. All references are given following the tables. A formula index is also included, following the tables, as an aid in locating specific compounds.

3 Abbreviations and Symbols M mol/dm 3 abs. absorption mass spec. mass spectroscopy abstr. abstraction Me methyl acac acetylacetone MeOH

AcO acetate MeOH(3D) methanol— d3 anal. analysis nat. natural (pH) bipy bipyridine obs. observed BzOH benzoic acid opt. optical spectroscopy calc. calculated oxid. oxidation chem. chemical oxy c.k. competition kinetics p.b.k. product buildup kinetics concn. concentration perox condy. electrical conductivity phen 1, 10-phenanthroline cor. corrected PhOH phenol d.k. decay kinetics phot. photolysis e.d. electrical discharge PNBA p-nitrobenzoic acid en ethylenediamine p.r. pulse radiolysis e-r. electron radiolysis 2-PrOH 2-propanol esr electron spin spectroscopy resonance 2-PrOH(7D) 2-propanol-

Table 1 . Values of k used to normalize relative rates

3 J Reactant Reaction /c(dm mol s *)

-» 10 H (2.2)* H + H H 2 1 x 10 + + + 10 Ag (2.5) H + Ag H + Ag 3.1 x 10 3 " + 9 ferri (2.63) H + Fe(CN) H + Fe(CN)J‘ 7 x 10 7 perox (2.69) H + H 2 0 2 ^ H 2 0 + OH 6 x 10 10® nitrite (2.85) H + N0 2 ^ NO + OH" 7 x 10 oxy (2.89) H + 0 2 ^ H0 2 2 x 10 - 7 + —> e; 1.5 x 10 OH (2.90) H OH" q 9 BzOH (2.149) H + C 6 H s COOH C 6 H 6 COOH 1.0 x 10 9 Q (2.152) H + 0=C 6 H 4 =0 0=C 6 H 4 0H 8.3 x 10 -> 6 ClAcO" (2.178) H + ClCH 2 COO" H 2 + C1CHCOO” 1.9 x 10 dioxane -^ 7 (2.218) H + C 4 H 8 0 2 H 2 + C 4 H 7 0 2 1.3 x 10 7 EtOH (2.224) H + CH 3 CH 2 OH ^ H 2 + CHjCHOH 2.6 x 10 + — 10® HCOO" (2.239) H HCOO" > H 2 + COO" 1.5 x 7 DCOO" (2.240) H + DCOO" —> HD + COO" 2.3 x 10 -> s HCOOH (2.241) H + HCOOH H 2 + COOH 7.5 x 10 7 glucose 4.7 x 10 (2.245) H + C 6 H 12 0 6 ->H 2 +C 6 H u 0 6 -» 6 MeOH (2.296) H + CH 3 OH H 2 + CH 2 QH 2 x 10 -> s MeOH(3D) (2.298) H + CD 3 OH HD + CD 2 OH 1 x 10 9 1 PNBA (2.309) H + no 2 c 6 h 4 cooh no 2 c 6 h 5 cooh x 10 -> 9 PhOH (2.320) H + OHC 6 H 5 OHC 6 H 6 1.8 x 10 -> 7 2-PrOH (2.334) H + CH 3 CHOHCH 3 H 2 + CH 3 COHCH 3 7.9 x 10 7 MeCDOHMe (2.335) H + CH 3 CDOHCH 3 ^ HD + CH 3 COHCH 3 1 x 10 7 2-PrOH(7D) -> 1 (2.336) H + CD 3 CDOHCD 3 HD + CD 3 COHCD 3 x 10

‘Number in parentheses indicates the number of the reaction in the following tables.

4 ^

Table 2. Reactions of H with water and transients from water

3 x No. Solute and Reaction pH k(dm mol s *) Ratio Source Method Comment Ref.

2.1 10 —* (rel.) 1.6. H + H 2 + basic 2.5 x 10 See 1.5, 73-0030 OH - 9 2.2 H <1 7.5 x 10 (rel.) m^ = 125 p.r. chem. c.k.; obs. G(Hj) 62-0133 -> H + H H 2 at various dose rates. 10 (rel.) = 0.4 1 x 10 klk^ 0.5 p.r. chem. obs. G(H 2 0 2 ); 63-0043 9 6.4 x 10 (rel.) k/k^ = 106 computer anal. 9 <3 6 x 10 (rel.) — e-r. chem. obs. G(Hj) in 63-0043 — Fe^ H 2 Oj soln.; computer anal. 10 m 0.8 1.5 x 10 k lkj' 2+ = 6.3 p.r. opt. c.k.; obs. 63-0047 10~3 3+ x G(Fe ) at various dose rates. 10 0.4- 1.3 x 10 (rel.) — p.r. chem. obs. G(H and 64-0092 2)

3 G(0 2 ) in H 2 0 2 soln.; computer anal.

2 2A#Fe3+ = 225 ± p.r. opt. c.k.; see however 64-0093 25 70-0063. 10 0.4 1 x 10 (rel.) — p.r. chem. c.k.; obs. 65-0017 G(H 2 ) at various dose rates in H 2 0 2 , 0 2 2+ and Cu solns. 1.1 — — y-r. chem. = 3.5 ± 66-0182 kfi/kfi 0.2. 10 = 2-3 1.3 x 10 (rel.) klkfmi 1.9 p.r. opt. c.k.; computer 68-0324 anal. 9 3 (7.8 ± 0.5) x 10 p.r. opt. d.k. at 200 nm; 69-0083 e = 900 ± 30 -1 _1 dm 3 mol cm 10 <3 1.4 x 10 (rel.) p.r. opt. obs. GCFe^) in 70-0063

FeS0 4 - CuS0 4 soln. at various dose rates; best

fit. 9 1 7.4 x 10 (rel.) p.r. opt. obs. GCFe^) in 71-0268

FeS0 4 soln. at various dose rates.

acid — — p.r. chem. 1 ’ = 3.2 ± 72-0013 kft/kj) 0.1.

For other ratios see : 2.3, 2.4, 2.59, 2.67, 2.178, 2.179, 2.241, 2.301 10 2.3 (rel.) 4.1 p.r. — 60-0099 <1 8 x 10 * — OH *#0x7 = -* 10 = H + OH HjO 0.4 2 x 10 (rel.) k/kji 2 p.r. chem. obs. G(H 2 ); 63-0043 computer anal. 10 3 3.2 x 10 (rel.) p.r. chem. obs. G(Hj) and 64-0092

G(Oj) in Hj 0 2 soln.; computer anal. 11 <1 6 x 10 (rel.) klk = 30 p.r. — see 70—0063. 64-0293 2+ k/k( OH + Fe ) s 300 9

3 7 x 10 . p.r. opt. d.k. at 260 nm 65-0010 (OH).

5 Table 2. Reactions of H with water and transients from water — Continued

3 No. Solute and Reaction pH &(dm mol *s *) Ratio Source Method Comment Ref.

10 3+ <3 2 x 10 (rel.) p.r. chem. obs. G(Fe ) in 70-0063

FeS0 4 - CuS0 4 soln. at various dose rates;

best fit. 10 3 (1.5 ± 0.3) x 10 — p.r. opt. d.k. at 200 - 240 70-0213 nm; computer anal. 10 — p.r. chem. obs. G(H com- 72-0013 acid (2.5 ± 0.5) x 10 2 ); puter anal. 10 0.4 2 x 10 (rel.) kl k = 2 p.r. chem. obs. G(H ); 63-0043 2.4 ho 2 H 2 -* computer anal, H + H0 2 H 2 0 2 10 2 x 10 p.r. assumed value. 64-0049 10 3+ <3 2 x 10 (rel.) p.r. chem. obs. G(Fe ) in 70-0063

FeS0 4 - CuS0 4 soln. at various dose rates;

best fit.

6 *

Table 3. Reactions of H with inorganic solutes === S 1 1 No. Solute and Reaction pH ^dm mol~ s ) Ratio Source Method Comment Ref.

+ 10 2 1.10 ± 0.06) x 10 — p.r. opt. p.b.k. at 310 nm; 67-0550 2.5 Ag ( + + H + Ag -» Ag + H superseded by following value, 10 2 (3.10 ± 0.30) x 10 p.r. opt. p.b.k. at 365 nm. 68-0436 10 1 2.83 x 10 p.r. opt. p.b.k. at 410 nm; 73-1053 contains /er/-BuOH; k increases with

pressure 0 —» 6.72 kbar. For ratios see: 2.218, 2.224, 2.231, 2.249, 2.250, 2.2%, 2.301, 2.333, 2.334 9 2.6 As(III) 2.7 1.2 x 10 (rel.) = 20 X-r. chem. c.k. 62-0018 H + As(III) + H + As(II) s ~ 2.7 AsFg 5 8.8 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0401 "* 8.8 x 10 9 2.8 AuCl* 4 (5.7 ± 1.5) x 10 — p.r. opt. p.b.k. at 330 nm. 68-0302 H(or e~ + AuCl* — % ) + H (or HjO) + AuClJ" -7 4 1 2 ” 2.9 B 4 O?- < 10 (rel.) A H son. chem. c.k.; B 4 0 is 67-0099 is either nonreactive towards H or is less reactive than F” 10 2.10 Br 1 - 10 — p.r. opt. p.b.k. at 360 65-0382 2 nm -» H + Br 2 HBr + (Br^), uncertainty + Br —> H + Br" + in the value is + —» Br H + Br 2 5-fold, 10 — 0.8 4.2 x 10 (rel.) klk^ = 700 y-r. chem. c.k., obs. 67-0008 G(-Br~) and

G(H 2 0 2 + Br2 ). 7 2 . 10a Br" - 7 2.0 x 10 (rel.) k/k^coQ— = 0.132 y-r. chem. c.k. 72-0264 H + Br"-* HBr" " 7 = 2.11 Br0 3 7 3.2 x 10 (rel.) ^/^ 2-PiOH 0.4 y-r. chem. c.k. 66-0402

2.12 CO 1.2 k/k fe 2+ = 2.2 ± y-r. chem. c.k. 63-0014 H + CO - HCO 0.3 1 k/khcho = 14.8 ± y-r. chem. c.k. 63-0014 j0 3.8 x 10* — — Unpubl. data. 70-7235 6 2.13 1 < 10 — p.r. opt. no abs. at 250 65-0384 C0 2 -> H + C0 2 COOH nm. 6 < 8 x 10 y-r. chem. estd. from yields 65-0375 in carboxylation of methanol. 4 2.14 HCOJ 8 3.4 x 10 (rel.) k/kueOB = 1-7 X X--r. chem. c.k. 63-0049 10"2

2.15 HCN — 1.1 x 10 *(rel.) k/ki-ptOR =1-4 y-r. chem. c.k. 68-0593 — H + HCN > H 2 CN 9 = 2.16 CN" 7 4.1 x 10 (rel.) ^/^•2-PiOH ^2 y-r chem. c.k. 66-0402 7 2.17 6 < 10 — p.r. opt. react, not obs. 71-0038 c 2 n 2 at low concn. = 2.18 CNS" 7 2.7 x 10* (rel.) ^•/^2-PiOH 3.4 y-r. chem. c.k. 66-0402 ++ 5 2.19 Cd — < 3 x 10 (rel.) k/k^oR < 10 y-r. chem. c.k. 65-0192 2" 9 2.20 Cd(CN)* 5 > 2.4 x 10 (rel.) k/k^gCDOHMe > 235 y-r. chem. c.k. 66-0401 4* 7 2.21 Ce 1 5.5 x 10 (rel.) k/kfjQR = 2.1 ± y-r. chem. c.k. 70-1059 0.4 s 2.21a cr -7 < 10 (rel.) — y-r. chem. c.k. with HCOO" 72-0264

7 >» k

Table 3. Reactions of H with inorganic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

3+ 6 4-6 1.85 x 10 (rel.) — e.d. opt. 2.22 Co(NH 3) calcd. from 65-0014 + — H + Co(NH 3)j diffusion model; Co(II) rel. to k H = 3 x 10 10 . 6 = 4-6 2 x 10 (rel.) ^/^MeOH<3D) 20 y-r. chem. c.k.- 65-0085 4 1 < 9 x 10 (rel.) kl EtOH 3.4 x y-r. chem. c.k. 66-0010 10~3 3+ s 2.23 Co(NH 1.8- 4.5 x 10 (rel.) — e.d. opt. calcd. 3 ) s H 2 0 from 65-0014 3+ H + Co(NH 3 ) 5 H 2 0 3.88 diffusion model; — Co(II) rel. to kt, = 3 x 10 10 . s 1 < 7 x 10 (rel.) ^/^EtOH < 2.6 X y-r. chem. c.k. 66-0010 10'2 6 5 < 10 (rel.) ^MeCDOHMe < 0-1 y-r. chem. c.k. 66-0401 2+ 7 2.24 Co(NH 6.66- 3.1 x 10 (rel.) — e.d. opt. calcd. from 65-0014 3 ) s OH 2+ H + Co(NH 3 ) s OH 11.0 diffusion model;

Co(II) rel. to kft — 3 x 10 10 . 7 = 7.5 3 x 10 (rel.) k/k MeCDOHMe y-r. chem. c.k. 65-0085 2.95 2+ 6 2.25 Co(NH F 4-6 1.1 x 10 (rel.) — e.d. opt. calcd. 65-0014 3 ) 5 from 2+ — H + Co(NH 3 ) 5 F diffusion model; Co(II) rel. to kt, = 3 x 10 10 . 6 = 4-6 1.2 x 10 (rel.) k/k MeOH(3D) ^ y-r. chem. c.k. 65-0085 6 1 < 1.4 x 10 (rel.) k/k EtOH 3.3 X y-r. chem. c.k. 66-0010 10“2

2+ 7 2.26 Co(NH C1 4-6 7.3 x 10 (rel.) — e.d. opt. calcd. from 65-0014 3) 5 2+ -* H + Co(NH 3 ) s C1 diffusion model; Co(II) rel, to k H = 3 x 10 10 . 4-6 2.6 x 10® (rel.) ^MeCDOHMe = 26 y-r. chem. c.k. 65-0085 9 = 1 1.1 x 10 (rel.) k/k EtOH 42 y-r. chem. c.k. 66-0010 2+ 2.27 Co(NH Br 4-6 4.6 x 10® (rel.) — e.d. opt. calcd. from 65-0014 3 ) 5 2+ -* H + Co(NH 3 ) s Br diffusion model; Co(II) rel. to k H = 3 x 10 10 . 9 4-6 1.2 x 10 (rel.) = y-r. chem. c.k. 65-0085 ^MeCDOHMe . 118 9 = 1 9.6 x 10 (rel.) k/kEtOH 370 y-r. chem. c.k. 66-0010 2+ 9 2.28 Co(NH I 4-6 3.3 x 10 (rel.) — e.d. opt. calcd. from 65-0014 3) 5 2+ — H + Co(NH 3 ) s I diffusion model; Co(II) rel. to k H = 3 x 10 10 9 = 1 3.5 x 10 (rel.) kl k MeCDOHMe y-r. chem. c.k. 65-0085 350 10 = 1 2.3 x 10 (rel.) kl ^e»oh 370 y-r. chem. c.k. 66-0010 2+ 7 4-6 (rel.) = y-r. 65-0085 2.29 Co(NH 3) 5 CN 4.4 x 10 kl ^MeCDOHMe chem. c.k. 2+ H + Co(NH 3 ) 5 CN ^ 4.35 7 Co(II) 1 4.2 x 10 (rel.) = 1-6 y-r. chem. c.k. 66-0010 2+ 9 (rel.) k/k = c.k. 2.30 Co(NH 3) 5 NCS 1 4.6 x 10 EtOH 136 y-r. chem. 66-0010 2+ 4-6 10* (rel.) = c.k. 2.31 Co(NH 3) s N 3 4.6 x ^/^MeCDOHMe 46 y-r. chem. 65-0085 10® = c.k. 66-0010 1 7.5 x (rel.) k/k eioh 29 > y-r chem. 2+ 2.32 Co(NH 3) s(H-fumarate) = 1 4.2 x 10* (rel.) k/kEtOH 130 y-r. chem. c.k. 66-0010 2+ 10* = c.k. 66-0010 2.33 Co(NH 3) 5 N0 1 1.1 x (rel.) k/kfjoH 4.2 y-r. chem. 2.34 10* (rel.) k/k = y-r. chem. c.k. 66-0010 Co(NH 3 ) 3(N0 2 ) 3 1 6.5 x E»OH 25 3 - 7 = 2.35 Co(CN) 1 1.4 x 10 (rel.) k/k EtOH 0.53 y-r. chem. c.k. 66-0010 9 = 5 1.1 x 10 (rel.) k/k MeCDOHMe 1®3 y-r. chem. c.k. 66-0401

8 > k

Table 3. Reactions of H with inorganic solutes — Continued

3 -1 -1 No. Solute and Reaction pH &(dm mol s ) Ratio Source Method Comment Ref.

2+ s 1 (rel.) < 3.4 X y-T. c.k. 2.36 Co(NH 3 ) s (AcO) < 9 x 10 ^/^EtOH chem. 66-0010 10"2 s 1 5 (rel.) < 1-76 c.k. 2.37 Co(NH 3 ) s P0 4 < x 10 kl EtOH x y-r. chem. 66-0010 10"2 2+ s 1 1.8 x (rel.) 7.1 x y-r. c.k. 2.38 £o(NH 3 ) s (OOCCF 3 ) < 10 kl ^EtOH ^ chem. 66-0010 10“3 2+ 9 1.0 p.r. opt. p.b.k. at 2.39 Co(NH 3 ) 5 (OCOC 6 H 5 ) (1.6 ± 0.4) x 10 345 nm. 71-0282 2+ H + Co(NH 3 ) 5 (OCOC 6 H 5 ) 2+ Co(NH 3 ) s (OCOC 6 H 6 ) s (rel.) calcd. 2.40 Co(en) 3 3.5 6 x 10 e.d. chem. from 71-9218 + — H + Co(en) 3 diffusion model; Co(II) rel. to ku — 3 x 10 10 . + 7 2.41 Co(en) 2 (H 2 0) 2 3.5 1.6 x 10 (rel.) e.d. chem. calcd. from 71-9218 + H + Co(en) 2 (H 2 0) 2 diffusion model;

—> Co(II) rel. to = 3 x 10 10 6 2.42 Co(en) 2 F 2 3.5 2.7 x 10 (rel.) e.d. chem. calcd. from 71-9218 — H + Co(en) 2 F 2 diffusion model; Co(II) rel. to = 3 x 10 10 . 8 (rel.) = 2.43 Co(en) 2 Cl 2 5 8.1 x 10 k/kMeCDOHMe ^1 y-r. chem. c.k. 66-0401 6 (rel.) k 2.44 Co(en) 2 C0 3 5 < 2.4 x 10 kl MeCDOHMe < 0-24 y-r. chem. c.k. 66-0401 + s (rel.) 2.45 Co(en) 2 (C 2 0 4 ) 3.5 8 x 10 e.d. chem. calcd. from 71-9218 + H + Co(en) 2 (C 2 0 4 ) diffusion model; -* Co(II) rel. to = 3 x 10 10 . 6 (rel.) 2.46 Co(en)(C 2 0 4) 2 3.5 2.8 x 10 e.d. chem. calcd. from 71-9218

H + Co(en)(C 2 0 4 ) 2 diffusion model; ^ Co(II) rel. to kH = 3 x 10 10 . 2 - 8 = 2.47 Co(C 2 0 4 ) 7 1.8 x 10 (rel.) ^nitrite 0.15 y-r. chem. c.k.; assumed 67-0498 » = H + Co(C 2 0 4 ) 3 — *(H) 2.8. 6 Co(C 2 0 4) 2 + 3.5 4.2 x 10 (rel.) e.d. chem. calcd. from 71-9218 2_ + c 2 o + h diffusion model; = rel. to k H 3 x 10 10 . 9 63- (rel.) = 2.48 Co(acac) 3 1 1.3 x 10 k/k2-PiOH 17 y-r. chem. c.k. 70-0094 2+ 6 64- 2.49 (rel.) = Cr(NH 3 ) 5 Cl 5 2.1 x 10 ^/^MeCDOHMe 0'21 y-r. chem. c.k. 65-66-0401 7 (rel.) = 65- 2.50 crci 2 (H 2 o); 5 2.4 x 10 MeCDOHMe 2.4 y-r. chem. c.k. 66-0401 ~ 6 (rel.) 2.51 Cr(C 2 0 4 ) 3 3.5 1.1 x 10 e.d. chem. calcd. from 71-9218 ~ 66- —» H + Cr(C 2 0 4 ) 3 diffusion model; = Cr(II) rel. to kH 3 x 10 10 . 2- 7 - = 2.52 CrO 7.8 x 10 (rel.) HCOO 0.52 y-r. chem. c.k. 66-0616 10 — 1.6 x 10 (rel.) = 600 ± y-r. chem. c.k. 65-0192 EtOH 300 2 ' 10 2.53 Cr 0 — 2.6 x 10 (rel.) = (1 ± y-r. chem. c.k. 65-0192 2 EtOH 3 0.2) X 10 2+ 7 = 2.54 Cu 1 4.2 x 10 (rel.) ^/^HCOOH 36 X-r. chem. c.k. 56-0012 2+ — + 7 = H + Cu > Cu 1 6.6 x 10 (rel.) k/k MeOH 33 X-r. chem. c.k. 58-0006 + 8 = + H ~6 9.8 x 10 (rel.) ^/^2-PrOH y-r. chem. c.k. 0041, 12.4 ± 3 0095 10* = 6 x (rel.) k/kfMH 23 ± 3 y-r. chem. c.k.; CuS0 4 used, 0192 9 = 1.2 x 10 (rel.) k/k e«oh 45 ± 8 y-r. chem. c.k.; Cu(N 0 3 ) 2 0192 used, 7 = 1.5 6.8 x 10 (rel.) ^/^e»oh 2.64 ± y-r. chem. c.k. 0138 0.06 9 = - 0.4 6 x 10 (rel.) k/k^ 0.3 y-r. chem. c.k.; CuS0 4 66-0334, 2+ - Fe 0 2 system. 68-0355

9 Table 3. Reactions of H with inorganic solutes — Continued

3 7 No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

8 7 5.9 x 10 (rel.) ^MeCDOHMe = 39 y-r. chem. c.k. 66-0401 8 = — 2.5 x 10 (rel.) ^/^2-PrOH 3.2 y-r. chem. c.k. 66-0616 ± 0.5 8 — 3.5 x 10 (rel.) k k = 2.3 ± y-r. chem. c.k. 66-0616 l Hcoo~ 0.5 1-2 7 = 7.6 x 10 (rel.) klk MeOH 38 ± 2 y-r. chem. c.k. 68-0444 ~7 7 = 4.2 x 10 (rel.) kl k Hcoo~ 0.28 y-r. chem. c.k. 72-0264 For other ratios see: 2.110, 2.197, 2.256, 2.297 2+ + 7 D + —» 1.25 9.4 x 10 (rel.) ~ 3.62 — — — 66-0621 Cu D ^/^EtOH + Cu + 4 = 2.55 F~ 8.5 (1.9 ± 0.5) x 10 ^/^MeOH(3D) y-r. mass c.k.; obs. 67-0099 + e; + (rel.) 0.19 spec. H F~-» q HF G(H 2 -HD) ~~7 4 = 1.5 x 10 (rel.) kl kci\cO~ 8 x y-r.. chem. c.k.; obs. 67-0099 3 10" son. G(cn. 4 p.r. 8.3 (1.0 ± 0.5) x 10 opt. effect of H 2 67-0115 concn. on e~q decay in 1.0 M KF. 2+ 7 2.56 (rel.) Fe 0.4 1.6 x 10 ktk0TJ = 8.3 x y-r. chem. c.k. 57-0009 2+ + -> -4 H + Fe (+H ) 10 3+ 7 (rel.) fc/£ Fe + H 2 2.1 1.3 x 10 oiy = 6.7 x X-r. chem. c.k. 58-0004 Fe 2+ + H ^ 10^ 2+ 7 3+ FeH 0.8- 2 x 10 — p.r; chem. obs. G(Fe 63-0047, (1) ); 2+ + FeH + H ^ 1.2 effect of pulse 64-0049 3+ Fe + H a (2) length. 6 0 (7.5 ± 2) x 10 p.r. opt. p.b.k. at 270 nm 69-0434 3+ (rel.) (Fe ); computer

anal.; rel. to = 10 2.6 x 10 ;

k 2 = (1.06 ± 0.1) 4 x 10 . 7 (rel.) = 0.4 2.8 x 10 k/k oxr 1.4 x y-r. chem. c.k. 70-0533 10~3 8 = 1.5 1.1 x 10 (rel.) klk OXJ 5.5 x y-r. chem. c.k. 70-0534 10"3

For other ratios see: 2.2, 2.12, 2.57, 2.58, 2.60, 2.61, 2.83, 2.297 3+ 7 (rel.) = 2.57 Fe <1 8 x 10 klk OIJ 4 x y-r. chem. c.k. in HC1 or 57-0008 3+ -> 2+ 10~3 Fe + H Fe + HC10 4 . + 6 = H 1 6 x 10 (rel.) kl k MeOH 3 X-r. chem. c.k. 58-0006

II CO 0.4 + O b y-r. chem. c.k. in H 2 S0 4 . 57-0009 ± 0.010 8 = 10"3 2 1.4 x 10 (rel.) k/k orj 7 X y-r. chem. c.k. 57-0010 1.57 k/ku 2+ = 1.35 ± y-r. chem. c.k. 58-0004 0.1

2.1 k/k re 2+ = 7.2 ± y-r. chem. c.k. 58-0004 0.7 = 0.8 klkFc T+ 170 y-r. chem. c.k. in HC1. 58-0011 8 = ~l-3 5 x 10 (rel.) k/k OI1 2.45 x y-r. chem. c.k. in HC10 4 . 63-0004 10'2

— 1-3 k/kFc 2+ <0.1 e.d. chem. c.k. in HC10 4 . 66-0345 0.4-3 k/k = c.k. in 66-0345 fe2+ 0.1 e.d. chem. H 2 S0 4 ;

reactant FeS0 4 . -1-2 6 < 2 x 10 (rel.) kl k UeOH < 1 y-r. chem. c.k. in HC10 4 68-0444 soln.; kFeOH 2 + >

500 kFe 3+. For other ratios see: 2.2, 2.67, 2.68, 2.96, 2.98, 2.297 2+ 2.58 FeOH -1-3 k/kVe 2+ = 1.60 e.d. chem. c.k. in HC10 4 . 66-0345 9 = -1-2 1 x 10 (rel.) kl kUeOH 430 y-r. chem. c.k. in HC10 4 . 68-0444

10 » :

Table 3. Reactions of H with inorganic solutes — Continued

3 7 No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

2+ 2.59 FeH 0.8- k*lkn k\ = 0.25 p.r. chem. c.k.; reactant is 63-0047 2+ 2+ FeH + H Fe + 1.2 produced from H + 2+ Fe reaction 2 h 2 ; 2+ + is FeH + H ^ 3+ Fe + H 2 . 2+ 2.60 FeF + FeFj 0.8 klkTc 2+ = 0.04 e.d. chem. c.k. 66-0345 2+ 9 2.61 FeCl 0.8 4.6 x 10 (rel.) k/k^ = 0.23 y-r. chem. c.k. in HC1. 57-0008 2+ = FeCl + H ^ 0.8 k/kTe 2+ 300 e.d. chem. c.k. in HC1. 66-0345 2+ + Fe + Cl" + H 9 2.63 Fe(CN)|~ (ferri) 2-9 1.5 x 10 (rel.) — e.d. opt. calcd. by 66-0345 3 " H + Fe(CN) diffusion model; 4 " + Fe(CN) + H (I) assume k B = 3 x 10 10 . + — acid /k 0.28 y-r. chem. c.k. 66-0286 H Fe(CN)j~ ku 1 = 3 ~ + 9 Fe(CN) + H + 2-3 (6.5 ± 0.5) x 10 — p.r. opt. d.k. at 420 nm. 68-0324 ~ 9 C N (II) 1.9 7.5 x 10 — p.r. opt. d.k. at 410 nm. 71-0618 For other ratios see 2.2, 2.83, 2.85, 2.89, 2.90, 2.118, 2.150, 2.163, 2.194, 2.224, 2.225, 2.239, 2.241, 2.245, 2.249, 2.296, 2.316, 2.334, 2.346, 2.363 6 2.64 Fe(C 0 3.5 3.4 x 10 (rel.) — e.d. chem. calcd. from 71-9218 2 4 )l" _ —* H + Fe(C 2 0 4 )3 diffusion model; Fe(II) rel. to ka = 3 x 10 10 . 3+ 9 2.65 Fe(bipy) 0.3 2.2 x 10 (rel.) e.d. opt. calcd. by 66-0345 diffusion model; = assume k H 3 x 10 10 . + 9 2.66 Fe(phen)j 0.3 2.9 x 10 (rel.) e.d. opt. calcd. by 66-0345 diffusion model; assume = 3 x 10 10 . + 2 2.67 H — 1-2 3.4 x 10 (rel.) ^/2iH = 1.2 x e.d. chem. c.k. 59-0008 + 10"5 H + H ^ H 2 3 <3.5 (2.6 ± 1.1) x 10 phot. chem. estd. from pH 62-0057 effect on quantum

yields of I N 2 , 2 — and H 2 in I"

N 2 0 soln. 4 = <0.8 2.8 x 10 (rel.) k/k ^ 1.4 x y-r. chem. c.k. 62-0096 10"6

2-3 klk Te 3+ = 2.8 x y-r. chem. c.k. 63-0004 10"3

<0 k/kTe 3+ = 3.6 x X-r, chem. c.k.; in 17.3 M 65-0371 10"4 y-r. h 2 so 4 . For other ratios see: 2.102 + + 2 D + acid 2 x 10 — y-r. — estd.; D soln. 58-0047 H ^ HD 2 c.k. 59-0012 2.68 d 2 2.12 k/kje 3+ = 8.3 x y-r. chem. — 10"3 H + D 2 * HD + D 6 2.69 H 0 (perox) 2.85 > 6 x 10 (rel.) k/k > 3.3 x y-r. chem. c.k. 62-0051 2 2 mij -* + 10^ H + H 2 Oj H 2 0 7 0.8- (rel.) = c.k. 62-7001 OH 4.4 x 10 k/kaIJ 2.2 x phot. chem. 3 7 10" 7 = 63-0043 0.4 6.6 x 10 (rel.) k/kmT 3.3 x p.r. chem. c.k. 10"3 7 64-0093 2.1 (9 ± 1) x 10 p.r. opt. p.b.k. (Cl 2 at 350 nm; soln. contains 0.2 M Cl"). 7 — 6.1 x 10 — p.r. — — 66-0559 7 - = -7 3.0 x 10 (rel.) kl ^hcoo 0-2 y-r. chem. c.k. 72-0264 For other ratios see: 2.2, 2.6, 2.10, 2.79, 2.100, 2.222, 2.224, 2.361

11 Table 3. Reactions of H with inorganic solutes — Continued

3 ! No. Solute and Reaction pH k(dm mol s *) Ratio Source Method Comment Ref.

2+ 10 = 2.70 Hg ~ 7 3.9 x 10 (rel.) k/kEtOH (1*5 — y-r. chem. c.k. 65-0192 2+ + + 3 Hg + H -> Hg + H 0.1) x 10 9 10"® ~ 7 1.7 x 10 (rel.) klkncoo~ — 11 — ^ y-r. chem. c.k.; 8 x 66-0616 to 8 x 10~® M 10~s HgCl 2 and 2 x M HCOONa. 9 = 1.5 2 x 10 (rel.) ^/^2-PrOH 26 y-r- chem. c.k. 69-0275 10 1 (1.0 ± 0.5) x 10 — p.r. opt. p.b.k. at 330 nm. 73-0043 + 9 2.70a — 4.7 x 10 (rel.) ~ 0-60 y-r- chem. c.k. 72-0290 HgJ ^/^-2-P»OH 10 (rel.) 2.71 I 2 0.8 4 x 10 2 y-r. chem. c.k. 64-0245 10 3 I HI + I — 1 x 10 (rel.) x 10 — — c.k.; no details 67-0041 2 + H k/ktiMH given. 6 6 2 _1 2.72 r >0.4 5.3 x 10 dm mol” s — y-r. chem. c.k. assuming 69-0338 - + (rel.) I = H + I + H (or k(H + I 3 or 2 ) -* 10 HSO^) H 2 + I 3 x 10 and g(H) = 3.45-3.65. 7 h + Hr ~7 2.4 x 10 (rel.) klkncoo~ = 0-162 y-r. chem. c.k. 72-0264 7 2.73 l~2 3.5- (1.8 ± 0.8) x 10 — phot. chem. estd. 62-0057 -> + 21" H + I 2 H + 11 " 9 2.74 I 3 2.92 8 x 10 (rel.) klkueOH = 4 X phot. chem. c.k. 68-7194 + h + i;-> h + r 10"3 10 = + I2 1.72- 2.3 x 10 (rel.) ^/^2-PiOH 285 phot. che'm. c.k. 68-7194 2.92 10 1.5 3.3 x 10 (rel.) klk^ = 700 y-r. chem. c.k. 69-0338 7 = 2.75 103 7 9.5 x 10 (rel.) klk 2-¥rOH 1-2 y-r. chem. c.k. 66-0402 2+ 7 = 2.76 Mn 6 3 x 10 (rel.) k/k MeCDOHMe 3 y-r. chem. c.k. 66-0401 10 2.77 MnO; 3 2.8 x 10 — p.r. opt. d.k. 65-0044 10 H + MnO;-> 3 (2.36 ± 0.2) x 10 — p.r. opt. d.k. at 545 nm. 65-0385 + 10 (rel.) 65-0385 H + MnO$" acid 4.6 x 10 k/kOXJ = 2.3 p.r. opt. c.k. 4 2.78 nh; 7 <2.3 x 10 (rel.) k/kx)coo~ < 10 y-r. chem. c.k. 64-0095 + 4 2.79 2 3 x 10 (rel.) 5 x y-r. chem. c.k. 55-0004 n 2 h 5 klk^m = 4 4 10" H + N 2 Hj-» N 2 H 3 + 4 ~0.7 (rel.) = 69-0598 H + H 2 1.7 x 10 klk^ 2.8 x y-r. chem. c.k. 10"4 4 6 7.8 x 10 (rel.) klk^ = 1-3 x y-r. chem. c.k. 69-0598 10'3

1.1 10* (rel.) =4.2 y-r. c.k. 66-0010 2.80 nh 3 1.2 x k/k^tOH chem. 2.81 Nj — 4.9 x 10® (rel.) klk^H = 19 y-r. chem. c.k. 66-0010 9 = ~ 7 4.3 x 10 (rel.) ^/^2-PrOH 64 y-r. chem. c.k. 71-0007 10*° = 2.82 NO 7 1.1 x (rel.) klk ^ 15 y-r. chem. c.k. 67-0231 H + NO -* HNO ~ k/k = 1.7 x y-r. chem. c.k.; data from 60-0035 2.83 N 2 0 2 rc 2+ -» 10“2 60-0068. H + N 2 0 N 2 + OH 4 3.5- (1.25 ± 0.5) x 10 — phot. chem. estd. 62-0057 11 4 < 10 > 1.7 x 10 (rel.) — y-r. chem. estd. by c.k. 65-0011

with H 2 0 2 . 5 7 ~ 10 (rel.) phot. chem. estd. from 65-7006 = k(OH + CH 3 OH)/k 25. 6 alk. 2.3 x 10 (rel.) klkfmi = (3.3 ± y-r. chem. c.k. 68-0693 1 1.8) x lO^

2.84 HNOj 1 6.8 x 10® (rel.) k/k^ofi = 26 y-r. chem. c.k. 66-0010 -> H + HN0 2 HjO + NO

12 -

Table 3. Reactions of H with inorganic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

9 = 2.85 NOj 7.6 1.5 x 10 (rel.) klk kni 0.22 ± X-r. chem; c.k. 62-0017 0.09 H + N0 2 ^ NO + OH" 8 ~8 6 x 10 and k/k^eOH = 300 and X-r. chem. c.k. 62-0017 9 1 x 10 (rel.) 430. 8 = ~6 2.1 x 10 (rel.) ^/^2-PiOH 2.7 ±. y-r. chem. c.k. 63-0041, 0.3 64-0095 9 nat. 1.4 x 10 (rel.) k/kueOH ~ 390 ± y—r. chem. c.k. 65-0192 70 9 (rel.) nat. 2.1 x 10 klk 2-PrOH = 27 ± y-r. chem. c.k. 65-0192 Q

8 nat. 6.1 x 10 (rel.) k/k^coo — 4.1 ± y-r. chem. c.k. 65-0192 0.2 9 nat. 2.8 x 10 (rel.) klk ZtOH = 109 ± 7 y-r. chem. c.k. 65-0192 9 7-8 1.6 x 10 (rel.) k/k^oii = 63 y-r. chem. c.k. 66-0010 9 = 6 1.1 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0401 1.06 8 nat. 8 x 10 (rel.) klk 2-PrOH = 10 ± y-r. chem. c.k. 66-0616 1

8 nat. 7.3 x 10 (rel.) k/kncoo ~ 4.8 ± y-r. chem. c.k. 66-0616 0.4 8 7 7.1 x 10 — p.r. esr d.k. (H signal). 71-0303 For other ratios see: 2.47, 2.82, 2.107, 2.245, 2.249 " ~ 7 — 2.86 no 3 6 4 x 10 (rel.) ^/^2-PiOH 0.51 y-r. chem. c.k. 63-0041,

no 3 + H no 2 + ± 0.07 64-0095 7 OH" or N0 3 H" nat. 1.1 x 10 (rel.) k/k^tOH = 0.42 ± y-r. chem. c.k. 65-0192 0.05 7 = 5.6 1.4 x 10 (rel.) ^/^2-PiOH 0.18 y-r. chem. c.k. 65-0372, 66-0114 6 5.7- 5.2 x 10 (rel.) k/k^xOH = 0.2 y-r. chem. c.k. 66-0147 6 7.1 3.0 x 10 (rel.) k/k^coo~ = 0.02 y-r. chem. c.k. 66-0147 6 = 4.7 x 10 (rel.) klk 2-Pton 0.06 y-r. chem. c.k. 66-0147 7 = 6 2.1 x 10 (rel.) k/k MeCDOHMe y-r. chem. c.k. 66-0401 2.1 6 1 8.2 x 10 (rel.) k/k^cooH ~ 11 y-r. chem. c.k. 68-0343 6 ~ 7 2.9 x 10 (rel.) k/kjicoo~ ~ (1-0 y-r. chem. c.k. 70-0859 2 ± 0.3) x 10" 6 2.5 1.4 x 10 p.r. esr d.k. (H signal); 71-0303 | — high concn. of k N0 3 ; concn. dependent. 6 = ~ 7 7.2 x 10 (rel.) klk \icoo~ 4.8 y-r. chem. c.k. 72-0264 2 x 10“ For other ratios see: 2.107 9 k/ = 2.87 NO(SO^) 2 (Fremy's 8.5 1.8 x 10 (rel.) k\{QQo~ 12 ± y-r. chem. c.k.; 0.1 M 69-0649

salt) 2 Na 2 HP0 4 used to adjust pH. 2+ s 2.88 Ni nat. < 2.6 x 10 (rel.) ^/^“EiOH < 10 y-r. chem. c.k. 65-0192 10 2.89 (oxy) acid 1.2 x 10 — p.r. chem. obs. G(H ); 63-0043 0 2 2 0 2 -> estd. value. H + 0 2 H0 2 l° 1.2 2.1 x 10 — p.r. opt. p.b.k. at 240 nm. 64-0043 10 3 2.6 x 10 — p.r. opt. mathematical 64-0092 anal. 10 4 — 2.x 10 (rel.) k/kueOH — 10 — — c.k.; details 67-0041 not given. 10 1.9 1.6 x 10 (rel.) klklmi = 2.3 p.r. opt. c.k.; obs. 71-0618 " Fe(CN)4 decay at 410 nm.

13 Table 3. Reactions of H with inorganic solutes — Continued

3 J No. Solute and Reaction pH k(dm mol s *) Ratio Source Method Comment Ref.

10 = 1.9 2.5 x 10 (rel.) k/k Q 3.1 p.r. opt. c.k.; obs. 71-0618 benzoquinone H- adduct formn. at 410 nm. For other ratios see: 2.2, 2.3, 2.54, 2.56, 2.57, 2.61-62, 2.67, 2.69, 2.71, 2.77, 2.94, 2.95, 2.205, 2.224, 2.229, 2.245, 2.249, 2.271, 2.292, 2.296, 2.334, 2.374 - - 7 - = 2.90 OH 11 1.4 x 10 (rel.) k/k hcoo 0-09 X-r. chem. c.k. 63-0049 + —» 13 h oh”

h 2 . 7 — 2.3 x 10 — p.r. — — 66-0842 - 7 11 1.5 x 10 (rel.) */*£«ni=(2-l y-r., chem. c.k.; soln. 68-0693 "3 13 X 10 ± 1.0) X-r. contains N 2 0 and ”; Fe(CN) 4 obs.

G(N 2 ); assume

k/k( H + N 2 0) > 12.5. 7 = 10.5- 1.5 x 10 (rel.) ^•/^BiOH 1-5 X e-T. esr decay of spin 72-0039 2 11.5 10” polarization, compared with EtOH. For other ratios see: 2.91, 2.107, 2.110, 2.178, 2.239 9 2.91 HPOj” 13.6 1.5 x 10 (rel.) ^/^OH — 100 y-r. chem. c.k. 65-0155 - -* 9 H + HPO H — 1.8 ± 0 . 6 x 10 — y-r. chem. c.k.; rel. to 69-0051 3 2 + ( ) por (rel.) k OH (value not given). s 2.91a h po 0 (5 ± x 10 — p.r. opt. p.b.k. at 500 nm. 73-1049 3 4 3) -» H + H 3 P0 4 H 2 + H 2 P0 4 s 2.91b h po; 3.85- (5 ± x 10 — p.r. opt. p.b.k. at 500 nm. 73-1049 2 3)

h + h 2 po;-> 4.0

h 2 + hpo; ” 3 2,92 ~ 7 < 5 x 10 (rel.) — y-r.. chem. c.k. with 67-0099 HP0 4 CH 3 OH 2+ son. and Co(NH 3 ) s F ;

obs. G(H 2 ); also c.k. with

ClCH 2 COO”, obs. G(C1”). 4 9.0- < 5 x 10 — p.r. opt. p.b.k. at 500 nm. 73-1049 12.3 3 2.92a Pr(III) 1.9 < 10 (rel.) — — — c.k. with 72-0066 CHjOH. ” 9 2.93 Pt(CN) 4 5 > 2.4 x 10 (rel.) ^/^MeCDOHMe > y-r. chem. c.k. 66-0401 235 2+ 9 2.93a Ru(bipy) ~ 2 9.5 x 10 — p.r. opt. p.b.k. at 420 nm. 72-0381 + 9 2.93b Ru(bipy) <4.5 1.7 x 10 — — no details. 72-0462 3

2.93c D 2 S — - 9 = * . 1 (rel.) c.k. 65-0013 D + D 2 S D 2 + DS 6 0 x 10 k/kncoo~ 7.5 y-r. chem. 6.5 7 2.94 s,oi- ~ 0 2.4 x 10 (rel.) (1.2 ± y-r. chem. c.k.; 70-0169 2 3 ”^ 10” ceric - H + S 2 0 HS0 4 + 0.1) x cerous 2 ~ S0 a system used. ~ * k/k c.k.; 70-0169 2.95 H 2 so 5 0 2.2 x 10 (rel.) OXJ =( 1.06 ± y-r. chem. 2 -» ceric - H + H 2 SO s H 2 0 + 0.06) x 10 cerous

hso 4 system used.

2.96- Sn(II) 0.8 klk Fe 3+ = 6 x y-r. chem. c.k. 59-0007 4 H + Sn(II) —> Sn(I) 10 + H + ” 9 2.97 = y-r. c.k. 66-0401 SnF 3 5 2.4 x 10 (rel.) k/ku*CDOHMe chem. 235

14 Table 3. Reactions of H with inorganic solutes — Continued

-1 3 x 5 No. Solute and Reaction . pH ^(dm mol 8 ) Ratio Source 'Method Comment Ref.

2.98 Sn(lV) 0.8 fc/*F.3+ = 2 y-r. chem. c.k. 59-0007 + H + Sn(IV) ^ H + Sn(III) 7 2.99 SnF’- 5 1.1 x 10 (rel.) ^MeCDOHMe = y-r. chem. c.k. 66-0401 1.06 7 2.100 Te(VI) 0.4 6.6 x 10 (rel.) */*p— = 1-1 y-r. chem. c.k. 68-0356 H + Te(VI) Te(V) + 2.101 Tl 1,5 1.2 x 10® (rel.) ^MeCDOHMe = 12 y-r. chem. c.k. 66-0401 2+ 2+ 2.102 U0 0-2 k/kH+ = 1.2 y-r. chem. c.k. with Fe 61-0099 2+ + H + U0 ^ UO; + H oxid. at varying pH; authors assume 2+ that Fe + Fe^+Hj. 2+ s 2.103 Zn — 2.6 x 10 (rel.) 10 < kl ^EtOH < y-r. chem. c.k. 65-0192

15 Table 4. Reactions of H with organic solutes

3 No. Solute and Reaction pH jt(dm mol 's *) Ratio Source Method Comment Ref.

7 = 2.104 1 3.4 x 10 (rel.) kl k BiOH 3.4 X e-r. esr Decay of spin 71-0003 2 H + CHjCHO - 10~ polarization,

H 2 + CH 2 CHO compared with (or CHjCO) (I) 2-PrOH(7D). 7 = H + CHjCHO 1 2.9 x 10 (I) (rel.) kilk n 4.9 y-r. chem. 83% H abstr. 73-0053 CHjCHOH (II) s = 2.105 1 1.3 x 10 (rel.) kl k to*OH 1.3 X e-r. esr decay of spin 71-0003 -4 10 polarization, compared with 2-PrOH(7D). s ~ 1 1.9 x 10 (rel.) kl kB»OH 1-9 x y-r. chem. c.k. with 71-0017 10"4 2-PrOH(7D), H abstr. 8-9 9 = 2.106 acetanilide 1.1 x 10 (rel.) kl k2-PrOH 13.4 y-r. chem. c.k. 66-0500 9 + 1 1.1 x 10 (rel.) = 72-0025 H C 6 H 5 NHCOCH, ^BiOH 1-1 e-r. esr decay of spin -» C 6 H 6 NHCOCH 3 polarization, compared with EtOH. s 2.107 acetate ion ~ x (rel.) = 8 3.2 10 */* nitrite 4.5 X-r. chem. c.k. 62-0017 -4 H + CH 3 COO'-» x 10 s (rel.) - = H 2 + CHjCOO" 7 2.8 x 10 kl k DCOO (1-2 y-r. chem. c.k. 63-0041, 2 ± 0.1) X 10~ 64-0095 ~ 7 ^Bkme = 4 X X-r. chem. c.k. 63-0049 10'2 s - = 11- 2 x 10 (rel.) klk OH (1.1-2) X-r. chem. c.k. 63-0049 2 12 X 10” s = 7 3.5 x 10 (rel.) k/k BxOh 4-2 x e-r. esr decay of spin 72-0039 1 10" polarization, com- pared with EtOH. 4 (rel.) 2.108 acetate ion-d 3 6 2 x 10 kl k Aco- = (4-5 ± y-r. chem. c.k. 64-0141 2 H + CDjCOO" —> 0.8) x 10" HD + CDjCOO" 4 2.109 1 7.5 x 10 (rel.) kl k HCOOH =0.10 X-r. chem. c.k. 56-0012 4 -> 1 = of 71-0003 H + CH 3 COOH 8 x 10 (rel.) kl k BiOH 8 X e-r. esr decay spin 10"5 Hj + CH 2 COOH polarization; compared with

CD 3 CDOHCD 3 . s = 1 1.3 x 10 (rel.) k l k BiOH 1-3 X y-r. chem. c.k. with 71-0017 10^ 2-PrOH(7D). 6 ~ 2.110 1 2.8 x 10 (rel.) kl k BiOH 2.8 X e-r. esr decay of spin 71-0003 3 10" polarization. H + CH 3 COCH 3 ^ prod. compared with

CD 3 CDOHCD 3 . s 1 (I) (rel.) k k =0-34 X-r. c.k. 56-0012 H + CH 3 COCH 3 ^ 2.5 x 10 \l HCOOH chem. s -7 (rel.) k k - c.k. 63-0041, Hj + CHjCOCH 3 (I) 6.4 x 10 (I) ll DCOO~ y-r. chem. (2.8 ± 0.3) X 64-0095 10‘2 6 = c.k. 11- 1.2 x 10 (I) (rel.) k ilk on~ 8-3 x X-r. chem. 63-0049 2 13 10" = c.k. 1 k ilk c%2 + 1-4 x X-r. chem. 63-0049 10"2 6 — 2.3 x 10 (I) (rel.) k k = y-r. chem. c.k.; solvent 67-0222 ll AknMMK 0.18 dioxane contg. 2.2 M water. 10° = 71-0017 1 1.7 x (1) (rel.) kllk BMH X y-r. chem. c.k. with 10"3 2— PrOH(7D). 6 1 1.9 x 10 (I) (rel.) Arn Ar, = 0.49 y-r. chem. 67% H abstr.; 73-0053 2.5 x 10”*% enol.

16 Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

-> - 7 k\\/k\ = 0.2 X-r. chem. — 63-0049 H + CH 3 COCH 3 (II) 1 = 0.3 X-r. chem. — 63-0049 CH 3 COHCH 3 ^ii/^-i 1.2 V*i = 0.33 ± y-r. chem. — 65-0016 0.06

= • < 1 fc n /k, 0.33 y-r. chem. 68-0525 6 2.111 1 1.5 x 10 (rel.) k/kb*oh = x e-r. esr Decay of spin 71-0003 10~3 H + CH 3 CN polarization,

(I) CH 2 CN + H 2 compared with

H + CH 3 CN - 2-PrOH(7D). 4 (II) 1 8 x 10 (rel.) (I) = 0 X — — estimated. 71-0017 CH 3 CNH ^l/^B*OH 10“5 6 1 2.7 x 10 (rel.) ^Il/^BiOH =2.7 y-r. chem. c.k. with 71-0017 3 (II) X 10" 2-PrOH(7D). s 1 1 x 10 (I) (rel.) *„/*, = 13.3 y-r. chem. 7% H abstr. 73-0053 9 2.112 acetophenone 8.9 2 x 10 (rel.) k/k = 26 y-r. chem. c.k. 66-0500 2-P1OH -- 9 I* H + C 6 H 5 COCH 3 1 (1.1 ± 0.2) x 10 — p.r. opt. p.b.k.; CD 3 OD 69-0001

c 6 h 6 coch 3 (I) as OH scavenger. 9 = H + C 6 H 5 COCH 3 ^ 1 1.2 x 10 (rel.) ^/^BiOH 1-2 e-r. esr Decay of spin 72-0025

h 2 + polarization.

C 6 H s COCH 2 (II) compared with EtOH. 7 1 ~ 1 x 10 (II) k /k 0.01 y-r. chem. ~ 1% abstr. 73-0053 n l = H (rel.) 9 1.0 (3.4 ± 0.6) x 10 — p.r. opt. p.b.k. (H 72-0171 adduct); /er/-BuOH as OH scavenger. 7 2.113 acetylacetone 1 8.2 x 10 (rel.) — e-r. esr unpubl. data. 73-0053

H + CH 3 COCH 2 COCH 3 P. Neta and R.H.

CH 3 COC=C(OH)CH 3 Schuler. 6 + h 2 (I) ~2 x 10 (I) (rel.) kn/ki = 0.3 y-r. chem. 23% H abstr.; 73-0053 80% enol form.

H + CH 3 COCH 2 COCH 3 ^

no H 2 (II) 2.114 7 1.1 x 10® (rel.) k/kficoo~ = 0.73 y-r. chem. c.k. 68-0502 9 2.115 acetylenedicar- 1 1.0 x 10 (rel.) klk^tOH = 1 e-r. esr decay of spin 71-0040 boxylic acid polarization, compared with EtOH. 6 2.116 iV-acetylalanine 1 8.0 x 10 (rel.) k/kjitOH = 8-0 x e-r esr decay of spin 71-0003 3 10~ polarization, compared with 2-PrOH(7D). 6 2.117 N-acetylglycine 1 3.8 x 10 (rel.) k/kibOH — 3.8 x e-r. esr decay of spin 71-0003 3 10" polarization, compared with 2-PrOH(7D). 10 3 ' 2.118 acrylamide 1-2 3.5 x 10 (rel.) k/kfmi = 5.0 ± p.r. opt. c.k., Fe(CN) 70-0052 0.6 measured at 420 nm. 7 = 2.119 adenine 7-8 8.5 x 10 (rel.) ^/^DCOO~ 3.7 ± y-r. chem. c.k. 68-3038

7 1 8.3 x 10 (rel.) k/kfaOH = 8.3 x e-r. esr decay of spin 71-0040 2 10“ polarization. compared with EtOH. 7 2 6 x 10 — e-r. esr decay of H 71-0303 signal.

7 1 x 10® — e-r. esr decay of H 71-0303 signal. = — 7 (0.9 - 1.5) x 10* klkftzoyi 0.09 e-r. esr decay of spin 71-0040 (rel.) 0.15 polarization, compared with EtOH.

17 k

Table 4. Reactions of H with organic solutes — Continued

3 ! No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

8 - = 2.120 adenosine 7-8 1.4 x 10 (rel.) k/kdcoo 6 y— r. chem. c.k. 68-3038 8 = 1 1.1 x 10 (rel.) ^/^B*OH Oil e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 8 = 7 (1.4-2) x 10 (rel.) kik b,oh 0.14— e-r. esr decay of spin 72-0039 0.2 polarization, compared with EtOH. 8 2.121 adenosine-5-phos- 7-8 1.5 x 10 (rel.) k/ kf)QQQ~ = 6.5 y-r. chem. c.k. 68-3038 phate s 2.122 a-alanine 1 2.4 x 10 (rel.) — y-T. chem. c.k. assuming 68-0343 k(H + allyl ale.) 9 = 2.8 x 10 . s = 1 2.9 x 10 (rel.) ^/^BiOH 2.9 X e-r. esr decay of spin 71-0003 -4 10 polarization, compared with 2-PrOH(7D). 5 = 2.123 /3-alanine 1 3.4 x 10 (rel.) k/ ^BxOH 3.4 x e-r. esr decay of spin 71-0003 4 10" polarization, compared with 2-PrOH(7D). 9 = 2.124 allyl alcohol - 6 3.6 x 10 (rel.) ^/^2-PrOH y-r. chem. c.k. 63-0041,

H + CH 2 =CHCH 2 OH 46 ± 5 64-0095 9 ~0.4 (rel.) = H 2 + C 3 H s O (I) 4.7 x 10 klk+ 100 y-r. chem. c.k. 68-0525 9 1 1.9 x 10 (rel.) k/k^cooH ~ 2-6 x y-r. chem. c.k.; author 68-0343 3 10 ealed. k = 2.8 x 9 10 assuming 6 ^hcooh ~ 11 x 10 .

JJf II nB 1+ H + CH 2 =CHCH 2 OH 1,7 a o y-r. chem. c.k.; effect on 70-0468 2 (II) 10~ C 3 H 6 OH 0.2) x G(H 2 ) from water. 7 1 - 5 x 10 (I) (rel.) k\l u = 2 x y-r. chem. — 2% H abstr. 73-0053 10“2

For rates relative to allyl alcohol see: 2.122, 2.125a, 2.204, 2.206, 2.247, 2.272, 2.282, 2.287, 2.292, 2.292a, 2.292b, 2.312a, 2.317a, 2.330, 2.353, 2.371, 2.387. 6 2.125 1 6.6 x 10 (rel.) ^/^BxOH — 6.6 X e-r. esr decay of spin 72-0039 10“3 H + H 2 NCH 2 CN polarization.

H 2 + H 2 NCHCN (I) compared with EtOH. -» 7 = H + H 2 NCH 2 CN 7 5.6 x 10 (rel.) ^•/^•BiOH 3.6 X e-r. esr decay of spin 72-0039 10~2 H 2 NCH 2 CHN (II) polarization. compared with EtOH. 4 1 - 6 x 10 (I) (rel.) k\lk u = 10 y-r. chem. — 1% H abstr. 73-0053 7 7 3.2 x 10 (I) (rel.) ki/k n = 1.4 (58% at pH7). s 2.125a 2-aminobutyric 1 6.0 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 acid k(H + allyl ale.) 9 = 2.8 x 10 . 6 2.126 2-aminoethanol 1 3.0 x 10 (rel.) klkfoOH = 3.0 x e-r. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. 4 2.127 2 -amino-2- methyl- 1 8 x 10 (rel.) k/k^^oH = 8 x e-r. esr decay of spin 71-0003 _s propionic acid 10 polarization, compared with 2-PrOH(7D). 9 = 2.128 aniline 8-9 2.8 x 10 (rel.) klk2-p^)H 36 y-r. chem. c.k. 66-0500 9 -> (rel.) — 2.6 e-r. esr decay of spin 72-0025, H + C 6 H s NH 2 7 2.6 x 10 k/kfaOH polarization, 72-0039 c 6 h 6 nh 2 compared with EtOH. 9 — (2.9 ± 0.7) x 10 — p.r. opt. p.b.k. at 350 nm. 72-0289

18 >

Table 4. Reactions of H with organic solutes — Continued

3 x No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

8 = 2.129 anilinium ion 1 4.9 x 10 (rel.) kl ^BxOH 0-49 e—r. esr decay of spin 72-0025 + + ^ polarization, H C 6 H 5 NH 3 + with c 6 h 6 nh 3 compared EtOH. 9 3 (1.3 ± 0.2) x 10 p.r. opt. p.b.k. at 310 nm. 72-0289 9 = 2.130 anisole 1 1.2 x 10 (rel.) ^/^BxOH 1-2 e-T. esr decay of spin 72-0025 polarization; compared with EtOH. 9 2.131 1.0 x 10 (rel.) ^Mdioxane = 78 y-r. chem. c.k.; solvent 67-0222 dioxane contg. 2.2 M water. 9 2.132 9,10-anthraquinone— 1.0 (4.1 ± 0.3) x 10 p.r. opt. p.b.k. (H 72-0171 2-sulfonate ion adduct); fert-BuOH as OH scavenger. 7 = 2.133 L-arabinose 1 5.7 x 10 (rel.) kl ^BiOH 8 - 7 x e-r. esr decay of spin 71-0040 2 10' polarization, compared with EtOH. 6 = 2.134 L-arginine 1 4.9 x 10 (rel.) kl ^BiOH 4.9 x e-T. esr decay of spin 71-0040 3 10~ polarization, compared with EtOH. 8 = — 2.135 ascorbate ion 7 (3-6) x 10 (rel.) kl ^BiOH 0.3 e-r. esr decay of spin 72-0039 0.6 polarization, compared with EtOH. 8 2.136 ascorbic acid (rel.) = IS • 3.6 x 10 k/k2-PiOH 4.5 y-r. chem. c.k. 70-3023 8 -» (rel.) ~ H + C 5 H 7 0 6 1 1.1 x 10 k/k BlOH 0.11 e-r. esr decay of spin 71-0040

(I) H 2 + C s H 6 0 6 polarization, — H + C 5 H 7 0 6 compared with (II) no H 2 EtOH. 6 1 ~ 2 x 10 (I) kfk n = 0.02 y-r. chem. — 2% H abstr. 73-0053 8 = 1 1.7 x 10 (rel.) k/k 2-ptoh 2.2 p.r. opt. c.k.; obs. 360 72-0266 nm abs. 5 2.137 DL -asparagine 1 4.7 x 10 (rel.) ^/^BxOH *4.1 X e-T. esr decay of spin 71-0040 -4 10 polarization, compared with EtOH. 6 = 2.138 aspartate ion 7 2.9 x 10 (rel.) ^/^BiOH 2.9 X e-r. esr decay of spin 72-0039 3 10“ polarization, compared with EtOH. s 2.139 DL -aspartic acid 1 8 x 10 (rel.) k/ ^BxOH = 8 X e-r. esr decay of spin 71-0040 10~* polarization, compared with EtOH. 9 = 2.140 barbiturate ion 7 2.0 x 10 (rel.) ^•/^BiOH 2.0 e-T. esr decay of spin 72-0039 polarization, compared with EtOH. 7 = 2.141 barbituric acid 1 2.0 x 10 (rel.) kl ^BiOH 0-02 e-T. esr decay of spin 71-0040 -* polarization, H + C 4 H 4 N 2 0 3

H 2 + C 4 H 3 N 2 0 3 compared with (I) EtOH. 6 -» (II) (rel.) k 7.3 abstr. 73-0053 H + C 4 H 4 N 2 0 3 1 2.4 x 10 n l ki= y-r. chem. 12% H

no H 2 (II)

19 >

Table 4. Reactions of H with organic solutes — Continued

3 _1 No. Solute and Reaction pH /c(dm mol s *) Ratio Source Method Comment Ref.

9 2.142 benzaldehyde 1 1.5 x 10 (rel.) k/k BlOH =1-5 e-r. esr decay of spin 72-0025

C 6 H s CHO + H ^ polarization,

(I) C 6 H s CO + H 2 compared with + — C 6 H s CHO H EtOH. 7 (II) 1 10 (I) (rel.) — C 6 H 6 CHO 6 x kn l ki = 24 y-r. chem. 4 % H abstr. 73-0053 8 = 2.143 benzamide 1 8.9 x 10 (rel.) ^/^BiOH 0.89 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.144 0 9 x 10 (rel.) ^/^PhOH = 0-5 y-r. chem. compared effect 59-0006 -» H + C 6 H 6 C 6 H 7 of C 6 H 6 and 3+ C 6 H 5 OH on G(Fe ) 2+ in Fe soln. 9 3 (1.1 ± 0.1) x 10 p.r. opt. p.b.k. at 311 nm; 67-0246 contains ~ 2 x 10~2 A/ CH 3 OH, assumed = *(H + CH 3 OH) 6 1.6 x 10 . 8 = 2.0 5.3 x 10 (rel.) ^/^PNBA 5.3 X p.r. opt. c.k.; build-up of 70-0211 10" 1 /?-nitrobenzoic acid-H adduct 8 2.145 benzenesulfonate 8-9 6.7 x 10 (rel.) ^/^2-PrOH =8.6 y-r. chem. c.k. 66-0500 8 ion 1 (8.2 ± 1.3) x 10 — p.r. opt. p.b.k. 69-0001 -^ H + C 6 H 5 S0 3 CD 3 OD as OH - c 6 h 6 so 3 scavenger. 8 D + C 1 6.3 x 10 — p.r. opt. p.b.k.; in D 0. 69-0001 6 H 5 SOJ— 2

c 6 h 5 dso 3 8 = 2.146 1,3,5-benzene— 1 6.5 x 10 (rel.) k/kb*oh 0.65 e-r. esr decay of spin 71-0003 tricarboxybc acid polarization, compared with 2-PrOH(7D). 10 2.147 benzil 1.0 (1.0 ± 0.2) x 10 — p.r. opt. p.b.k. (H 72-0171

H + C 6 H 5 COCOC 6 H adduct); ferf-BuOH

C 6 H 6 COCOC 6 H s as OH scavenger. 9 2.148 benzoate ion 8-9 1.4 x 10 (rel.) k/k2-PrOH =17.4 y-r. chem. c.k. 66-0500 8 = H + C 6 H 5 COO'^ 7 9.2 x 10 (rel.) ^/^•BiOH 0.92 e-r. esr decay of spin 72-0039

C 6 H 6 C00‘ polarization, compared with EtOH. 9 2.149 benzoic acid 3 1.0 x 10 — p.r. opt. p.b.k. at 347 nm; 69-0001

(BzOH) CD 3 OH as OH scavenger. H + C 6 H 5 COOH 9 — 1.2 x 10 (rel.) = 590 p.r. opt. c.k.; p.b.k. 69-0001 £ 6 H 6 COOH ^/^MeOH 8 = 1 8.1 x 10 (rel.) k 1 k 2-PrOHOt)) e-r. esr decay of spin 71-0003 81 polarization. 8 — 8.3 x 10 — e-r. esr decay of H 71-0303 signal. 8 1 8.8 x 10 (rel.) k/kfMH = 34 e-r. esr decay of spin 72-0025 polarization.

1 — — y-r. chem. < 1% H abstr. 73-0053 For other ratios see: 2.90, 2.104-5, 2.107, 2.109-12, 2.115--17, 2.119-20, 2.122- 3, 2.125-30, 2.133-43, 2.146, 2.148-50, 2.153-4, 2.159-60, 2.162, 2.168-72, 2.175, 2.177, 2.181, 2.183-4, 2.189-91, 2.197, 2.200, 2.202, 2.205, 2.207, 2.209, 2.211-16, 2.218-9,

2.223-4, 2.229-32, 2.237, 2.239, 2.241 , 2.244, 2.245-7, 2.249, 2.250-5, 2.259, 2.261- 70, 2.272 -7, 2.279-83, 2.285-90, 2.294, 2.2%, 2.303, 2.305, 2.307, 2.311,

2.313, 2.315, 2.317--8, 2.320- 1, 2.323--7, 2.330, 2.332-9,

2.342-7, 2.349, 2.351, 2.353- 5, 2.357, 2.358, 2.360, 2.362, 2.365-8, 2.370-1, 2.374, 2.377, 2.380, 2.383-8

20 » —

Table 4. Reactions of H with organic solutes — Continued

3 x x No. Solute and Reaction pH k(dm mol s ) Ratio Source Method Comment Ref.

8 1 7.6 x 10 — p.r. opt. p.b.k.; in 69-0001 D + C 6 H 5 COOH D 2 0.

C 6 H s DCOOH 8 ~ 2.150 8-9 7.2 x 10 (rel.) k/k2-PrOH 9.06 y-r. chem. c.k. 66-0500 8 1 p.r. opt. H + C 6 H s CN 6.8 x 10 p.b.k.; CD 3 OH as 69-0001

c 6 h 6 cn OH scavenger 8 = 8 x 10 (rel.) ^/^MeOH 4 X p.r. opt. c.k.; p.b.k. 69-0001 10“2 8 2 5.5 x 10 (rel.) */*fcrri= 7.8 X p.r. opt. c.k. 70-0657 10~ 2 s = 1 6.4 x 10 (rel.) k/k BiOH 0-64 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.151 benzophenone 3 x 10 (rel.) = 24 y-r. chem. c.k.; solvent is 67-0222 dioxane containing 2.2 M water. 9 1.0 (5.6 ± 0.3) x 10 p.r. opt. p.b.k. (H 72-0171 adduct); fert-BuOH as OH scavenger. 9 = 2.152 benzoquinone (Q) 1.0 2.3 x 10 (rel.) kl ^hcooh 3000 X-r. chem. c.k. 56-0012 9 + =0 -* — 1.5 x 10 (rel.) = 750 ± y-r. chem. c.k. 58-0009 H 0=C 6 H 4 ^/^MeOH

o=c 6 h 4 oh 40 10 — 1.4 x 10 (rel.) = 350 ± y-r. chem. c.k. 65-0192 150 9 1.9 8.3 x 10 — p.r. opt. p.b.k. at 410 nm. 71-0618, 71-0619 For other ratios see: 2.89, 2.363 9 •2.152a 2— benzoylpyridine 1.0 (2.3 ± 0.4) x 10 p.r. opt. p.b.k. at 348 nm; 72-0359 H adduct formn. 9 2.152b 3-benzoylpyridine 1.0 (3.7 ± 0.6) x 10 — p.r. opt. p.b.k. at 400 nm; 72-0359 H adduct formn. 9 2.152c 4— benzoylpyridine 1.0 (2.4 ± 0.3) x 10 — p.r. opt. p.b.k. at 375 nm; 72-0359 H adduct formn. 9 = 2.153 benzyl alcohol 6 1 x 10 (rel.) ^/^2-PtOH 13 ± y-r. chem. c.k. 63-0041, 64-0095 H + C 6 H 5 CH 2 OH-+ 2.0 8 h 2 + c 6 h 5 choh ~0.4 9.4 x 10 (rel.) = 20 y-r. chem. c.k. 68-0525 9 = (I) 1 1.1 x 10 (rel.) ^•/^BiOH 1-1 e-r. esr decay of spin 72-0025

H + C 6 H s CH 2 OH polarization,

C 6 H 6 CH 2 OH (II) compared with EtOH. 7 1 8 x 10 (I) (rel.) kjk n = 0.07 y-r. chem. 7% H abstr. 73-0053 4 2.154 betaine 1 8 x 10 (rel.) klk^zon = 8 x e-r. esr decay of spin 71-0040 5 10~ polarization, compared with EtOH. 6 2.155 biacetyl 1 4.7 x 10 (rel.) — e-r. esr unpubl. data, 73-0053

H + CH 3 COCOCH 3 ^ P. Neta and R.H.

H 2 + CH 2 COCOCH 3 Schuler. s (I) 1 9.4 x (I) (rel.) k y-r. abstr. 73-0053 10 x lkn = 0.25 chem. 20% H -> H + CH 3 COCOCH 3

no H 2 (II) 8 2.156 2,2'-bipyridine 1 1.5 x 10 — p.r. opt. p.b.k. 71-0582 8 2.157 4,4'-bipyridine 1 2 x 10 :— p.r. opt. p.b.k. 71-0582 2.158 bromoacetate ion

8.5 10* (rel.) = 7.0 y-r. chem. c.k. 67-0050 H + BrCH 2 C0 2 — 5.5 x ^/^•2-PrOH HBr + CHjCOj 6 $ y-r. chem. c.k. in DjO. 67-0050 D + BrCH 2 C0 2 ^ 8.5 3.2 x 10 (rel.) Ik 2-PrOH 4x HD + BrCHCOO" 10"2

21 Table 4. Reactions of H with organic solu[es — Continued

3 l No. Solute and Reaction pH )t(dm mol *s ) Ratio Source Method Comment Ref.

y

2.159 bromoacetic acid 6 -> 1 3.6 x 10 (rel.)(I) y-r. estimated; c.k. H + BrCH 2 COOH < ^i/^BiOH ^ 3.6 X 71-0017 "3 (I H 2 + CHBrCOOH ) 10 with 2-PrOH(7D). 8 -* 1.0 4.7 (rel.) (II) = c.k. H + BrCH 2 COOH x 10 kill ^2-PiOH y-r. chem. 67-0050

HBr + CH 2 COOH 6.0 8 = (II) 1 2.6 x 10 (rel.) (II) ^/^BiOH 0-26 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 8 = 1 3.6 x 10 (rel.) (II) ^Il/^BiOH 0-36 y-r. chem. c.k. with 71-0017 2-PrOH(7D). 8 ~0.4 4.7 x 10 (rel.) (II) 10 y-r. chem. c.k. 68-0525 s (rel.) D + BrCH 2 COOH 1.0 < 4.7 x 10 ^/^2-PrOH ^ 6 X y-r. chem. c.k. in D 2 0. 67-0050 HD + CHBrCOOH 10'3 8 = 2.160 bromoethane 1 1.7 x 10 (rel.) ^/^BiOH 0.17 e-r. esr decay of spin 71-0003

H + BrCH 2 CH 3 polarization,

H 2 + BrC 2 H 4 (I) compared with

H + BrCH 2 CH 3 -> 2-PrOH(7D). 6 HBr + C (II) 1 - 5 x 10 (I) (rel.) k !k 0.03 y-r. chem. — abstr. 73-0053 2 H 5 x n = 3% H 2.161 2-bromoethanol 8 (rel.) H + BrCH 2 CH 2 OH 1,9 2.7 x 10 ^/^2-PrOH =3.4 y-r. chem. c.k. 67-0050

HBr + CH 2 CH 2 OH 7 (rel.) = D + BrCH 2 CH 2 OH 1,9 2.7 x 10 k/k 2-PrOH 0.34 y-r. chem. c.k. in D 2 0. 67-0050

HD + BrCHCH 2 OH 8 ~ 2.162 5-bromoorotic acid 1 2.1 x 10 (rel.) ^/^B*OH 0.21 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 9 _ 2.163 p-bromophenol 4.9 x 10 (rel.) = 0-7 e.d. condy. obs. Br formn. 71-9384 i and ferricyanide reduction (opt.)

2.164 2-bromopropionate io i 9 = H + CH 3 CHBrCOO~ |8.5 1.3 x 10 (rel.) k/k 2-PrOH 17 y-r. chem. c.k. 67-0050 -> HBr + CHjCHCOO" - 7 + 2.5 x 10 (rel.) k/k = 0.32 y-r. chem. c.k. in 0. 67-0050 D CHjCHBrCOO |8.5 2-P1OH D 2 -* HD + CHjCBrCOO' 2.165 3-bromopropionate ion 8 3 10 (rel.) k/k =3.8 y-r. c.k. 67-0050 H + BrCH 2 CH 2 COO"|8.5 x 2-P1OH chem. -> HBr + CH 2 CH 2 COO' 7 (rel.) = c.k. in D + BrCH 2 CH 2 COO"|8.5 1.1 x 10 kl k 2-ptOH 0-14 y-r. chem. D 2 0. 67-0050

^ HD + BrCHCH 2 COO” 2.166 2-bromopropionic acid 9 = H + CHjCHBrCOOH |l.O 1.5 x 10 (rel.) ^/^2-PrOH 10 y-r. chem. c.k. 67-0050

HBr + CH 3 CHCOOH 6 D + CHjCHBrCOOH |l.O 6.3 x 10 (rel.) ^/^2-PrOH =0.08 y-r. chem. c.k. in D 2 0. 67-0050 -> HD + CHjCBrCOOH 2.167 3-bromopropionic acid

10* (rel.) 3.4 y-r. chem. c.k. 67-0050 H+CH 2 BrCH 2 COOH |l.O 2.7 x k/ki-PrOH =

HBr + CH 2 CH 2 COOH 6 (rel.) k/k = 0.06 y-r. c.k. in DjO. 67-0050 D+CH 2 BrCH 2 COOH |l.O 4.7 x 10 2-PrOH chem. -» HD + CHBrCH 2 COOH 2.168 5-bromouracil 1 2.2 x 10* (rel.) k/kutoH — 0.22 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 10 (rel.) = 5 x 10 — c.k.; no details 67-0041 2.168a butadiene — 1 x 10 klkntOR — given.

22 —

Table 4. Reactions of H 'with organic solutes — Continued

3 l No. Solute and Reaction pH k(dm mol s *) Ratio Source Method Comment Ref.

7 = 2.169 butane 1 3.9 x 10 (rel.) k/k BxOH 3.9 X e-r. esr decay of spin 71-0003 2 10~ polarization, compared with 2-PrOH(7D). 7 = 2.170 1-butanol 1 3.84 x 10 (rel.) k/k bioh 3.84 x e—r. esr decay of spin 71-0003 2 10' polarization. H + CH3(CH 2 ) 30H-^ with h 2 + c 4 h 8 oh compared 2-PrOH(7D). 7 = 1 3.7 x 10 (rel.) k/k Bxoh 3. 7 X y-T. chem. c.k. with 71-0017 10"2 2-PrOH(7D). 2.171 2-butanol 8 (rel.) = H + C 2 H 5 CHOHCH 3 1 1.3 x 10 ^/^BxOH 0-13 e-r. esr decay of spin 71-0003 -+ polarization, h 2 + c 4 h 8 oh compared with 2-PrOH(7D). 7 1 9.5 x 10 (rel.) klkhMB = 9.5 x y-T- chem. c.k. with 71-0017 10~2 2-PrOH(7D). 2.172 ter/-butanol -* s = H + (CH 3 ) 3 COH 7 1.0 x 10 (rel.) klkoQQQ— 4.4 ± y-r. chem. c.k. 63-0041, 10"3 h 2 + c 4 h 8 oh 0.7) x 64-0095 4 1 8 x 10 (rel.) = 3 X e—r. esr decay of spin 71-0003 5 10' polarization, compared with 2-PrOH(7D). s 2 1.7 x 10 p.r. esr decay of H 71-0303 signal; high concn.; k concn. dependent. 9 - — 2.173 1-butene 5.4 x 10 (rel.) k/ ^MeOH 2.7 X — — c.k., no details 67-0041 3 H + C 4 H 8 ^ C 4 H 9 10 given. s ~ 2.174 butyrate ion 7 1.4 x 10 (rel.) k/k MeCDOHMe y-r. chem. c.k. 66-0422 2 1.4 10“ H + CH 3 CH 2 CH 2 COCT-* x _ h 2 + c 3 h 6 coo 6 = 2.175 butyric acid 1 8.6 x 10 (rel.) ^•/^BiOH 3-6 X e—r. esr decay of spin 71-0003 10~3 H + CH 3 CH 2 CH 2 COOH polarization,

h 2 + c 3 h 6 cooh compared with 2-PrOH(7D). 6 1 7.4 x 10 (rel.) ^/^BxOH — 7.4 X y-r. chem. c.k. with 71-0017 10“3 2-PrOH(7D). 10 2.176 carbon disulfide 1 2.0 x 10 p.r. opt. p.b.k. at 310 nm. 73-1015 + ^ H + + SCS" H CS 2 7 ~ 2.177 carbon 1 4.8 x 10 (rel.) ^/^BiOH 4.8 X e—r. esr decay of spin 71-0003 2 tetrachloride 10" polarization, -» + H + CCl 4 H + compared with

cr + CC1 3 2-PrOH(7D). 7 3.2 x 10 p.r. condy. p.b.k. 71-0778 s = 2.178 chloroacetate ion 3-8 1.5 x 10 (rel.) k/k H 1.5 x e.d. chem. c.k. 62-9008 _s H + cich 2 coct-» 10 6 (rel.) k() ~ = c.k. 62-9011 H 2 + C1CHCOO” 12.7 3.3 x 10 k\l B 0.22 e.d. chem. 6 (I) ~ 7 1.9 x 10 (rel.) klkocoQ~ = ^8.4 y-r. chem. c.k. 63-0041, 2 ± 1.2) x 10" 64-0095 + -* 3-8 k lk 0.09 e.d. chem. — 62-9008 H ClCHjCOO" n t = HC1 + CHjCOO"

(II)

For other ratios see: 2.9, 2.55

23 Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH &(dm mol s *) Ratio Source Method Comment Ref.

4 2.179 chloroacetic acid 0.4-2 1.3 x 10 (rel.) k/k H = 1.3 x e.d. chem. c.k. 62-9008 -+ 6 H + ClCH 2 COOH lO^ + 1 = 0.55 •y-r. chem. — 61-0025 H 2 CHC1COOH kulkt .(I) < 2 kul ki = 0-5 — e.d. chem. — 62-9008 -* H + ClCH 2 COOH 0.1 HC1 + ~ 0.4 0.61 y-r. chem. — 68-0525 CH 2 COOH kjk^ (II) 9 2.180 p-chlorobenzoic 1 1.13 x 10 — p.r. opt. p.b.k.; CD 3 OH as 69-0001 acid OH scavenger.

H + C 6 H 4 C1C00H

C 6 H 5 C1C00H 6 chloroethane 1 1.8 x 10 (rel.) k/k = 1-8 x 2.181 BroH e-r. esr decay of spin 71-0003 3 10~ polarization, compared with 2-PrOH(7D). 2.182 2— chloroethanol 6 + 2.4 10 (rel.) ~ c.k. H C1CH 2 CH 2 0H x ^2-PiOH 3 X y-r. chem. 67-0050 10“2 HC1 + CH 2 CH 2 OH 7 D + C1CH -> — 2.4 x 10 (rel.) = 0-3 y-r. chem. c.k. in 67-0050 2 CH 2 0H ^/^2-PiOH D 2 0.

HD + CHC1CH 2 0H 2.183 chloroform s H + CHC1 HC1 + ~ 1 8.5 x 10 (II) (rel.) — r. chem. c.k. in presence 62-0012, 3 ^ 2+ CHC1 2 (II) of Fe assuming 66-9002 = k(OH + CHC1 3 ) 6 7.4 x 10 . 7 1 1.2 x 10 (rel.) k/k bxoh - 1-2 x e-r. esr decay of spin 71-0003 2 10“ polarization, compared with 2-PrOH(7D). 6 -» 1 (I) (rel.) = abstr. H + CHCl 3 H 2 + 2.4 x 10 krfkn 0.25 y-r. chem. 20% H 73-0053

CC1 3 (I) 4 = 2.184 chloromethane 1 7 x 10 (rel.) ^/^BzOH 7 X e-r. esr decay of spin 71-0003 10“5 H + CH 3 C1^ H 2 + polarization,

C1 (I) compared with CH 2 . 2-PrOH(7D). 4 1 (I) (rel.) ahstr. 73-0053 H + CH 3 C1^ no H 2 3 x 10 ki/k n = 0.59 y-r. chem. 37% H (II) 2.185 2-chloropropionate ion 7 + ^ 8.5 1.9 x 10 (rel.) : 0.24 y-r. chem. c.k. 67-0050 H CH 3 CHC1C0 2 ^/^2-PiOH

HC1 + CH 3 CHC0 2 6 -+ (rel.) - c.k. in D + CH 3 CHC1C0 2 8.5 4.7 x 10 ^/^2-PrOH 6 X y-r. chem. D 2 0. 67-0050 10~2 HD + CH 3 CC1C0 2 2.186 3-chloropropionate ion 7 (rel.) =1-2 y-r. chem. c.k. 67-0050 H + CH 2 C1CH 2 C0 2 —>8.5 9.1 x 10 ^/^2-PrOH

hci + ch 2 ch 2 co: 7 (rel.) y-r. c.k. in 67-0050 D + CH 2 C1CH 2 C0 2 —»8.5 2.4 x 10 ^/^2-PiOH 0-3 chem. D 2 0.

HD + CHClCHjCO 2 2.187 2-chloropropionic acid 6 1.0 (rel.) = 6.4 X y-r. chem. c.k. 67-0050 H + CH 3 CHClCOOH 5 x 10 ^/^2-PK)H -» 10~2 HCI + CH 3 CHCOOH 6 (rel.) = y-r. c.k. in 67-0050 D + CH 3 CHC1C00H 1.0 4 x 10 ^/^2-PrOH 5 X chem. D 2 0. -> 10"2 HD + CH 3 CClCOOH

24 >

Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH £(dm mol *s *) Ratio Source Method Comment Ref.

2.188 3-chloropropionic acid 7 1.0 3 x 10 (rel.) k/k = 0.38 y-r. c.k. H+CH 2 C1CH 2 C00H 2-PiOH chem. 67-0050 -> HC1 + CH 2 CH 2 COOH 7 1.0 1.6 x 10 (rel.) = 0-2 y-r. c.k. in d+ch 2 cich 2 cooh ^/^2-PrOH chem. D 2 0. 67-0050 HD + CHClCHjCOOI- 6 3 2.189 chlorotrifluoro- 1 < 10 (rel.) k/k b*oh < 10 e-r. esr decay of spin 71-71-0003 methane polarization, compared with 2-PrOH(7D). 72- 8 ~ 2.190 5-chlorouracil 1 1.6 x 10 (rel.) ^/^BxOH 0.16 e-r. esr decay of spin 0040 polarization, compared with EtOH. 8 7 2.2 x 10 (rel.) ^/^BxOH =0.22 y-r. chem. c.k. with 0049 2-PrOH(7D). s 2.191 citric acid 1 4.3 x 10 (rel.) e-r. esr decay of spin 71-0040 -4 10 polarization, compared with EtOH. 6 = 2.192 cyanoacetic acid 1 3.2 x 10 (rel.) kl ^BxOH 3.2 x e-r. esr decay of spin 71-0003 - 10“3 H + NCCH 2 COOH polarization,

h 2 + ncchcooh (I) compared with 2-PrOH(7D). s (rel.) H + NCCH 2 COOH ^1 4 x 10 (I) ki/k n = 0.14 y-r. chem. 12% H abstr. 73-0053

HNCCH 2 COOH (II) 7 2.193 cyclobutanecar- 1 1.3 x 10 (rel.) e— r. esr unpubl. data, 73-0053 boxylic acid P. Neta and R.H.

H + C 4 H 7 COOH Schuler. 6 H 2 + C 4 H 6 COOH(I >1 9.2 x 10 (I) (rel.) ki/k u = 2.4 y-r. chem. 71% H abstr. 73-0053

H + C 4 H 7 COOH->

C 4 H 8 COOH (II) 9 2.194 cycloheptatriene — 8.4 x 10 (rel.) k/k = 1.2 p.r. opt. c.k. 71-0710 lari 9 2.195 1,3— cyclohexadiene 2.0 (9.8 ± 2.0) x 10 ^/^PNBA = 9.8 ± p.r. opt. c.k., p.b.k. at 70-0211 (rel.) 2.0 400 nm. 9 2.196 1,4— cyclohexadiene 2.0 (4.7 ± 1.0) x 10 k/kpffBA = 4.7 ± p.r. opt. c.k., p.b.k. at 70-0211 (rel.) 1.0 400 nm.

2.197 cyclohexane — k/k 2 + = 1.2 y-r. chem c.k. 66-0810 Cjl 7 H + CgH^ — 1 3 x 10 (rel.) klk^xoii = 0-03 e-r. esr decay of spin 71-0003

H 2 + C 6 Hjj polarization, compared with 2-PrOH(7D). 9 2.198 cyclohexene 2.0 (3.0 ± 0.6) x 10 ^/^PNBA = 3.0 ± p.r. opt. c.k., p.b.k. 70-0211 (rel.) 0.6 at 400 nm. 9 2.199 cii-4— cyclohexene— 1 1.0 x 10 (rel.) e-r. esr unpubl. data, 73-0053 1,2— dicarboxylic P. Neta and acid R.H. Schuler. 7 + -^ 8 x 10 (I) (rel.) _k s 0.08 y-r. chem. abstr. 73-0053 H C 6 H 8 (COOH) 2 1 1 lk n 8% H

H 2 + C 6 H 7 (COOH)j (I) -> H + C 6 H 8 (COOH) 2

no H 2 (II) 7 2.200 cyclopentane 1 3 x 10 (rel.) k/k^oE = 0.03 e-r. esr decay of spin 71-0003 polarization, compared with 2— PrOH(7D). 9 2.201 1 -cyclopentane— 1 1.5 x 10 (rel.) e-r. esr Unpubl. data, 73-0053 carboxylic acid P. Neta and -> H + C 5 H 9 COOH R.H. Schuler. 8 abstr. 73-0053 H 2 + C s H 8 COOH(I) 1 1.4 x 10 (I) (rel.) kjk n = 0.09 y-r. chem. 9% H

H + C 5 H 9 COOH

no H 2 (II)

25 Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH /c(dm mol *s *) Ratio Source Method Comment Ref.

s = 2.202 cyclopropane 1 7 x 10 (rel.) ^/^BiOH 7 X e-r. esr decay of spin 71-0003 4 10- polarization, compared with 2-PrOH(7D). 6 2.203 cyclopropane- 1 5.3 x 10 (rel.) — e-r. esr Unpubl. data 73-0053 carboxylic acid P. Neta and

H + C 3 H 5 COOH R.H. Schuler. 4 + 1 4 x 10 (I) (rel.) k 0.08 y-T. chem. abstr. 73-0053 h 2 c 3 h 4 cooh { lk n = 8% H (I) -+ H + C 3 H 5 COOH

no H 2 (II) 9 2.204 cysteamine 2 3.0 x 10 — p.r. esr decay of H 71-0303 + H + HSCH 2 CH 2 NH 3 signal. 8 -> H (I) 1 7.0 x 10 (rel.) — y-r. chem. c.k. assuming 73-0241 2 + (I II) allyl H + HSCH 2 CH 2 NH 3 + &(H + ale.) 8 ~ 9 -> = . H 2 S (II) 4.9 x 10 (I) (rel.) k\lk\\ 2.3 ± 2.8 x 10 8 2.1 x 10 (II) (rel.) 0.2 2.205 cysteine (positive 0.72 kilk u = 1.5 y-r. chem. c.k. 64-0151 9 ion) 1 2.5 x 10 (rel.) — — — c.k. with 66-0402

HSCH 2 CH(NH^COOH + (I) cystine; cystine

H^H 2 (D formn. = 0 kfk n 3.5 y-r. chem. based on yields 67-0148 + of HSCH 2 CH(NH^COOH H 2 , H 2 S and -» at H H 2 S (II) cystine; ratio 1°C = 8.6. 9 1 4 x 10 (rel.) (I) k /k = 1.95 x y-r. chem. c.k. 68-0540 1 OIJ 10" 1

1 k /k 3.66 y-r. chem. c.k.; 68-0540 l u = kjk^ = 10~2 5.4 x . 9 = 1 4 x 10 (rel.) Wk BrOH 4 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 9 2 3.0 x 10 — p.r. esr decay of H 71-0303 signal. 9 1 2.7 x 10 (I) (rel.) ki/k n =2.1 y-r. chem. 68% H abstr. 73-0053 9 1 1.5 x 10 (rel.) — y-r. chem. c.k. assuming 73-0241

(I + II) k(H + allyl ale.) 9 = 9 1.3 x 10 (I) (rel.) k\/k n = 5.2 ± 2.8 x 10 . 8 2.5 x 10 (II) (rel.) 0.7 2.206 cysteine (zwitterion) 9 HSCH2 CH(NH+)CO- 6 (1.0 ± 0.08) x 10 e.d. chem. d.k. for -SH 64-9012 groups at ~ + H H 2 (I) (I) 5°C. 8 + 6 - e.d. chem. p.b.k. for S 64-9012 , (1.1 x 10 — H HSCH 2 CH(NH 3 )C0 2 1.4) 2 (II) at ~ 5°C. + H — H 2 S (II) 7 HSCH 2 CH(NH+)CO~ < 5 x 10 (III) — — — in D H abstr. 66-0402 6 2 0; + D ^ HD (III) from C-H. 9 for 2.207 cystine 6 1.5 x 10 e.d. chem. p.b.k. H 2 S or 64-9012 -SH groups at ~ 5°C. 9 = 1 7.9 x 10 (rel.) k/k 2-PjOH 10® y-r. chem. c.k. 66-0402 9 = 1 2.15 x 10 (rel.) k/kncooH 2870 y-r. chem. c.k. 68-0343 9 1 8 x 10 (rel.) klkfrOH = ® e-r. esr decay of spin 71-0040 polarization, compared with EtOH.

26 » »*

Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH k(dm mol s *) Ratio Source Method Comment Ref.

9 - = 2.208 cytochrome-C ~ 7 7.5 x 10 (rel.) k/khcoo 30 X-r. chem. c.k. 62-3002 10 H + ferri-cytC — — 1.5 x 10 — p.r. opt. p.b.k. at 550 nm 71-0930, + ferro-cytC + H (ferro-cytC); 72-1002

H 2 -satd. 10 H + ferri-cyt C — 2.5, 1 x 10 (rel.) — p.r. opt. p.b.k. (290- 71-3087 H adduct 6.5 325 nm); tert- BuOH as OH scavenger. 7 2.209 cytosine 1 9 x 10 (rel.) klkuton =0.09 e-r. esr •decay of spin 71-0040 polarization, compared with EtOH. 8 - 7 (1.0 - 1.5) x 10 k/kztOH = 0.1 e-r. esr decay of spin 72-0039 (rel.) 0.15 polarization, compared with EtOH. 7 2.210 2-deoxy-D-ribose 7 2.3 x 10 (rel.) kl k]ycOO~ — 1.0 ± y-r. chem. c.k. 64-0095 — H + C 5 H 10O 4 0.1

H 2 C s H 9 0 4 6 2.211 dichlorodifluoro- 1 < 10 (rel.) ^/^BiOH < e-r. esr decay of spin 71-0003 methane polarization, compared with 2-PrOH(7D). 6 = 2.212 dichloromethane 1 4 x 10 (rel.) k/kRt0n 4 x e-r. esr decay of spin 71-0003 10'3 H + CH 2 C12 ^ polarization.

H 2 + CHC1 2 (I) compared with -^ H + CH 2 C1 2 2-PrOH(7D). 6 no (II) 1 1.1 x 10 (I) (rel.) k /k 0.37 abstr. 73-0053 H 2 1 u = y-r. chem. 27% H 8 = 2.213 o-dicyanobenzene 1 5.5 x 10 (rel.) ^/^B*OH 0.55 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.214 m-dicyanobenzene 1 5.2 x 10 (rel.) ^/^BiOH — 0.52 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.215 p-dicyanobenzene 1 2.8 x 10 (rel.) k/k^MH = 0.28 e-r. esr decay §f spin 72-0025 polarization, compared with EtOH. 8 2 (3.5 ± 0.4) x 10 — p.r. opt. p.b.k. at 320 nm. 73-0121 7 2.216 2,3-dihydroxy- 1 9 x 10 (rel.) ^/^BiOH =0.09 e-r. esr decay of spin 71-0040 fumaric acid polarization, -* H + (COHCOOH) 2 compared with

h 2 + EtOH. HOOCCOCOHCOOH (I) 6 ^ 1 1.4 x 10 (I) (rel.) k lk = 0.19 y-r. chem. abstr. 73-0053 H + (COHCOOH) 2 t n 16% H

no H 2 (II) 8 2.217 5,6-dihydrothymine 7-8 2.3 x 10 (rel.) k/kocoQ— = 10 y-r. chem. c.k. 68-3038 9 2.217a dimethyl fumarate 0.7 9.0 x 10 — p.r. opt. p.b.k. 73-0097 6 2.218 dioxane — 6.2 x 10 (rel.) kl k McCDOHMc t y-r. chem. c.k. 66-0422 -» 10" 1 H + C 4 H 8 0 2 H 2 + 6.2 x 7 c — 1.3 x 10 (rel.) k/k^+ = 4.18 x p.r. opt. c.k.; p.b.k. at 67-0550, 4 h 7 o 2 -4 10 ~ 310 nm (Ag£) 68-0436 7 1 1.3 x 10 (rel.) k/k^MH = 1-3 x e-r. esr decay of spin 71-0003 2 10“ polarization, compared with 2-PrOH(7D). For other ratios see: 2.110, 2.131, 2.151, 2.364

27 Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH fc(dm mor s *) Ratio Source Method Comment Ref.

l ° = 2.219 dithiodiglycolic 1 1 x 10 (rel.) k/k BxOH I® e-T. esr decay of spin 71-0040 acid polarization, compared with EtOH.

1 y-r. chem. no H abstr. 73-0053 - 2.220 DNA 7-8 8 x 10“ (rel.) y-r. chem. c.k. with DCOO 68-3038 ; mol. wt. = 5 x 6 = 7 10 ; k 5 x 10 per base unit. s 2.221 dodecyl sodium — 1.1 x 10 (rel.) = y-r. c.k. 71-0586 ^/^2-PrOH(7D) chem. sulfate 11 2.222 erythrosin See tetraiodofluorescein 6 2.223 ethane 1 2.5 x 10 (rel.) ^/^BiOH - 2.5 X e-r. esr decay of spin 71-0003 -3 10 polarization, compared with 2-PrOH(7D). 7 2.224 (EtOH) 1.0 2.0 x 10 (rel.) k/khcooh =14 y-r. chem. c.k. 56-0012 7 4- 1-3 (rel.) k/k H C 2 H 5 OH 2.8 x 10 fmi = 4 x X-r. chem. c.k. 62-0022, -3 h 2 + c 2 h 4 oh 10 62-0033 7 1.2 4.2 x 10 (rel.) klk lmi = 6 x X-r. chem. c.k. 62-0087 -3 10 7 ~ 6 1.5 x 10 (rel.) klkoQOQ- = (6.6 y-r. chem. c.k. 63-0041, -1 ± 1.0) x 10 64-0095 8 — 1.3 x 10 (rel.) k/k^ = 4.3 x y-r. chem. c.k. 65-0192 -3 10 7 ~ 7 3.9 x 10 (rel.) klkimi = 5.5 x y-r. chem. c.k. 65-0192 -3 10 7 1.1 2.4 x 10 (rel.) k/klmi = 3.45 y-r. chem. c.k. 65-0192 -3 x 10 7 1 3.8 x 10 (rel.) k/k = 1.9 X y-r. chem. c.k. 66-0010 OXy -3 10 7 — 1.7 x 10 (rel.) klkneOH = 8-4 y-r. chem. c.k., no details 67-0041 given. 7 ~ 7 2.5 x 10 (rel.) klk„m = 0.41 y-r. chem. c.k. 67-0094 ~ 7 7 5 x 10 (rel.) k/k OXJ = 2.5 x y-r. chem. c.k. 67-0094 10”3

7 (rel.) 1.69 4.4 x 10 klk OIJ = 2.2 x y-r. chem. c.k. 67-0094 10“3

7 — 3.7 x 10 (rel.) k/k = 12.0 x p.r. opt. c.k.; p.b.k. at 67-0550, A.+ -4 10 313 nm (Ag£). 68-0436 7 (rel.) k/k c.k. ~0.4 4.6 x 10 OXJ = 2.3 x y-r. chem. 68-0525 -3 10 7 >13 - 2 x 10 (rel.) — y-r. chem. c.k. with OH 69-0051 7 1 2.6 x 10 (rel.) k/kuzOH = 2.6 x e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 7 1 2.5 x 10 (rel.) k/ kjijQH = 2.5 x y-r. chem. c.k. with 71-0017 10"2 2-PrOH(7D). 7 1 1.3 x 10 — p.r. esr decay of H 71-0303 signal. For other ratios see: 2.19, 2.21, 2.22, 2.23, 2.25-38, 2.52-54, 2.70, 2.80, 2.81, 2.84, 2.85, 2.86, 2.88, 2.103, 2.152, 2.226, 2.243, 2.310-12, 2.315, 2.316, 2.350, 2.352. 7 -> 2.4 x 10 — p.r. esr decay of H 71-0303 D + C 2 H 5 OH 2 signal. HD + C 2 H 4 OH 6 (rel.) k/k 9.5 x chem. c.k. 62-0087 2.225 ethanol-d 2 1.2 2.9 x 10 fmi = X-r. -4 10 H + CH 3 CD 2 OH HD + CHjCDOH 9 = - 2.226 ethoxide ion > 13 3.7 x 10 (rel.) k/kfMH 1^4 y-r. chem. c.k. with OH . 69-0051 - H + C 2 H s O ^ + c 2 h 4 ct h 2 28 =

Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

s 2.227 ethyl acetate 1.0 4.2 x 10 (rel.) klkftcooH - 0.56 X-r. chem. c.k. 56-0012

H + CH 3 COOC 2 H 5 ^

h 2 + ch 3 co 2 c 2 h 4 7 2.228 ethyl acetoacetate 1 1.3 x 10 (rel.) — e—r. esr unpuhl. data, 73-0053 -> H + MeCOCH 2 COOEt P. Neta and

H 2 + MeCOCHCOOEt R.H. Schuler. 6 1 2.9 x 10 (I) (rel.) k = 0.27 y-r. abstr.; +MeC(OH)=CCOOEt x tk n chem. 22% H 73-0053 (I) 8% enol formn.

H + MeCOCH 2 COOEt (II) no H 2 9 = 2.229 — 3.2 x 10 (rel.) ^/^MeOH 1600 — — c.k. no details. 67-0041

-^ 1 10® (rel.) H + CH 2 =CH 2 6.6 x k/k oxy = 3.3 x y-r. chem. c.k. 68-0052 10“2 c 2 h 5 9 = 1 3 x 10 (rel.) ^/^BiOH 3 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 7 = 2.230 ethylenediamine- 1 6.5 x 10 (rel.) k/kb,oh 6-5 x e-r. esr decay of spin 71-0040 2 tetraacetic acid 10" polarization, compared with EtOH. 7 2.231 ethyleneglycol ~ 7 1.0 x 10 (rel.) k/k dcoo~ = y-r. chem. c.k. 63-0041,

H + HOCH 2 CH 2 OH (4.3 ± 0.5) x 64-0095 _1 HOCHCH 2 OH + h 2 10 6 = — 8.2 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0422 8.2 x 10' 1 7 2.1 x 10 (rel.) k/ k 6.9 x p.r. opt. c.k.; p.b.k. at 67-0550, -4 10 313 nm (Ag£). 68-0436 7 = 1 1.7 x 10 (rel.) ^/^BxOH 1-7 X e-r. esr decay of spin 71-0003 2 10~ polarization, compared with 2-PrOH(7D). 7 1 2.1 x 10 (rel.) k/k^+ = 6.7 x p.r. opt. c.k.; obs. Ag at 73-1053 4 io- 410 nm; contains /ert-BuOH; k increases with

pressure 0 —> 6.72 kbar. 7 = 2.232 ethyl ether 1 4.7 x 10 (rel.) k/k Bioh 4.7 x e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 6 2.233 ethyl dihydrogen 1.3 2.1 x 10 (rel.) ^/^MeOH(3D) =21 phot. chem. c.k. 65-7019 phosphate -> H + C 2 H 5 OPO(OH) 2

H 2 + CH 3 CHOPO(OH) 2 9 2.233a N-ethylmaleamic 1.0 (1.3 ± 0.2) x 10 — p.r. opt. p.b.k. 72-0144 acid 10 2.234 N-ethylmaleimide 1.0 (1.4 ± 0.2) x 10 — p.r. opt. p.b.k. 72-0144 9 2.235 fluorenone 1.0 (5.4 ± 0.6) x 10 p.r. opt. p.b.k. (H 72-0171 adduct); tert-BuOH as OH scavenger. 2.236 fluoroacetate ion s -^ (rel.) = c.k. 67-0050 H + FCH 2 C0 2 8.5 5 x 10 ^MeOH(3D) 3 y-r. chem.

h 2 + fchco 2 3 -» practically 67-0050 H + FCH 2 C0 2 8.5 < 10 (rel.) y-r. chem. no _ formed. HF + CH 2 C0 2 F

29 Table 4. Reactions of H with organic solutes — Continued

3 l No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment Ref.

8 = 2.237 5-fluorouracil 1 1.8 x 10 (rel.) k/k B*OH 0.18 e-r. esr decay of spin 71-0040 polarization,

' compared with EtOH. 6 2.238 1.0 3.5 x 10 (rel.) k/k HCOOH =4.7 X-r. chem. c.k. 56-0012 6 H + HCHO -» H 1 5 x 10 (rel.) — e-r. esr unpubl. data, 73-0053 2 + CHO (I) P. Neta and H + HCHO -*• R.H. Schuler. 6 (II) 1 4 x 10 (I) (rel.) no H 2 kilk n — 5 y-r. chem. 83% H abstr. 73-0053 For other ratios see: 2.12 8 2.239 formate ion 7.6 3.9 x 10 (rel.) ^ferri = 5.5 x X-r. chem. c.k. 62-0017, -» 10~2 H + HC0 2 H 2 + 62-0024 8 4.5 x 10 (rel.) k/k = C0 2 7 uni 6.4 X X-r. chem. c.k. 62-0022, 10~2 62-0024 8 - 11- 1.7 x 10 (rel.) k/k oh = II X-r. chem. c.k. 63-0049 13 5.7- = nitrate 50 y-r. chem. c.k. 66-0147 7.1 8 7 3 x 10 (rel.) klklmi = 0.044 X-r. chem. c.k. 67-0064 8 7- 1.8 x 10 (rel.) k/koH~ = 12 X-r. chem. c.k. 67-0064 13.5 8 7 1.3 x 10 (rel.) ^/^B*OH ~ 0.13 e-r. esr decay of spin 72-0039 polarization, compared with EtOH.

For other ratios see: 2.10a, 2.52, 2.54, 2.69, 2.70, 2.72, 2.8 5, 2.86, 2.87, 2.90, 2.93c, 2.114, 2.208, 2.240. 7 2.240 d-formate ion — 2.3 x 10 (rel.) k/knQoo ~ 1-51 x y-r. chem. c.k. 63-0041, _1 H + DCOCT —> HD J 10 64-0095 7 (rel.) = C0 2 6 2.3 x 10 kl kyicoo~ 1-53 x y-r. chem. c.k. 64-0141 _1 10 For other ratios see: 2.78, 2.107, 2.110, 2.119-2.121, 2.172, 2.178, 2.210, 2.217, 2.224, 2.231, 2.257, 2.296, 2.334, 2.372-4. 6 2.241 ~ 1 2.1 x 10 (rel.) klk{mi = 3 x X-r. chem. c.k. 62-0022, -4 H + HCOOH H 2 + 10 62-0033 6 10-3 COOH ~ 2 7 x 10 (rel.) klkfmi = ~ X-r. chem. c.k. 62-0033 7 _I ~ 3 7 x 10 (rel.) = ~ 10 X-r. chem. c.k. 62-0033 s 10"5 0.4 3.4 x 10 (rel.) k/k H = 3.4 x p.r. chem. at dose rate 62-0144 19 < 10 eV/gs. s 1 7.4 x 10 klk^H = 7.4 x e-r. esr decay of spin 71-0003, 10~* (obs.) polarization, 72-0039 compared with 2— PrOH(7D); cor. for 40% formate ion.

1 — — y-r. chem. 100% H abstr. 73-0053 For other ratios see: 2.54, 2.86, 2.109, 2.110, 2.124, 2.152, 2.207, 2.224, 2.227, 2.238, 2.242, 2.296, 2.298a, 2.324, 2.356, 2.382, 2.384. s 2.242 d-formic acid 1 1.1 x 10 (rel.) k/kucooH = 015 X-r. chem. c.k. 56-0012 H + DCOOH -> HD + COOH 9 2.243 fumarate ion. — 4 x 10 (rel.) k/kttoH s 150 y-r. chem. c.k.; reactivity 66-0010 hydrogen of the dianion is similar. 8 2.244 fumaric acid 1 9 x 10 (rel.) k/k^on = 0-9 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 9 0.7 7.0 x 10 — p.r. opt. p.b.k. 73-0097

30 * k '

Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH fc(dm mol *s *) Ratio Source Method Comment Ref.

7 10-2 2.245 glucose 1.2 7 x 10 (rel.) klklmi ^ X-r. chem. c.k. 62-0017 7 —; ~ 8 3 x 10 (rel.) k k = 4 x X-r. chem. c.k. H + C 6 H 12 0 6 H 2 l nitrite 62-0017 10" 2 + C 6 H u0 6 7 7 8 x 10 (rel.) kl k fern = 1-2 X X-r. chem. c.k. 62-0024 10"2 8 ~0.4 1 x 10 (rel.) k k 5 x c.k.; ratio at l 0x7 = y-r. chem. 68-0525 3 10~ 6.34 kbar. 7 = 1 4.7 x 10 (rel.) kl bxoh 4.7 x e-r. esr decay of spin 71-0040 2 10' polarization, compared with EtOH. For other ratios see: 2.74, 2.124, 2.153, 2.159. 6 2.246 glutamate ion 7 5.6 x 10 (rel.) ^/^BiOH ~ 5.6 X e-r. esr decay of spin 72-0039 3 10" polarization, compared with EtOH. 6 2.247 L -glutamic acid 1 1 x 10 (rel.) y-r. chem. c.k. assuming 68-0343

k(H + allyl ale.) 9 = 2.8 x 10 . 6 1 1.7 x 10 (rel.) = I -7 x e-r. esr decay of spin 71-0040 3 10“ polarization, compared with EtOH. ~ 2.248 glutathione (red.) 0 k\ 1 kjj 2.8 ± y-r. chem. c.k. 69-0022 H + GuSH 0.4

H 2 + GuS (I) H + GuSH

(II) H 2 S + Gu 10 2.248a glutathione 1.5- 1.0 ± 0 . 2 x 10 — p.r. opt. p.b.k. 72-0380 ( ) (oxid.) 2.5 —* H + (GuS) 2 GuS + GuSH or

(GuS) 2 H (?) 7 = 2.249 glycerol 1.2 3.5 x 10 (rel.) klk leni 5 x X-r. chem. c.k. 62-0017 3 —» 10~ H + C 3 H 8 0 3 7 - 8 2.1 (rel.) = c.k. 62-0017 H 2 + C 3H 7O 3 x 10 */*»krite 3 x X-r. chem. 10"2 7 = 7 5,4 x 10 (rel.) klk lmi 7.7 X X-r. chem. c.k. 62-0024 10~3 7 = 2 4.1 x 10 (rel.) klk t-* 13.2 x p.r. opt. c.k.; p.b.k. at 67-0550, -4 10 313 nm (Ag£) 68-0436 7 (rel.) = -0.4 5.6 x 10 k/k OXJ 2.8 x y-r. chem. c.k. 68-0525 10"3

7 1 3.6 x 10 (rel.) klkftzou = 3.6 x e-r. esr decay of spin 71-0040 2 10“ polarization, compared with EtOH. 7 1 4.1 x 10 (rel.) klk u+ = 1.34 x p.r. opt. c.k.; obs. Ag at 73-1053 10 3 410 nm; contains terf-BuOH; k

increases 0 —> 6.72 kbar. 7 2.250 , positive 2 4.8 x 10 (rel.) k/ku+ = 15.5 x p.r. opt. c.k.; p.b.k. at 67-0550, -4 ion 10 313 nm (Ag^). 68-0436 4 1 8 x 10 (rel.) kl kfaQH = 8 x e-r. esr decay of spin 71-0003 “s 10 polarization, compared with 2-PrOH(7D). (Unexplained discrepancy in the above data).

31 Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

4 2.251 glycine, 7 9 x 10 (rel.) ^/^BiOH = 9 X e-T. esr decay of spin 72-0039 5 zwitterion 10" polarization, compared with EtOH. 7 = 2.252 glycolate ion 7 4.0 x 10 (rel.) k/kBiOH 4.0 x e-T. esr decay of spin 72-0039 2 10“ polarization, compared with EtOH. 7 = 2.253 glycolic acid 1 1.8 x 10 (rel.) ^/^BiOH 1-8 X e-r. esr decay of spin 71-0003 10"2 H + CH 2 OHCOOH polarization.

h 2 + chohcooh compared with (I) 2-PrOH(7D). 7 1 (I) (rel.) = H + CH 2 OHCOOH 1.7 x 10 k\lk u 24 y-r. chem. 96% H abstr. 73-0053 — > no H 2 (II) 6 = 2.254 glycylglycine 1 2.6 x 10 (rel.) k/k BiOH 2.6 X e-r. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. 6 = 2.255 glycylglycyl- 1 5.5 x 10 (rel.) ^/^BxOH 5.5 X e-T. esr decay of spin 71-0040 3 glycine 10" polarization, compared with EtOH.

2.256 glyoxal 1.3 k/k Ca2+ = 0.57 r. chem. c.k. 68-0503 H + CHOCHO -»• 1 — — y-r. chem. 80% H abstr. 73-0053

h 2 +.cocho 7 2.257 glyoxylate ion 7 3.7 x 10 (rel.) k/kjycoQ— = y-r. chem. c.k. 63-0041,

-* 1 64-0095 H + CH0C0 2 1.6 ±

h 2 + coco 2 7 2.258 glyoxylic acid 1 2 x 10 (rel.) — y-r. chem. est. from G(H 71-0925 2 ) H + CHOCOOH -> at different dose rates and concn.; h 2 + cocooh assume k H = 8 x 9 10 . 7 1 2.4 x 10 (rel.) e-T. esr Unpubl. data, 73-0053 P. Neta and R.H. Schuler.

? 1 2.4 x 10 (rel.) — y-r. chem. 100% H abstr. 73-0053 6 = 2.259 guanidine 1 1.3 x 10 (rel.) kl ^BiOH 1-3 x e-r. esr decay of spin 71-0040 -3 10 polarization, compared with EtOH. 8 = 2.260 hexadecyltri- — 1.5 x 10 (rel.) ^2-PrOH(7D) y-r. chem. c.k. 71-0586 methyl 15.2 bromide 7 2.261 hexamethyleneimine 1 1.5 x 10 (rel.) k/k^QH = 1.5 x e-r. esr decay of spin 71-0040 2 10“ polarization, compared with EtOH. = 2.262 hexane 1 1.5 x 10* (rel.) ^/^B*OH 0.15 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 6 2.263 1,6-hexanediamine 1 4.7 x 10 (rel.) k/kfcOH = 4.7 x e-r. esr decay of spin 71-0040 10“3 polarization, compared with EtOH. 7 2.264 hexanoate ion 7 5.3 x 10 (rel.) k/kmoH = 5.3 x e-r. esr decay of spin 72-0039 10~2 polarization, compared with EtOH. l

32 Table 4. Reactions of H with organic solutes — Continued

3 X X Ratio Source Comment Ref. No. Solute and Reaction pH k(dm mol s ) Method

7 71-0003 2.265 hexanoic acid 1 4.6 x 10 (rel.) k/k Bi0h = 4.6 x e— r. esr decay of spin 10~2 polarization, compared with 2-PrOH(7D). 8 2.266 hexanol 1 1.04 x 10 (rel.) */*BrfH = 0.104 e-T. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 8 7 1.0 x 10 (rel.) k/kutOH = 0-1 e-r. esr decay of spin 72-0039 polarization, compared with EtOH.

7 2.267 1-hexylammonium 1,7 3.5 x 10 (rel.) = 3.5 X e-T. esr decay of spin 72-0040, 2 ion 10~ polarization, 72-0039 compared with EtOH. 9 = 71-0040 2.268 hippuric acid 1 1.0 x 10 (rel.) ^/^BiOH 1 e-T. esr decay of spin polarization, compared with EtOH. 7 = 2.269 L -histidine, 1 4.8 x 10 (rel.) kl ^BiOH ^-8 x e-r. esr decay of spin 71-0040 -2 positive ion 10 polarization, compared with H + ImCH 2 CH(NHj)COOH EtOH. ImCH 2 C(NH;f)COOH 7 5.1 x 10 (rel.) = 3.1 x e-T. esr decay of spin 72-0039 + h 2 (I) 3 ^/^BiOH 2 10~ polarization. H + ImCH 2 CH(NH£)COOH —» (II) no H 2 compared with EtOH.

= imadazolyl 1 ~ 1.5 x 10° (I) k !k 0.03 chem. ~ 3 abstr. 73-0053 Im x u = % H (rel.) 8 2.269a histidine, 7 2.5 x 10 (rel.) ^/^BxOH = 0.25 e-T. esr decay of spin 72-0039 zwitterion polarization, compared with EtOH. 9 2.270 p-hydroxybenzoic 1 1.45 x 10 p.r. opt. p.b.k. CD OH as 69-0001 — ; 3 acid OH scavenger 9 + — 1.8 x 10 (rel.) = 900 p.r. opt. c.k.; p.b.k. 69-0001 H HOC 6 H 4 COOH k/kyieon

HOC 6 H 5 COOH 9 2.270a /7-hydroxyphenyl- 9.0 (4.0 ± 1.0) x 10 “ p.r. opt. p.b.k. 73-0003 propionate ion 9 2.0- p.r. at 2.271 p-hydroxyphenyl- 1.6 x 10 (rel.) k/k OXJ = 7.9 x opt. c.k.; p.b.k. 69-0445 2 propionic acid 2.3 10“ 320 and 330 nm

HOC 6 H 4 CH 2 CH 2 COOH + (H adduct). H —* adduct 6 2.272 L-hydroxyproline 1 1.6 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 k(H + allyl ale.) 9 = 2.8 x 10 . 6 = 1 6.0 x 10 (rel.) ^/^BK)H 6.0 X e-r. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. 7 2.273 imidazole 1 6.2 x 10 (rel.) klk^on = 6.2 x e-r. esr decay of spin 71-0040, 2 10" polarization, 72-0025 compared with EtOH. s = 2.274 iminodiacetic acid 1 4.0 x 10 (rel.) ^/^BiOH 4.0 X e-r. esr decay of spin 71-0040 10^ polarization, compared with EtOH. 9 ~ 2.274a indole 1 4.4 x 10 (rel.) ^/^2-P»OH 36 y-r. chem. c.k. 72-0541

33 Table 4. Reactions of H with organic solutes — Continued

3 -1 -1 No. Solute and Reaction pH k(dm mol s ) Ratio Source Method Comment Ref.

9 = 2.274b indole-3-acetic 1 6.6 x 10 (rel.) ^/^2-PiOH 84 y-r. chem. c.k. 72-0541 acid 9 = 2.274c indole-3- propionic 1 6.4 x 10 (rel.) ^2-PrOH 81 y-r. chem. c.k. 72-0541 acid 9 2.275 iodomethane 1 3* 2 x 10 (rel.) ^BiOH ^ 2 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 8 = 2.276 isobutane 1 1.2 x 10 (rel.) ^/^BtOH 0-12 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 7 = 2.277 isobutyl alcohol 1 6.4 x 10 (rel.) ^/^BiOH 6.4 X e-r. esr decay of spin 71-0003 -* 10~2 H +(CH 3 ) 2 CHCH 2 OH polarization,

h 2 + c 4 h 8 oh compared with 2-PrOH(7D). 7 = 1 5 x 10 (rel.) k/kBxOH 5 X y-r. chem. c.k. with 71-0017 10“2 2-PrOH(7D). 10 = 2.278 isobutylene — 1 x 10 (rel.) k/k MeOH 6.3 X — — c.k., no details 67-0041 3 H + C 4 H^ C 4 H 9 10 given. 7 = 2.279 isobutyrate ion — 3.3 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0422 -^ H + (CH 3 ) 2 CHC0 2 3.3 7 5.9 x (rel.) k/k = 6-9 h 2 + c 3 h 6 co 2 7 10 B*OH X e-r. esr decay of spin 72-0039 2 10~ polarization, compared with EtOH. 7 2.280 isobutyric acid 1 2.6 x 10 (rel.) k/k BlOH 2.6 X e-r. esr decay of spin 71-0003 2 10“ polarization, compared with 2-PrOH(7D). 7 2.281 isobutyronitrile 1 2.2 x 10 (rel.) k/k bioh 2.2 x e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 6 2.282 isoleucine 1 6.1 x 10 (rel.) y-r. chem. c.k. assuming 68-0343 k( H + allyl ale.) 9 2.8 x 10 . 6 = 1 8 x 10 (rel.) ^/^BiOH 8 X e-r. esr decay of spin 71-0040 3 10~ polarization, compared with EtOH. 7 = 2.283 isoorotic acid 1 9 x 10 (rel.) k/kBioh 9 x e-r. esr decay of spin 71-0040 10“2 polarization, compared with EtOH. 7 = 2.284 isovalerate ion — 2.6 x 10 (rel.) k/k HeCDOHMe y-r. chem. c.k. 66-0422

H + Me 2 CHCH 2 COO~ 2.6 -* H 2 + C 4 H 8 COO~ 7 2.285 lactic acid 1 2.2 x 10 (rel.) k/kmoH = 2-2 x e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 7 2.286 L-leucine 1 1.7 x 10 (rel.) klkmoH ~ 1-7 x e-r. esr decay of spin 71-0040 10~2 polarization, compared with EtOH.

34 >

Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

s 2.287 L -lysine 1 9.9 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 k(H + allyl ale.) 9 = 2.8 x 10 6 = 1 1.6 x 10 (rel.) k/k BiOH 1-6 x e—x. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. = 2.288 maleic acid 1 6 x 10® (rel.) ^/^BxOH 0.6 e-x. esr decay of spin 71-0040 polarization, compared with EtOH. 9 0.7 8.0 x 10 — p.r. opt. p.b.k. 73-0097 7 2.289 malic acid 1 2.2 x 10 (rel.) = 2.2 X e-r. esr decay of spin 71-0040 -2 10 polarization, compared with EtOH. s = 2.290 1 4.2 x 10 (rel.) kl ^BiOH 4.2 x e-x. esr decay of spin 71-0003 -^ 1 H + CH 2 (COOH) 2 lO^ polarization,

H 2 + CH(COOH) 2 compared with (I) 2-PrOH(7D). s -> 1 (rel.) ~ H + CH 2 (COOH) 2 4.4 x 10 ^/^BrOH 4.4 X y-r. chem. c.k. with 71-0017 (II) 10^ no H 2 2-PrOH(7D). s 1 3.3 x 10 (I) (rel.) kilk u = 3 y-r. chem. 75% H abstr. 73-0053 2.291 1 y-r. chem. 5% H abstr. 73-0053 9 2.292 2-mercaptoethanol 0 1.6 x 10 (I) (rel.) k\!k orj = 0.08 p.r. opt. c.k. 71-0175 10® HSCH 2 CH 2 OH + H 0 .3.2 x (II) (rel.) ki/k u = 5 X-r. chem. product analysis, 71-0175 -» h 2 + sch 2 ch 2 oh G(H 2 S). 9 (I) 1 1.6 x 10 (I + II) Tt^' y-r. chem. c.k. assuming 73-0241

HSCH 2 CH 2 OH + H ^ (rel.) &(H + allyl ale.) 9 9 + (rel.) h 2 s CH 2 CH 2 OH 1.3 x 10 (I) kjkn = 5.7 ± = 2.8 x 10 (II) 2.3 x 10® (II) (rel.) 0.6 9 2.292a 2-mercaptopro- 1 2.7 x 10 (I + II) — y-r. chem. c.k. assuming 73-0241 pionic acid (rel.) k(H + allyl ale.) 9 H + CH CH(SH)COOH 9.4 x 10® (I) (rel.) k !k 0.52 ± = 2.8 x 3 x n = 10 9 (I) H 2 1.8 x 10 (II) (rel.) 0.05 -> H + CH 3 CH(SH)COOH

H 2 S (II) 9 2.292b 3-mercaptopro- 1 1.1 x 10 (I + II) — y-r. chem. c.k. assuming 73-0241

pionic acid (rel.) k( H + allyl ale.) 9 10® (I) (rel.) = H + HSCH 2 CH 2 COOH 8.9 x k\/k n = 4.0 ± 2.8 x 10 . 10® H 2 (I) 2.2 x (II) (rel.) 0.4

H + HSCH 2 CH 2 COOH

H 2 S (II) 9 2.293 m'esitylene — ~ 7 x 10 — — — estd. by analogy 69-0503

H + C 6 H 3 (CH 3 ) 3 — with benzene and prod. . 2+ T + C H (CH ) -> — k/k 2+ = ~ 22 — — effect of Cu on 69-0503 6 3 3 3 Cu prod. T exchange rate. s 2.294 methane 1 < 10 (rel.) ^/^B*OH ^ 10 e-x. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 4 1 < 10 y-r. chem. deduced from 73-0053 results with chloromethanes. 2.295 0.72 k\lkn = 6.4 y-r. chem. c.k. 64-0151

H + CH 3 SH

H 2 + CH 3 S (I)

H + CH 3 SH^

H 2 S + CH 3 (II)

35 »

Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

6 = 2.296 methanol (MeOH) 1 1.1 x 10 (rel.) klk HcooH 1-5 X-r. chem. c.k. 56-0012 6 -* ~ 4.7 x (rel.) H + CH 3 OH 7 10 klktmi = 6.7 x X-r. chem. c.k. 62-0024 1 i H 2 + CH 2 OH - 6 1 II ~ 6 1.7 x 10 (rel.) ^ 00 if* y-r. chem. c.k. 63-0041, -21 ± 0.8) X 10 64-0095 6 2 4.4 x 10 (rel.) k/k^ = 1.42 x p.r. opt. c.k.; p.b.k. at 67-0550, -4 10 313 nm (Ag£). 68-0436 6 ~0.4 5.8 x 10 (rel.) k/k ox1 = 2.9 x y-r. chem. c.k.; at 6.34 68-0525 -4 10 kbar k/k OIJ = “3 2.1 x 10 . 6 - >13 1.8 ± 0 . 6 x 10 — y-r. c.k. with . ( ) chem. OH 69-0051 (rel.) 6 1 2.4 x 10 — p.r. esr decay of H 71-0303 signal. 6 = 1 1.6 x 10 (rel.) k/k BxOH 1-6 X e-r. esr decay of spin 71-0003 -3 10 polarization, compared with 2-PrOH(7D). 6 = 1 2.9 x 10 (rel.) k/kBiOH 2.9 x y-r. chem. c.k. with 71-0017 -3 10 2-PrOH(7D). 6 = 7 1.6 x 10 (rel.) ^/^BiOH 1-6 X e-r. esr decay of spin 72-0039 -3 10 polarization, compared with EtOH. For other ratios see: 2.14, 2.54, 2.57, 2.58, 2.71, 2.74, 2.85, 2.89, 2.149, 2.150, 2.152, 2.173, 2.224, 2.229, 2.270, 2.278, 2.298, 2.308, 2.334, 2.340, 2.350, 2.352.

1 = D + CH 3 OH k/kfe 3+ 0.38 X-r. chem. c.k. 58-0006 = HD + CH 2 OH 1 klk Ca2+ 0.04 X-r. chem. c.k. 58-0006 6 2 3.6 x 10 — p.r. esr decay of H 71-0303 signal.

2.297 methanol-d 1.2 k/k Ft 3+ = 0.38 X-r. chem. c.k. 58-0006

-» = D + CH 3 OD HD k/k Co 2 + 3.7 x 10'2 CH 2 OD = k/k Fe 2+ 0.42 5 2.298 methanol-d 6 1 x 10 (rel.) = 5 X y-r. chem. c.k. 64-0141 3 ^ MeOH (MeOH(3D)) 10"2 -> H + CD 3 OH

HD + CD 2 OH For other ratios see: 2.22, 2.25, 2.55, 2.233, 2.236 8 2.298a methionine 1 6.0 x 10 (rel.) Wk HCOOH - y-r. chem. c.k. 68-0343 9 - 2.299 methoxide ion > 13 1.8 x 10 (rel.) — y-r. chem. c.k. with OH . 69-0051 0'-» H + CH 3 0" h 2 + CH 2 4 2.300 7 6 x 10 (rel.) — — — c.k. with CDjOH. 66-0843 3 112 (rel.) k/(2k = y-r. estd. 65-0188 2.301 methylammonium ion 4 7 x 10 H ) chem. — H + CH 3 NH 3 0.05 6 (rel.) ~ X p.r. opt.. c.k. 71-0595 H 2 + CHjNHj 3 2.7 x 10 ^/^PfcOH 1*5 -3 10 7 2.5 1.1 x 10 (rel.) k/k 1-+ = 3.65 x p.r. opt. c.k. 71-0595 -4 10 3-methylbutanoate ion See isovalerate ion 7 = 2.302 2 -methylbutanoic — 3.3 x 10 (rel.) ^/^UeCDOHMe y-r. chem. c.k. 66-0422 acid 3.3 2-methyl-l-propanol See isobutyl alcohol 2-methylpropionate ion See isobutyrate ion 2-methylpropionic acid See isobutyric acid 8 2.303 6 -methyluracil 1 7 x 10 (rel.) ^/^B*OH =0.7 e-r. esr decay of spin 71-0040 polarization, compared with EtOH.

36 Table 4. Reactions of H with organic solutes — Continued

3 7 7 No. Solute and Reaction pH k(dm mol s ) Ratio Source Method Comment Ref.

9 = 2.303a 1-- 1 3.2 x 10 (rel.) ^/^2-PrOH 41 y-r. chem. c.k. 72-0541 acetic acid 9 2.304 1,4-naphtho- 1.0 (6.8 ± 0.4) x 10 — p.r. opt. p.b.k. (H 72-0171 quinone 2-sulfo- adduct); /ert-BuOH nate ion as OH scavenger. 7 = 2.305 neopentyl alcohol 1 2.9 x 10 (rel.) kl ^B*oH 2-9 x e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 8 2.306 nicotinic acid 1 5 x 10 — p.r. opt. p.b.k.; 71-0582 /erf-BuOH as OH scavenger. 6 = 2.307 nitrilotriacetic 1 7.5 x 10 (rel.) kl ^b*oh 7.5 x e-r. esr decay of spin 71-0040 3 acid 10~ polarization, compared with EtOH. 9 = 2.308 nitrobenzene 8-9 2.6 x 10 (rel.) ^/^2-PrOH 33 y-r. chem. c.k. 66-0500 9 + C ^ 1 (5.6 ± 0.6) x 10 — p.r. opt. p.b.k. at 410 67-0458 H 6 H 5 N0 2 + c 6 h 6 no 2 nm; Tl as OH scavenger. 9

1 1.04 x 10 ft- p.r. opt. p.b.k.; 69-0001 f , CDjOH as OH scavenger. 9 — 1.4 x 10 (rel.) k/kMeOH ~ 700 p.r. opt. c.k.; p.b.k. 69-0001 1 — — y-r. chem. no H abstr. 73-0053 8 2.309 p-nitrobenzoic 1 9.8 x 10 — p.r. opt. p.b.k.; CD as 69-0001 3 OH acid (PNBA) OH scavenger. 9 H + PNBA 2 (1.0 ± 0.1) x 10 — p.r. opt. p.b.k. at 400 70-0211 -* 4-N0 2 C 6 H 5 C00H nm; CD 3 OH as OH scavenger. For other ratios see: 2.144, 2.195, 2.196, 2.198 7 2.310 nitroethane — 7.15 x 10 (rel.) — 2.75 ± r. chem. c.k. 67-0180 0.10 9 2.310a an/i-5-nitro-2- 1,7 3 x 10 — p.r. opt. p.b.k. at 500 nm. 73-1018 furaldoxime (H adduct). 7 ' - 2.311 nitromethane 7.1 x 10 (rel.) klk^H 1 2.72 ± r. chem. c.k. 67-0180 0.10 7 = 1 4.4 x 10 (rel.) ^•/^BxOH 4.4 X e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D).

1 — — y-r. chem. no H abstr. 73-0053 7 2.312 1-nitropropane — 7.4 x 10 (rel.) ~ 2.86 ± r. chem. c.k. 67-0180 0.10 6 2.312a norvaline 1 1.7 x 10 (rel.) y-r. chem. c.k. assuming 68-0343

&(H + allyl ale.) 9 = 2.8 x 10 . 9 2.313 orotic acid 1.5 3.3 x 10 p.r. opt. p.b.k. at 345 70-0567 nm (H adduct); tert-BuOH as OH scavenger. 8 = 1 5 x 10 (rel.) ^/^BrOH 0.5 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 7 2.314 (rel.) — e-r. esr Unpubl. data, 73-0053 oxalacetic acid 1 2.1 x 10 P. H + HOOCCOCH 2 COOH Neta and Schuler. ^ h 2 + R.H. s HOOCCOCHCOOH 1 ~ 2 x 10 (I) (rel.) k^ku = 0.01 y-r. chem. ~ 1% H abstr. 73-0053

H + HOOCCOCH 2 COOH

no H 2 (II)

37 Table 4. Reactions of H with organic solutes — Continued

3 ! No. Solute and Reaction pH fc(dm mol s *) Ratio Source Method Comment Ref.

6 2.315 oxalate ion 7 1.6 x 10 (rel.) ^/^EtOH = 6 X y-r. chem. c.k. 69-0646 2 > 10' H + C 2 0 4 — no H 2 4 7 $ 4x 10 (rel.) k/k BlOH $ 4x e-r. esr decay of spin 72-0039 5 10~ polarization, compared with EtOH.

2.316 oxalic acid + 1.3 Jcj + ^n/^ferri y-r. chem. c.k. 69-0646 4 oxalate ion *£ 10' + -» 1.3 + (I)H H 2 C 2 0 4 ^iv/^E«OH y-r. chem. c.k. 69-0646 10~2 h 2 + co 2 + cooh = 4.2 x

(ii)H + hc 2 o;^

h 2 + co 2 + coo

(III)H + H 2 C 2 0 4 ^

H 2 0 + C0 2 + CHO

(IV) H + hc 2 o;—

OH' + C0 2 + CHO s = 2.317 oxalic acid 1 3 x 10 (rel.) k/k BiOH 3 x y-r. chem. c.k. with 71-0017 -4 H + H 2 C 2 Q 4 — 10 2-PrOH(7D);

no H 2 cor. for k(e~ + = q H 2 C 2 0 4 ) 10 2.5 x 10 . s = 1 4.1 x 10 (rel.) k/k BiOH 4.1 x e-r. esr decay of spin 71-0003 -4 10 polarization, compared with 2-PrOH(7D). I — — y-r. chem. no H abstr. 73-0053 9 2.317a penicillamine 1 1.9 x 10 (I + II) — y-r. chem. c.k. assuming 73-0241

(RSH) (rel.) &(H + allyl ale.) 8 = 9 H + RSH H 2 (I) 5.9 x 10 (I) (rel.) kjkn 0.44 ± = 2.8 x 10 . 9 H + RSH H 2 S[II) 1.3 x 10 (II) (rel.) 0.03 7 2.318 pentane 1 7 x 10 (rel.) k/k^jon = 0.07 e-r. esr decay of spin 71-0003 polarization, compared with 2-PrOH(7D). 7 2.319 pentanoate ion — 1.9 x 10 (rel.) ^MeCDOHMe ~ y-r. chem. c.k. 66-0422 1.9 8-9 9 = 2.320 phenol (PhOH) 6.6 x 10 (rel.) kl k 2-prOH 0.84 y-r. chem. c.k. 66-0500 9 + 2.0 (1.8 ± 0.3) x 10 — p.r. opt. p.b.k. at 67-0122 H C 6 H s OH 330

c 6 h 6 oh nm. 9 7 2.1 x 10 — p.r. esr decay of H 71-0303 signal. 9 1 1.4 x 10 (rel.) k/kuMH =1-4 e-r. esr decay of spin 72-0025 polarization, compared with EtOH.

1 — — y-r. chem. ~ 3% H abstr. 73-0053 For other ratios see: 2.144, 2.301. 8 2.321 phenyl acetate 1 8.6 x 10 (rel.) k/k^on = 0.86 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 9 2.322 phenylacetate ion 8-9 1.2 x 10 (rel.) ^/^2-PrOH =15 y-r. chem. c.k. 66-0500 9 2.323 phenylacetic acid 1 1.01 x 10 (II) — p.r. opt. p.b.k.; CDjOH as 69-0001 -» H + C 6 H 5 CH 2 COOH OH scavenger. 10* = of spin 72-0025 h 2 + c 6 h 5 chcooh 1 9.6 x (rel.) k/kfaQH 0.96 e-r. esr decay

(I) polarization, with H + C 6 H 5 CH 2 COOH compared

C 6 H 6 CH 2 COOH (II 1 EtOH. 9 = 1 2.5 x 10 (rel.) ^/^2-PtOH 31 y-r. chem. c.k. 72-0541 7 1 ~ 4 x 10 (rel.) (I) k lk = 0.042 y-r. chem. ~ abstr. 73-0053 t u 4% H

38 - >

Table 4. Reactions of H with organic solutes — Continued

3 ! l No. Solute and Reaction pH /c(dm mol s ) Ratio Source jMethod Comment Ref.

8 = 2.324 dl phenylalanine 1 4.1 x 10 (rel.) k/kHCOOH 346 y-r. chem. c.k. 68-0643 8 = 1 8.0 x 10 (rel.) ^/^B*OH 0.8 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 8 = 2.32b o-phenylenediamine 0 2.8 x 10 (rel.) k/k BiOH 0.28 e-r. esr decay of spin 72-0025 8 1 7.3 x 10 (rel.) ^/^B*OH = 0.73 e-r. esr polarization, 9 2.0 1.0 x 10 (rel.) k/kmoH ~ 1-0 e-r. esr compared with 9 3.1 1.1 x 10 (rel.) klkjhoH =1.1 e-r. esr EtOH; at pHl 9 4.2 1.6 x 10 (rel.) klkvtOH =1-6 e-r. esr second amino group is 50% protonated; at pH2-3 one

amino group is protonated;

k c4c. ioT diamine = 2.1 x 9 10 . 8 = 2.326 m-phenylenediamine 1 3.4 x 10 (rel.) ^/^•BiOH 0.34 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.327 /?-phenylenediamine 1 3.0 x 10 (rel.) k/kfoOH ~ 0-3 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 7 2.328 phenyl-/3-D-gluco- 1 3.5 x 10 — p.r. opt. p.b.k. at 320 71-0055 pyranoside nm. pivalate ion See trimethylacetate ion 9 = 2.329 polyoxyethylene A— 2 x 10 (rel.) ^/^2-PrOH(7D) y— r - chem. c.k.; at concn. 71-0586 -4 1,5-nonylphenol 200 > 10 M, ratio = 47. s 2.330 L -proline 1 5.2 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 k(H + allyl ale.) 9 = 2.8 x 10 s = 1 8 x 10 (rel.) ^/^BiOH 8 X e-r. esr decay of spin 71-0040 10^ polarization, compared with EtOH. 7 = 2.331 1,3-propanediol 7 1.9 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0422 1.9 7 = 2.332 propane 1 2.2 x 10 (rel.) ^/^BiOH 2.2 X e-r. esr decay of spin 71-0003 2 10‘ polarization, compared with 2-PrOH(7D). 7 2.333 1-propanol 2 4 x 10 (rel.) k/ kj^+ = 1.3 x p.r. opt. c.k.; p.b.k. at 67-0550, 3 — 10~ (Ag^). 68-0436 H + CH 3 CH 2 CH 2 OH 313 nm 7 1 (rel.) = y-r. c.k. with 71-0017 h 2 + ch 3 ch 2 choh 2.7 x 10 klkfcon 2-7 x chem. 10~2 2-PrOH(7D). 7 = 1 2.5 x 10 (rel.) k/k bjoh 2.5 x e-r. esr decay of spin 71-0003 2 10' polarization, compared with 2-PrOH(7D). 7 2.334 2-propanol 1.2 8.4 x 10 (rel.) klk(mi = 1.2 x X-r. chem. c.k. 62-0017 2 (2-PrOH) 10 8 (rel.) c.k. 62-0024 (I)H + (CH 3 ) 2 CHOH 7 1.8 x 10 klkfmi = 2.6 x X-r. chem. 10"2 h 2 + 7 ~ (rel.) = y-r. chem. c.k. 63-0041, (CH 3 ) 2 COH 7 5.2 x 10 k/kj)coo~ 2.25 (II) ± 0.2 64-0095 H + CH 3 ) 2 CHOH 7 ~ (rel.) 0.012 y-r. chem. c.k. 63-0041, h 2 + 6 8.7 x 10 klkfmi = 64-0095 ch 2 chohch 3 acid A:,//: n = 110 y-r. chem. 64-0141

39 Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

7 = 2.334 c >nt. — 5.3 x 10 (rel.) ^/^MeOH 26.4 — — c.k.; no details 67-0041 given 8 - = 2 1.1 x 10 (rel .) k/k ^ 3.58 x p.r. opt. c.k.; formn. of 67-0550, 10~3 Ag 2 at 313 nm. 68-0436 8 ~ -0.4 1.7 x 10 (rel.) k/kory 8 ‘ 33 X y-r. chem. c.k. 68-0525 10"3 7 = 1 6.5 x 10 (rel.) ^/^BiOH 6.5 x e-T. esr decay of spin 71-0003 2 10~ polarization. compared with 2-PrOH(7D). 7 1 7.9 x 10 — p.r. esr decay of H 71-0303 signal. 7 = 1 7.8 x 10 ^/^BxOH 7.8 X y-r. chem. c.k. with 71-0017 10"2 2-PrOH(7D).

1 — — y-r. chem. 100% H abstr. 73-0053 For other ratios see: 2.11, 2.15, 2.16, 2.18, 2.48, 2.54, 2.70, 2.70a, 2.74, 2.75, 2.81, 2.85, 2.86, 2.106, 2.112 2.119, 2.124, 2.128, 2.136 2.145, 2.148, 2.150, 2.153, 2.158, 2.159, 2.161, 2.164, 2.165 2.166, 2.167, 2.182, 2.185-2.188, 2.207, 2.222, 2.308, 2.320 2.322, 2.335, 2.336, 2.345, 2.361, 2.385 7 D (CH 1 4.9 x 10 — p.r. esr decay of 71-0303 + 3 ) 2 CHOH H

HD + (CH 3 ) 2 COH signal. 7 = 2.335 2-propanol-2-d 6, 1 x 10 (rel.) k/k2-pioh O-I 3 y-r. chem. detd. G(H 2 ) and 64-0141

H + (CH 3 ) 2 CDOH acid G(HD). 7 + (CH — 1.3 x 10 (rel.) kl = 0.17 — assumed value. 66-0422 HD 3 ) 2 COH ^2-PrOH 7 = — 1.1 x 10 (rel.) ^/^BiOH 1-05 X -y-r. chem. c.k. 71-0017 10"2

For other ratios see: 2.6, 2.20, 2.23, 2.2'1, 2.26, 2.27-2.29, 2.31, 2.35, 2.43,

2.44, 2.49, 2.50, 2.54, 2.76, 2.86, 2.93 , 2.97, 2.99, 2.101, 2.149, 2.174 2.218, 2.231, 2.279, 2.284, 2.302, 2.319, 2.331, 2.337, 2.341, 2.360, 2.378 6 (rel.) - 69-0500 2.336 2-propanol-d 7 0 8 x 10 ^/^2-PrOH 10 y-r. chem. detd. G(H 2 ) and

H + (CD 3 ) 2 CDOH G(HD). 7 (rel.) ~ HD + (CD 3 ) 2 COH 1 1.1 x 10 kl k2-pjOH T34 y-r. chem. c.k. 71-0017 x 10' 1 7 = 1 1.1 x 10 (rel.) ^/^BxOH 1-05 x y-'. chem. c.k. 71-0017 10'2

For other ratios see: 2.221, 2.260, 2.329 7 2.337 propionate ion — 1.3 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0422 -^ 1.3 H + CH 3 CH 2 C0 2 7 1.8 (rel.) = 1-8 x e-r. esr decay of spin 72-0039 h 2 + c 2 h 4 co 2 7 x 10 k/k^oH 2 10" polarization. compared with EtOH. 6 2.338' propionic acid 1 5.9 x 10 (rel.) ^/^B*OH = x y-r. chem. c.k. with 71-0017 10'3 2-PrOH(7D). H + CH 3 CH 2 COOH 6 (I) (rel.) = 0-4 x e-r. esr decay of spin 71-0003 H 2 + C 2 H 4 COOH 1 6.4 x 10 k/k^oH 3 10~ polarization, H + CH 3 CH 2 COOH compared with no H 2 (II) 2-PrOH(7D). 6 1 5.1 x 10 (I) (rel.) ki/k n = 24 y-r. chem. 96% H abstr. 73-0053 7 = 2.339 1 1.06 x 10 (rel.) kl k BiOH 106 x e-r. esr decay of spin 71-0003 2 10" polarization. compared with 2-PrOH(7D). 9 2.340 propylene — 4 x 10 (rel.) = 2000 — — c.k.; no details 67-0041 -» given. H + CH 3 CH=CH 2

c 3 h 7

40 * » »

Table 4, Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

7 = 2.341 propylene glycol — 1.9 x 10 (rel.) kl ^ MeCDOHMe y-r. chem. c.k. 66-0422 -* 1.9 H + HOCH 2 CH 2 CH 2 OH

h 2 + hoch 2 ch 2 choh 8 = 2.342 purine 1 1.2 x 10 (rel.) k/kBiOH 0.12 e—r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 = 2.343 pyrazine 1 3.3 x 10 (rel.) ^/^b*oh Q-33 e—r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 = 2.344 pyridazine 1 2.9 x 10 (rel.) ^/^BrOH 0.29 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 9 = 2.345 pyridine ~ 6 1.0 x 10 (rel.) kl ^2-PtOH 13 ± y-r. chem. c.k. 64-0095

h + c 5 h 5 n-^ 2.5 8 = c 5 h 6 n 7 6.5 x 10 (rel.) ^“/^BxOH 0.65 e—r. esr decay of spin 72-0039 polarization, compared with EtOH. 8 2.346 pyridinium ion 1 2.9 x 10 (rel.) klkleni = 4 - 2 x p.r. opt. c.k. 67-0251 + 10“2 H + C S H S NH ^ + 8 c h 1 1.7 x 10 — p.r. opt. p.b.k.; 71-0582 5 6 nh rert-BuOH as OH scavenger. 8 1 2.2 x 10 (rel.) = 0-22 e-r. esr decay of spin 72-0025 polarization, compared with EtOH. 8 2.347 1 1.0 x 10 (rel.) k/kfoon =0.1 e-r. esr decay of spin 72-0025, polarization, 71-0040 compared with EtOH. 10 2.348 ribonuclease 2.2- 1.5 x 10 — p.r. opt. p.b.k. 71-3087, H + RNase — 6.7 72-1004, H adduct 72-3094 7 = 2.349 D-ribose 1 5.5 x 10 (rel.) kl ^BxOH 3.5 x e—r. esr decay of spin 71-0040 — 10~2 H + C s H 10 O 5 polarization,

(I) H 2 +C s H 9 O s compared with

h + c 5 h 10 o 5 ^ EtOH. 7 (II) 1 4.6 (I) (rel.) abstr. 73-0053 no H 2 x 10 kikn = 5 y-r. chem. 83% H 9 2.350 salicylate ion 2 (2.4 ± 0.4) x 10 — p.r. opt. p.b.k. at 390 nm. 68-0305 9 = H + OHC 6 H 4 COCT 2 1.1 x 10 (rel.) 330 p.r. opt. c.k. 68-0305 9 ~ c.k. OHC 6 H 5 COO" 2 1.7 x 10 (rel.) ^/^•EtOH 66 p.r. opt. 68-0305 s 2.351 sarcosine 1 1.2 x 10 (rel.) = 1-2 X e-r. esr decay of spin 71-0040 -4 10 polarization, compared with EtOH. 8 2.352 selenourea 6.5 6.3 x 10 — p.r. opt.. p.b.k. at 410 nm 70-0240

H + NH 2 CSeNH 2 — (NH 2 C(=NH)Se“) 2 9 H + C(=NH)Se — 1.2 x 10 (rel.) — 47 p.r. opt. c.k. 70-0240 2 NH 2 k/kfjtofi 8 — 8 x 10 (rel.) k/k^eoh = 400 p.r. opt. c.k. 70-0240 6 2.353 DL-serine 1 3.6 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 k(H + allyl ale.) 9 = 2.8 x 10 = 1 1.3 x 10* (rel.) kl ^b*oh 1-3 x e-r. esr decay of spin 71-0040 3 10' polarization, compared with EtOH.

41 > -

Table 4. Reactions of H with organic solutes — Continued

3 ! l No. Solute and Reaction pH k(dm mol s ) Ratio Source Method Comment Ref.

7 = 2.354 succinate ion 7 1.1 x 10 (rel.) k/ ^BiOH 1 • 1 x e-r. esr. decay of spin 72-0039 -2 10 polarization, compared with EtOH. 6 = 2.355 succinic acid 1 2.3 x 10 (rel.) k/kb»oh 2.3 x y-T. chem. c.k. with 71-0017 -+ 10"3 H + (CH 2 COOH) 2 2-PrOH(7D). 6 1 3.5 x 10 (rel.) = h 2 + k/k b«oh 3.5 x e-r. esr decay of spin 71-0003 10"3 HOOCCH 2 CHCOOH polarization, (I) compared with

H + (CH 2 COOH) 2 ^ 2-PrOH(7D). 6 = no H 2 (II) 1 2.7 x 10 (I) (rel.) *„/*, 0.05 y-r. chem. 95% H abstr. 73-0053 7 2.356 sucrose 1.0 2.6 x 10 (rel.) ^/^HCOOH =35 X-r. chem. c.k. 56-0012 H + C —

H 2 + C 12 H 2 iO u 7 = 2.357 tartaric acid 1 1.7 x 10 (rel.) ^/^BiOH 1.7 X e-r. esr decay of spin 71-0003 2 10" polarization, compared with 2-PrOH(7D). 7 = 2.358 tartronic acid 1 2.3 x 10 (rel.) k/k BlOH 2.3 X e-r. esr decay of spin 71-0040 2 10" polarization, compared with EtOH. 2.359 tetrafluoromethane — — — — — — 71-0026 -> H + CF 4 no reaction 7 = 2.360 tetrahydrofuran — 3.4 x 10 (rel.) k/k MeCDOHMe y-r. chem. c.k. 66-0422

H + C 4 H 8 0 3.4 7 1 (rel.) k/k = esr of 71-0003 h 2 + c 4 h 7 o 7.8 x 10 BiOH 7.8 x e—r. decay spin 2 10" polarization, compared with 2-PrOH(7D). 9 2.361 tetraiodofluore- 8.3 1.8 x 10 (rel.) k/k2-PiOH = 23 ± X-r. phot. c.k. 71-0354 scein 4 9 8.4 5.3 x 10 (rel.) = 88 X-r. phot. c.k. 71-0295 8 = 2.362 N,N,N',N'-ietra- 1 2.4 x 10 (rel.) BiOH 0-24 e-r. esr decay of spin 72-0025 methyl-p-phenyl- polarization, lenediamine compared with EtOH. 9 2.363 2,2,6,6-tetra- 1.9 5.3 < 10 (rel.) k/k(mi = 0.76 p.r. opt. c.k.i d.k. at 71-0618 m ethyl-4- piperi- 410 nm (ferri). 9 done N-oxyl (TAN) 6.7 x 10 (rel.) k/kQ = 0.81 p.r. opt. c.k.; p.b.k. at 71-0618 410 nm (benzoquinone-H adduct). 9 2.364 tetranitromethane — (2.6 ± 1.0) x 10 — p.r. opt. p.b.k. 64-0133 8 + ^ 2 5.5 x 10 — p.r. opt. p.b.k. at 366 nm 65-0183 H C(N0 2 ) 4 + (nitroform anion); H + C(N0 2 )j + NOj cor. for k H and ^OH- 8 — 1.4 x 10 (rel.) klk = 11 y-r. chem. c.k.; solvent 67-0222 d dioxane contg. 2.2 M water. 9 = 2.365 thioacetamide 1 6 x 10 (rel.) ^/^BiOH 6 X e-r. esr decay of spin 71-0040 3 10' polarization, compared with EtOH. 9 = 2.366 thiodiglycolic 1 2 x 10 (rel.) k/ k BrOH 2 e-r. esr decay of spin 71-0040 acid polarization, compared with EtOH.

1 y-r. chem. no H abstr. 73-0053

42 »

Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH fc(dm mol *s *) Ratio Source Method Comment Ref.

9 = 2.367 thioglycolic acid 1 4 x 10 (rel.) ^/^BiOH 4 e-i. esr decay of spin 71-0040 polarization, compared with EtOH. 9 2.368 thiomalic acid 1 3 x 10 (rel.) e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 9 2.369 thiophenol 1 4.0 x 10 (rel.) — e-r. esr Unpubl. data. 73-0053

H + C 6 H 5 SH P. Neta and

(I) H 2 +C 6 H 5 S R.H. Schuler. 9 1 (I) (rel.) H + C 6 H s SH 2.8 x 10 kjk u = 2.45 y-r. chem. 71% H abstr. 73-0053

C 6 H 6 SH (II) 9 = 2.370 thiourea 1 6 x 10 (rel.) k/kB*OH 6 x e-r. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. 6 2.371 threonine, 1 7.9 x 10 (rel.) — y-r. chem. c.k. assuming 68-0343 positive ion fc(H + allyl ale.) 9 = 2.8 x 10 . 6 = 1 8 x 10 (rel.) k/k Bxoh 8 x e-r. esr decay of spin 71-0040 3 10" polarization, compared with EtOH. 8 2.372 thymidylic acid 7-8 2.3 x 10 (rel.) klk^QQQ— = 10 y-r. chem. c.k. 68-3038 = 2.373 thymidine 7-8 2.5 x 10® (rel.) kl ^DCOO~ H y-r. chem. c.k. 68-3038 8 1 (rel.) 2.374 thymine 8 x 10 kl kOIJ = 4 x y-r. chem. c.k. 68-0359 -2 10 8 0.7 7 x I0 — p.r. opt. p.b.k. at 400 68-0597 nm. 8 7-8 2.3 x 10 (rel.) ^/^DCOO~ = y-r. chem. c.k. 68-3038 8 ~ 1 5 x 10 (rel.) k/k^xOH 8-5 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 8 0.65 (6.8 ± 0.2) x 10 — p.r. opt. p.b.k. at 400 71-0529 nm. 9 2.375 toluene 3 (2.6 ± 0.5) x 10 — p.r. opt. p.b.k.; methanol 67-0246

H + C 6 H 5 CH 3 — as OH scavenger;

cor. for fc . c 6 h 6 ch 3 MeOH 9

(rel.) 1 2.376 p-tolyl-5-/3-D~ — 2.1 x 10 | p.r. — — 70-1056 thioglucopyranoside 6 = 2.377 trichlorofluoro- 1 1.7 x 10 (rel.) ^•/^BiOH 1-7 * e-r. esr decay of spin 71-0003 3 methane 10" polarization, compared with 2-PrOH(7D). 6 = 2.378 trimethylacetate — 2 x 10 (rel.) ^/^MeCDOHMe y-r. chem. c.k. 66-0422 _1 ion 2 x 10 --> H + (CH 3) 3 CC0 2

H 2 + (CH 3 ) 2 C(CH 2 )COO" 7 2.379 trimethylaceto- 1 1.5 x 10 (rel.) — e-r. esr Unpubl. data. 73-0053 P. Neta and -* Schuler. H + (CH 3 ) 3 CCN R.H. s 1 7.5 x 10 (I) k /k 0.053 y-r. chem. abstr. 73-0053 h 2 + l n = 5% H

(CH 3 ) 2 (CH 2 )CCN (rel.)

(I) -* H + (CH 3 ) 3 CCN

(CH 3 ) 3 CCNH (II)

43 Table 4. Reactions of H with organic solutes — Continued

3 No. Solute and Reaction pH k(dm mol *s *) Ratio Source Method Comment Ref.

8 = 2.380 trimethylanilinium 1 4.5 x 10 (rel.) BiOH 0.45 e-r. esr decay of spin 72-0025 ion polarization, compared with EtOH. 9 2.381 tropylium ion — (7 ± 2) x 10 — p.r. opt. p.b.k. at 315 nm. 71-0710

h + c 7 h;-» + c 7 h 7 + h 3 o 9 = 2.382 L-tryptophan 1 2.25 x 10 (rel.) k/k hcooh 3000 y-r. chem. c.k. 68-0343 9 1 (7.4 ± 1) x 10 p.r. opt. p.b.k. at 325 nm; 69-0459 methanol as OH scavenger; cor. for k(H + MeOH) and &(OH + tryptophan). 8 2.383 DL -tryptophan ~ 6 2 x 10 e.d. opt. d.k. at 278 nm; 64-9012 cor. for product absorp- tion and H + H. 9 1 & 2.3 x 10 (rel.) ^/^BiOH ^ 2.3 e-r. esr decay of spin 71-0040 polarization compared with EtOH. 8 2.384 DL -tyrosine ~ 6 ~ 4 x 10 e.d. opt. d.k. at 274 nm; 64-9012 cor. for product absorption and H + H. 8 = 1 8.2 x 10 (rel.) ^/^HCOOH 1090 y-r. chem. c.k. (l isomer). 68-0343 9 1 1.1 x 10 (rel.) WkBlOH =1-1 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 9 1.0 (9.8 ± 0.4) x 10 — p.r. opt. p.b.k. 71-0143 9 9.0 (2.0 ± 0.5) x 10 — p.r. opt. p.b.k. 73-0003 9 (rel.) = 64-0095 2.385 uracil 6 4.7 x 10 ^2-PiOH 59 ± y-r. chem. c.k. 7 9 2 (5.6 ± 0.6) x 10 p.r. opt. p.b.k. at 420 nm; 69-0571 formaldehyde as OH scavenger; cor. for H +

ch 2 o. 8 2 2.8 x 10 — p.r. esr decay of H 71-0303 signal. 8 = 1 2.8 x 10 (rel.) BlOH 0.28 e-r. esr decay of spin 71-0040 polarization, compared with EtOH. 8 = — 7 2-3 x 10 (rel.) k/k BlOH 0.2 e-r. esr decay of spin 72-0039 0.3 polarization, compared with EtOH. = 7 2.4 x 10* (rel.) ^/^BiOH 2.4 X y-r. chem. c.k. with 72-0049 10' 1 2-PrOH(7D). 4 2.386 urea 1 < 3 x 10 (rel.) k/kBiOH < 3 X e—r. esr decay of spin 71-0003 s 10~ polarization, compared with 2-PrOH(7D). valerate ion See pentanoate ion 1

44 Table 4. Reactions of H with organic solutes — Continued

3 3 Ref. No. Solute and Reaction pH k(dm mol *s ) Ratio Source Method Comment

6 2.387 valine, 1 3.3 x 10 (rel.)' — y-r. chem. c.k. assuming 68-0343 positive ion k(H + allyl ale.) 9 = 2.8 x 10 6 1 9 x 10 (rel.) k/kBlOH = 9 x e-r. esr decay of spin 71-0040 3 10~ polarization, compared with EtOH. 7 = 2.388 valine, 7 1.3 x 10 (rel.) kl ^BxOH 1*3 x e-r. esr decay of spin 72-0039 2 zwitterion 10' polarization, compared with EtOH.

45 Formula index

+ 2.5 Ag , Acetic acid, 2.109 C 2 H 4 0 2 As(III) Arsenic(III) ion, 2.6 Thioglycolic acid, 2.367 C 2 H 4 0 2 S ~ AsF 6 Hexafluoroarsenate(V) ion, 2.7 Glycolic acid, 2.253 C 2 H 4 0 3 AuC1 4 Tetrachloroaurate(III) ion, 2.8 C H 5 Br Bromoethane, 2.160 2 2 B 4 0 7 Tetraborate ion, 2.9 C 2 H 5 BrO 2-Bromoethanol, 2.161 Br Bromide ion, 2.10a Chloroethane, C 2 H 5 C1 2.181 ~ Br0 3 Bromate ion, 2.11 C 2 H 5 C10 2-Chloroethanol, 2.182

Br 2 Bromine, 2.10 C 2 H s NO Acetamide, 2.105 CC1F 3 Chlorotrifluoromethane, 2.189 C 2 H s N0 2 Glycine, 2.250-2.251; Nitroethane, 2.310

CC1 2 F 2 Dichlorodifluoromethane, 2.211 C 2 H 5 NS Thioacetamide, 2.365 CC1 3 F Trichlorofluoromethane, 2.377 ion, C 2 H s O" Ethoxide 2.226 CC1 4 Carbon tetrachloride, 2.177 C 2 H 6 Ethane, 2.223

CD0 2 d-Formate ion, 2.240 C 2 H 6 0 Ethanol, 2.224 CF 4 Tetrafluoromethane, 2.359 C 2 H 6 OS 2 -Mercaptoethanol, 2.292 CHClj Chloroform, 2.183 C 2 H 6 0 2 , 2.231

CHD0 2 d-Formic acid, 2.242 C 2 H 7 NO 2 -Aminoethanol, 2.126

CHD 3 O Methanol-d 3 , 2.298 C 2 H 7 NS Cysteamine, 2.204 CHN , 2.15 C 2H 7 0 4 P Ethyldihydrogen phosphate, 2.233 ~ 2+ CH0 2 Formate ion, 2.239 C 2 H 15 CoF 3 N 5 Trifluoroacetatopentaammine- CHO 3 Bicarbonate ion, 2.14 cobalt(III) ion, 2.38 2 + CH 2 C1 2 Dichloromethane, 2.212 C 2 H 18 CoN 5 0 2 Acetatopentaamminecobalt(III) ion, 2.36 CH 2 0 Formaldehyde, 2.238 2.17 C 2 N 2 , 2 CH 2 0 2 Formic acid, 2.241 C 2 0 4 Oxalate ion, 2.315 CI CH 3 Chloromethane, 2.184 2-Propanol-d 2.336 C 3 HD 7 0 7 , CHjDO Methanol-J, 2.297 C 3 H 2 N 2 Malononitrile, 2.291 CH 3 I Iodomethane, 2.275 acid, C 3 H 3 N0 2 Cyanoacetic 2.192 ~ CH 3 N0 2 Nitromethane, 2.311 ion, C 3 H 4 Br0 2 2-Bromopropionate 2.164; CH 3 0 Methoxide ion, 2.299 3-Bromopropionate ion, 2.165 _ CH 4 Methane, 2.294 2-Chloropropionate ion, C 3 H 4 C10 2 2.185; Urea, CH 4 N 2 0 2.386 3-Chloropropionate ion, 2.186

CH 4 N 2 S Thiourea, 2.370 C 3 H 4 N 2 Imidazole, 2.273 CH 4 N 2 Se Selenourea, 2.352 acid, C 3 H 4 0 4 Malonic 2.290 CH 4 0 Methanol, 2.296 acid, C 3 H 4 O s Tartronic 2.358 CH 4 S Methanethiol, 2.295 acid, C 3 H 5 Br0 2 2 -Bromopropionic 2.166; CH S N 3 Guanidine, 2.259 3-Bromopropionic acid, 2.167 CH + 6 N Methylammonium ion, 2.301 C H C10 2-Chloropropionic acid, 2.187; 2+ 3 5 2 CH 15 CoN 6 Cyanopentaamminecobalt(III) ion, 2.29 3-Chloropropionic acid, 2.188 2+ CH 15 CoN 6 S Thiocyanatopentaamminecobalt(III) ion, 2.30 Propionitrile, 2.339 C 3 H 5 N CN Cyanide ion, 2.16 2.118 C 3 H 5 NO Acrylamide, _ CNS Thiocyanate ion, 2.18 Propionate ion, 2.337 C 3 H 5 0 2 CN 4 0 8 Tetranitromethane, 2.364 Propylene, 2.340 C 3 H 6 Cyclopropane, 2.202; CO , 2.12 Acetone, 2.110; Allyl alcohol, 2.124 C 3 H 6 0 C0 2 , 2.13 acetate, 2.300; Propionic acid, 2.338 C 3 H 6 0 2 Methyl Carbon disulfide, CS 2 2.176 S 2 -Mercaptopropionic acid, 2.292a; - C 3 H 6 0 2 C D 0 Acetate ion-J 2.108 2 3 2 3 , 3 — Mercaptopropionic acid, 2.292b _ C 2 H0 3 Glyoxylate ion, 2.257 acid, 2.285 C 3 H 6 0 3 Lactic C 2 H0 4 Oxalate ion, hydrogen, 2.316 2-Propanol-2-<7, 2.335 C 3 H 7 DO Acetylene, 2.114 C 2 H 2 a- Alanine, 2.122; /3-Alanine, 2.123; _ C 3 H 7 N0 2 Br0 ion, C 2 H 2 2 Bromoacetate 2.158 1 -Nitropropane, 2.312; Sarcosine, 2.351

C 2 H 2 C10 2 Chloroacetate ion, 2.178 Cysteine, 2.205-2.206 C 3 H 7 N0 2 S ~ C 2 H 2 F0 2 Fluoroacetate ion, 2.236 Serine, 2.353 C 3 H 7 N0 3

C 2 H 2 0 2 Glyoxal, 2.256 C 3 H 8 Propane, 2.332 C 2 H 2 0 3 Glyoxylic acid, 2.258 2-Propanol, 2.334 C 3 H 8 0 1 -Propanol, 2.333; C 2 H 2 0 4 Oxalic acid, 2.316-7 1,3-Propanediol, 2.331 C 3 H 8 0 2 C H Br0 Bromoacetic acid, 2 3 2 2.159 Glycerol, 2.249 C 3 H 8 0 3 2_ C 2 H 3 C10 2 Chloroacetic acid, 2.179 Tetracyanocadmate(II) ion, 2.20 C 4 CdN 4 CjH 3 N Acetonitrile, 2.111 Acetylenedicarboxylic acid, 2.115 _ C 4 H 2 0 4 C 2 H 3 0 2 Acetate ion, 2.107 5-Bromouracil, 2.168 C 4 H 3BrN 2 0 2 ~ C 2 H 3 0 3 Glycolate ion, 2.252 5-Chlorouracil, 2.190 C 4 H 3 C1N 2 0 2 C H Ethylene, 2.229 5-Fluorouracil, 2.237 2 4 C 4 H 3 FN 2 0 2 _

C H D 0 Ethanol-d , 2.225 Barbiturate ion, 2.140 2 4 2 2 C 4 H 3 N 2 0 3 _ C H N Aminoacetonitrile, 2.125 ion, hydrogen, 2.243 2 4 2 C 4 H 3 0 4 Fumarate C H 0 Acetaldehyde, 2.104 Pyrazine, 2.343; Pyridazine, 2.344; 2 4 C 4 H 4 N 2

46 i

Pyrimidine, 2.347 C 5 H 10 O 5 Arabinose, 2.133; Ribose, 2.349 C H N 0 Uracil, 2.385 Norvaline, 2.312a; Valine, 2.387-8 4 4 2 2 C 5 H n N0 2 C H N 0 Barbituric acid, 2.141 Penicillamine, 4 4 2 3 C 5 H u N0 2 S Methionine, 2.298a; 2.317a H 0 Fumaric acid, 2.244; Maleic acid, 2.288 C 4 4 4 C 5 H 2 Pentane, 2.318 2 + C H 0 ~ Succinate ion, 2.354 4 4 4 C 5 H 12 N0 2 Betaine, 2.154 Oxalacetic acid, 2.314 C 4H 4 O s C 5 H 12 0 Neopentyl alcohol, 2.305 C H 0 2,3-Dihydroxyfumaric acid, 2.216 + 4 4 6 C 5 H 16 CoN 4 0 3 Carbonatobis(ethylenediamine)- 2.209 C 4 H s N 3 0 Cytosine, cobalt(III) ion, 2.44 C H Butadiene, 2.168a 3_ 4 6 C 6 CoN 6 Hexacyanocobaltate(III) ion, 2.35 2.117 3- C 4H 6 N0 3 N-Acetylglycine, C Co0 Trioxalatocobaltate(III) ion, 2.47 _ 6 12 C H N0 Aspartate ion, 2.138 3 4 6 4 C 6 Cr0 12 Trioxalatochromate(III) ion, 2.51 C Biacetyl, 2.155; Cyclopropane- 3 4H 6 0 2 C 6FeN 6 Hexacyanoferrate(III) ion, 2.63 carboxylic acid, 2.203 3~ C 6Fe0 12 Trioxalatoferrate(III) ion, 2.64 C H 0 Succinic acid, 2.355 4 6 4 C 6 H 4 0 2 Benzoquinone, 2.152 C H 0 S Thiodiglycolic acid, 2.366; 4 6 4 C 6 H 5 BrO p-Bromophenol, 2.163 Thiomalic acid, 2.368 C 6 H s N0 2 Nicotinic acid, 2.306; Nitrobenzene, 2.308 C H 0 S Dithiodiglycolic acid, 2.219 4 6 4 2 C 6 H s 0 3 S~ Benzenesulfonate ion, 2.145 C H O Malic acid, 2.289 4 6 s C 6 H 6 Benzene, 2.144 C H 0 Tartaric acid, 2.357 4 6 6 C 6 H 6 0 Phenol, 2.320 C H N Isobutyronitrile, 2.281 4 7 C 6 H 6 S Thiophenol, 2.369 C H N0 DL-Aspartic acid, 2.139; 4 7 4 C 6 H 7 N Aniline, 2.128 Iminodiacetic acid, 2.274 C 6 H 7 N0 2 N-Ethylmaleimide, 2.234 C H 0 ~ Butyrate ion, 2.174; Isobutyrate ion, 2.279 ~ 4 7 2 C 6 H 7 0 6 Ascorbate ion, 2.135 C H 1-Butene, 2.173; Isobutylene, 2.278 4 8 C 6 H 8 1,3-Cyclohexadiene, 2.195; Glycylglycine, 2.254 C 4H 8 N 2 0 3 DL-Asparagine, 2.137; 1,4-Cyclohexadiene, 2.196 C H 0 Tetrahydrofuran, 2.360 4 8 C 6 H 8 CoN 2 0 8 Dioxalatoethylenediamine- 2.218; C 4 H 8 0 2 Butyric acid, 2.175; Dioxane, cobaltate(III) ion, 2.46 Ethyl acetate, 2.227; Isobutyric acid, 2.280 + C 6 H 8 N Anilinium ion, 2.129 C H N0 2-Aminobutyric acid, 2.125a; 4 9 2 C 6 H 8 N 2 o-Phenylenediamine, 2.325; 2-Amino-2-methylpropionic acid, 2.127 m-Phenylenediamine, 2.326; p-Phenylenediamine, 2.327 2.276 C 4H 10 Butane, 2.169; Isobutane, C H 0 Dimethyl fumarate, 2.217a + 6 8 4 C H NO Threonine, positive ion, 2.371 4 10 3 C 6 H 8 0 6 Ascorbic acid, 2.136 C H O 1-Butanol, 2.170; 2-Butanol, 2.171; 4 10 C 6 H 8 0 7 Citric acid, 2.191 ferf-Butanol, 2.172; Ethyl ether, 2.232; C 6 H 9 N0 3 N-Ethylmaleamic acid, 2.233a Isobutyl alcohol, 2.277 C H N Nitrilotriacetic acid, 2.307 + 6 9 3 C H C1 CoN Dichlorobis(ethylenediamine)- 4 16 2 4 C 6 H 9 N 3 0 2 Histidine, 2.269 cobalt(III) ion, 2.43 C H Cyclohexene, 2.198 + 6 10 C H CoF N Difluorobis(ethylenediamine)- 4 16 2 4 C 6 H 10 O 2 1-Cyclopentanecarboxylic acid, 2.201 cobalt(III) ion, 2.42 C H O Ethyl acetoacetate, 2.228 + 6 10 3 C H CoN 0 Fumarylpentaamminecobalt(III) ion, 2.32 _ 4 18 s 4 C 6 H u 0 2 Hexanoate ion, 2.264 C H CoN O 3+ Diaquobis(ethylenediamine)- 4 20 4 2 C 6 H n N 3 0 4 Glycylglycylglycine, 2.255 cobalt(III) ion, 2.41 C H Cyclohexane, 2.197 2_ 6 12 C N Pt Tetracyanoplatinate(II) ion, 2.93 4 4 C 6 H 12 N 2 0 4 S 2 Cystine, 2.207 C H BrN 0 5-Bromoorotic acid, 2.162 5 3 2 4 C 6 H 12 0 2 Hexanoic acid, 2.265 C H N 0 Orotic acid, 2.313; Isoorotic acid, 2.283; 5 4 2 4 C 6 H 12 0 6 Glucose, 2.245 ant/-5-Nitro-2-furald oxime, 2.310a C 6 H 13 N Hexamethyleneimine, 2.261 C H N Purine, 2.342 S 4 4 C 6 H 13 N0 2 Isoleucine, 2.282; Leucine, 2.286

C 5 H 5 N Pyridine, 2.345 C 6 H 14 Hexane, 2.262 Adenine, 2.119 C 5 H s N 5 C H N 0 Lysine, 2.287 + 6 m 2 2 C 5 H 6 N Pyridinium ion, 2.346 C 6 H 14 N 4 0 2 L-Arginine, 2.134 C H N 0 Thymine, 2.374 5 6 2 2 C 6 H 14 0 1-Hexanol, 2.266 + C 5 H N S 6-Methyluracil, 2.303 6 2 2 C 6 H 16 CoN 4 0 4 Oxalatobis(ethylenediamine)- C s H 8 N0 3 N-Acetylalanine, 2.116 cobalt(III) ion, 2.45 _ + C sH 8 N0 4 Glutamate ion, 2.246 ion, 2.267 C 6 Hi6 N 1-Hexylammonium

C 5 H 8 N 2 0 2 5,6-Dihydrothymine, 2.217 2.263 C 6 Hi6 N 2 1,6-Hexanediamine, 3+ C H 0 Acetylacetone, 2.113; ion, 2.40 5 8 2 C 6 H 24 CoN 6 Tris(ethylenediamine)cobalt(III) Cyclobutanecarboxylic acid, 2.193 acid, C 7 H 5 C10 2 p-Chlorobenzoic 2.180 C H N Trimethylacetonitrile, 2.379 5 9 C 7 H 5 N Benzonitrile, 2.150 C H N0 Proline, 2.330 5 9 2 C 7 H 5 N0 4 p-Nitrobenzoic acid, 2.309 _ C H N0 Hydroxyproline, 2.272 s 9 3 C 7 H s 0 2 Benzoate ion, 2.148 _ _ C H 0 Isovalerate ion, 2.284; Pentanoate ion, 2.319; Salicylate ion, s 9 2 C 7 H s 0 3 2.350 Trimethylacetate ion, 2.378 C 7 H 6 0 Benzaldehyde, 2.142 C H Cyclopentane, 2.200 acid, S 10 C 7 H 6 0 2 Benzoic 2.149 + C H NO Glutamic acid, positive ion, 2.247 5 10 4 C 7 H 6 0 3 p— Hydroxybenzoic acid, 2.270 + C H O 2-Methylbutanoic acid, 2.302 ion, 5 10 2 C 7 H 7 Tropylium 2.381 C H O Deoxyribose, 2.210 5 10 4 C 7 H 7 NO Benzamide, 2.143

47 Cycloheptatriene, Toluene, 2+ C 7 H 8 2.194; 2.375 CoFH 15 N 5 Fluoropentaamminecobalt(III) ion, 2.25 Anisole, Benzyl alcohol, 2.153 C 7 H 8 0 2.130; CoH 9 N 6 0 6 Trinitrotrisamminecobaltflll), 2.34 2+ 2+ ion, 2.39 C 7 H2oCoN 5 0 2 Benzoatopentaamminecobalt(III) CoH 15 IN 5 Iodopentaamminecobalt(III) ion, 2.28

C 8 H 4 N 2 o-Dicyanobenzene, 2.213; CoH 15 N 5 0 4 P Phosphatopentaamminecobalt(III), 2.37 2+ m-Dicyanobenzene, 2.214; /?-Dicyanobenzene, 2.215 CoH 1s N 6 0 2 Nitropentaamminecobalt(III) ion, 2.33 2+ C 8 H 7 N Indole, 2.274a CoH 15 N 8 Azidopentaamminecobalt(III) ion, 2.31 ~ 2+ C 8 H 7 0 2 Phenylacetate ion, 2.322 CoH 16 N 5 0 Hydroxopentaamminecobalt(III) ion, 2.24 3+ C 8 H 8 0 Acetophenone, 2.112 CoH n N 5 0 Aquopentaamminecobalt(III) ion, 2.23 3+ C 8 H 8 0 2 Phenyl acetate, 2.321; CoH 18 N 6 Hexaamminecobalt(lil) ion, 2.22 2 Phenylacetic acid, 2.323 Cr0 4 Chromate(VI) ion, 2.52 2- C 8 H 9 NO Acetanilide, 2.106 Cr 2 0 7 Dichromate(VI) ion, 2.53 2+ c 8 h 10 o 4 c/s-4-Cyclohexene-l,2-dicarboxylic acid, 2.199 Cu Copper(II) ion, 2.54

C,H 6 0 6 1,3,5-Benzenetricarboxylic acid, 2.146 D 2 , 2.68

C,H 9 NOj Hippuric acid, 2.268 D 2 S Deuterium sulfide, 2.93c - C 9 H 9 0 3 p-Hydroxyphenylpropionate ion, 2.270a F~ Fluoride ion, 2.55 2+ C 9 H 10 O 3 p-Hydroxyphenylpropionic acid, 2.271 FFe Fluoroiron(III) ion, 2.60 + C 9 HjjN 0 2 Phenylalanine, 2.324 F 2 Fe Difluoroiron(III) ion, 2.60 F C 9 H n N0 3 Tyrosine, 2.384 3 Sn Trifluorostannate(II) ion, 2.97 2~ C 9 H 12 Mesitylene, 2.293 F 6 Sn Hexafluorostannate(IV) ion, 2.99 + 2+ C 9 H 14 N Trimethylanilinium ion, 2.380 Fe Iron(II) ion, 2.56 3+ C 9 H 16 N0 2 2,2,6,6-Tetramethyl-4-piperidone N-oxyl, 2.363 Fe Iron(III) ion, 2.57 2+ C 10 H 5 O 5 S“ l,4-Naphthoquinone-2-sulfonate ion, 2.304 FeH0 Hydroxoiron(III) ion, 2.58 2+ Ci0 H 8 N 2 2,2'-Bipyridine, 2.156; 4,4'-Bipyridine, 2.157 FeH Hydroiron(III) ion, 2.59

C 10 H 9 NO 2 Indole-3-acetic acid, 2.274b H Hydrogen atom, 2.2 + 2.67 C 10 H 13 N 5 O 4 Adenosine, 2.120 H ,

Ci0 H 14 N 2 O 5 Thymidine, 2.373 HN0 2 Nitrous acid, 2.84

C 10 H 14 N 5 O 7 P Adenosine-5'-phosphate, 2.121 HO Hydroxyl radical, 2.3 - Ci0 H 15 N 2 O 8 P Thymidylic acid, 2.372 HO Hydroxide ion, 2.90 2.362 C 10 H 16 N 2 N,N,Af',Ar-Tetramethyl-p-phenylenediamine, H0 2 Perhydroxyl radical, 2.4 2 acid, Ci0 H 16 N 2 O 8 Ethylenediaminetetraacetic 2.230 H0 3 P Hydrogen phosphite ion, 2.91 2 Ci0 H 16 N 3 O 6 S Glutathione, 2.248 H0 4 P Hydrogen phosphate ion, 2.92 Indole-3-propionic acid, C u H u N0 2 2.274c H 2 0 2 Hydrogen peroxide, 2.69 2.382-3 ChH 12 N 2 0 2 Tryptophan, H 2 0 4 P~ Dihydrogenphosphate ion, 2.91b 3-Benzoylpyridine, C u H 9 NO 2-Benzoylpyridine, 2.152a; H 2 O s S Peroxysulfuric acid, 2.95

2.152b; 4-Benzoylpyridine, 2.152c H 3 N , 2.80 acid, C 12 H 10 O 2 1-Naphthaleneacetic 2.303a H 3 0 4 P Phosphoric acid, 2.91a + C^HjgOg Phenyl-/3-D~glucopyranoside, 2.328 H 4N Ammonium ion, 2.78 + C^HaOjj Sucrose, 2.356 H sN 2 Hydrazinium ion, 2.79 2+ sodium sulfate, 2.221 2.70 C 12 H 2S Na0 4 S Dodecyl Hg , 2+ C^HgO Fluorenone, 2.235 Hg 2 , 2.70a

Benzophenone, 1 Iodide ion, C u H l0 O 2.151 2.72 I C^HjgC^S p-Tolyl-5-/3-D-thioglucopyranoside, 2.376 2 Iodine, 2.71

ion, I ~, C 14 H 8 O s S 9,10-Anthraquinone-2-sulfonate 2.132 2 2.73 I ', Cj4 H 10 Anthracene, 2.131 3 2.74 I0 Iodate ion, C mH 10O 2 Benzil, 2.147 3 2.75 2+ CisHjjCoOj^ Tris(acetylacetonato)cobalt(III) ion, 2.48 Mn Manganese ion, 2.76 ~ C^H^BrN Hexadecyltrimethylammonium bromide, 2.260 Mn0 4 Permanganate ion, 2.77

C»H 8 O s I 4 Tetraiodofluorescein, 2.361 NO , 2.82 3+ _ CjoH J4FeN 6 Tris(2,2'— bipyridyl)iron(III) ion, 2.65 N0 2 Nitrite ion, 2.85 _ CggH^NgRu^ Tris(2,2'-bipyridyl)ruthenium(II) ion, 2.93a N0 3 Nitrate ion, 2.86 3 2~ * Nitrosyldisulfonate ion (Fremy's salt), 2.87 CsoH^NgRu Tris(bipyridyl)ruthenium(III) ion, 2.93b N0 7 S 2 3+ C FeN ris(l N 0 , 2.83 M 6 T , lO-phenanthroline)iron(III) 2 ~ ion, 2.66 N 3 Azide ion, 2.81 2+ Ni Nickel(II) ion, 2.88 C4sH M0 16 Polyoxyethylene(l,5)nonyl phenol, 2.329 2+ Cd Cadmium(II) ion, 2.19 0 2 Oxygen, 2.89 4 2+ *, ion, Ce 2.21 0 2 U Uranyl(VI) 2.102 2 - ion, 2.94 Cl Chloride ion, 2.21a 0 8 S 2 Peroxydisulfate 2+ Pr(III) Praseodymium(III) ion, 2.92a ClCrH ls N s Chloropentaamminechromium(III) ion, 2.49 2+ ClFe Chloroiron(III) ion, 2.61 Sn(II) Tin(II) ion, 2.96 + Cl Sn(IV) Tin(IV) ion, 2.98 2 CrH 8 0 4 Dichlorotetraaquochromium(III) ion, 2.50 + Tellurium(VI) ion, Cl 2 Fe Dichloroiron(III) ion, 2.62 Te(VI) 2.100 2+ + Tl Thallium(I) ion, 2.101 CoBrH ls N 5 Bromopentaamminecobalt(III) ion, 2.27 2+ 2+ Zn Zinc(II) ion, 2.103 CoC 1H 15 N s Chloropentaamminecobalt(III) ion, 2.26

48 Acknowledgements

The assistance of the staff of the Radiation Chemistry Data Center in preparation of these tables is gratefully acknowledged. Our thanks go especially to Mary Early for proofreading and indexing and to Joyce Ross for typing of the manuscript. We are grateful to those persons who have provided unpublished data for inclusion in these tables.

49 References 55- 0004 Dewhurst, H.A.; Burton, M., Radiolysis of oxidation of bivalent iron, DOKL. PHYS. CHEM.

aqueous solutions of hydrazine, J. AMER. PROC. ACAD. SCI. USSR 138(5): 483-5 (1961) 56- CHEM. SOC. 77: 5781-5 (1955). (translated from DOKL. AKAD. NAUK SSSR. 138(5): 0012 Baxendale, J.H.; Smithies, D.H., Die 1155-7 (1961)).

Strahlenchemie in Wasser geloester 62-0012 Chutny, B.; Bednar, J., 57- organischer Verbindungen, Z. PHYSIK. Geschwindigkeitskonstanten fuer die Reaktionen CHEM. (FRANKFURT) 7: 242-64 (1956). von Radikalen mit chloroform, COLLECT. CZECH. 0008 Schwarz, H.A., The radiation chemistry CHEM. COMMUN. 27: 1496 (1962). solutions, of ferrous chloride J. AMER. 62-0017 Rabani, J.; Stein, G., Yield and reactivity CHEM. SOC. 79: 534-6 (1957). of electrons and H atoms in irradiated 57-57-0009 Allen, A.O.; Rothschild, W.G., Studies in aqueous solutions, J. CHEM. PHYS. 37: 1865—73 the radiolysis of ferrous sulphate solutions. (1962). I. Effect of oxygen concentrations in 0.8 N 62-0018 Daniels, M., The radiation chemistry of sulphuric acid, RADIAT. RES. 7: 591-602 (1957). 58- arsenite. Part II. Oxygen— free solution, 0010 Allen, A.O.; Hogan, V.D.; Rothschild, W.G., J. PHYS. CHEM. 66: 1475-7 (1962). in radiolysis solutions. Studies the of ferrous 62-0022 Czapski, G.; Rabani, J.; Stein, G., The II. Effect of acid concentration in solutions reactivity of hydrogen atoms with ethanol containing oxygen, RADIAT. RES. 7: 603—8 and formate in aqueous solution, TRANS. (1957). FARADAY SOC. 58: 2160-7 (1962). 0004 Rothschild, W.G.; Allen, A.O., Studies in the 62-0024 Rabani, J., On the two forms of hydrogen atoms radiolysis of ferrous sulfate solutions. III. in neutral solutions irradiated by X-rays, Air-free solutions at higher pH, RADIAT. RES J. AMER. CHEM. SOC. 84: 868-9 (1962). 8: 101-110 (1958). 62-0033 Rabani, J., On the reactivity of hydrogen 58-0006 Baxendale, J.H.; Hughes, G., The X-irradiation atoms in aqueous solutions, J. PHYS. CHEM. of aqueous methanol solutions. Part II. 66: 361-2 58- (1962). Reaction in D 0, Z. PHYSIK. CHEM. (FRANKFURT) 2 62-0051 Czapski, G.; Allen, A.O., The reducing 14: 323-38 (1958). radicals produced in water radiolysis: 58-0009 Baxendale, J.H.; Hughes, G., The X-irradiation Solutions of oxygen-hydrogen peroxide-hydrogen 59- of aqueous methanol solutions. Part I. ion, J. PHYS. CHEM. 66: 262-6 (1962). Reactions in H 2 0, Z. PHYSIK. CHEM. (FRANKFURT) 62-0057 Dainton, F.S.; Sills, S.A., The rates of some 14: 306-22 (1958). reactions of hydrogen atoms in water at 25°C, 58-0011 Schwarz, H.A.; Hritz, J.M., The radiation PROC. CHEM. SOC.: 223 (1962). chemistry of deaerated ferrous chloride 62-0087 Lifshitz, C.; Stein, G., Isotope effects in solutions, J. AM. CHEM. SOC. 80: 5636-8 (1958). the abstraction of hydrogen from ethanol by 0047 Friedman, H.L.; Zeltmann, A.H., Hydrogen hydrogen atoms in irradiated aqueous solutions, conversion and exchange reactions in aqueous J. CHEM. SOC.: 3706-12 (1962). 59- solutions induced by gamma rays, J. CHEM. 62-0096 Boyle, J.W., The decomposition of aqueous PHYS. 28(5): 878-90 (1958). sulfuric acid solutions by cobalt gamma rays, 60- 0006 Kurien, K.C.; Phung, P.V.; Burton, M., II. Yields of solvent decomposition and Radiolysis of aqueous solutions of benzene reducing radicals from Fe(II) solutions in and of phenol, RADIAT. RES. 11: 283-90 (1959). 0.4 to 18 M acid, RADIAT. RES. 17: 450-64 60-59-0007 Boyle, J.W.; Weiner, S.; Hochanadel, C.J., (1962). Kinetics of the radiation-induced reaction of 62-0133 Thomas, J.K.; Hart, E.J., The radiolysis iron(III) with tin(II), J. PHYS. CHEM. 63: of aqueous solutions at high intensities. 61- 892-6 (1959). RADIAT. RES. 17: 408-18 (1962). 59-0008 Czapski, G.; Jortner, J.; Stein, G., The 62-0144 Hart, Boag, Effect of dose-rate oxidation of iodide ions in aqueous solution E.J.; J.W., on the radiolysis of aqueous formic acid, by atomic hydrogen, J. PHYS. CHEM. 63: BRIT. RADIOL. 35(417): 650 (1962). 1769-74 (1959). J. 62-3002 Rabani, Stein, G., The radiation chemistry 0012 Riesz, P.; Hart, E.J., Absolute rate constants J.; of aqueous solutions of cytochrome c, RADIAT. for H atom reactions in aqueous solutions, RES. 17: 327-40 (1962). J. PHYS. CHEM. 63: 858-61 (1959).

0035 Czapski, G.; Jortner, J., Role of ferrous 62-7001 Hochanadel, C.J., Photolysis of dilute hydride in the oxidation of ferrous ion by hydrogen peroxide solution in the presence hydrogen atoms, NATURE (LONDON) 188: of dissolved hydrogen and oxygen. Evidence 50-1 (1960). relating to the nature of the hydroxyl

0099 Rotblat, J.; Sutton, H.C., The effects of high radical and the hydrogen atom produced in dose rates of ionizing radiations on solutions the radiolysis of water, RADIAT. RES. 17: of iron and cerium salts, PROC. ROY. SOC. 286-301 (1962).

(LONDON) SER. A 255: 490-508 (1960). 62-9008 Jortner, J.; Rabani, J., The decomposition of 0025 Hayon, E.; Allen, A.O., Evidence for two kinds chloroacetic acid in aqueous solutions by

of "H atoms" in the radiation chemistry of atomic hydrogen. I. Comparison with radiation

water, J. PHYS. CHEM. 65: 2181-5 (1961). chemical data, J. PHYS. CHEM. 66: 2078-81 61-0099 Firsov, V.G., The retarding effect of the (1962).

uranyl ion in the radiation-chemical 62-9011 Jortner, J.; Rabani, J., The decomposition of

50 chloroacetic acid in aqueous solutions by the action of decimicrosecond electron pulses. atomic hydrogen. II. Reaction mechanism in DOKL. PHYS. CHEM., PROC. ACAD. SCI. USSR

alkaline solutions, J. PHYS. CHEM. 66: 154 (5): 181-4 (1964) (translated from 2081-4 (1962). DOKL. AKAD. NAUK 154(5): 1167-70 (1964)). 63-0004 Shubin, V.N.; Dolin, P.I., The method of a 64-9012 Navon, G.; Stein, G., The reactivity of atomic competitive scavenger in radiation chemistry, hydrogen with cysteine, cystine, tryptophan 19: 345-58 (1963). RADIAT. RES. and tyrosine in aqueous solution, ISRAEL J. 63-0014 Raef, Y.; Swallow, A.J., Action of y-rays on CHEM. 2: 151-4 (1964). solutions of carbon monoxide, aqueous TRANS. 65-0009 Matheson, M.S.; Rabani, J., Pulse radiolysis 59: 1631-40 FARADAY SOC. (1963). of aqueous hydrogen solutions. I. Rate - 63-0041 Appleby, A.; Scholes, G.; Simic, M., constants for reaction of e^, with itself Reactivities species of the primary reducing and other transients. II. The formed in the radiolysis of aqueous solutions, ~ interconvertibility of e tq and H, J. PHYS. J. AMER. CHEM. SOC. 85: 3891-2 (1963). CHEM. 69: 1324-35 (1965). 63-0043 rate for 63- Thomas, J.K., The constants H atom 65-0010 Thomas, J.K., Rates of reaction of the hydroxyl reactions in solutions, aqueous J. PHYS. CHEM. radical, TRANS. FARADAY SOC. 61: 702-7 (1965). 67: 2593-5 (1963). 65-0011 Dainton, F.S.; Walker, D.C., The radiation 63-0047 rate for 64- Schwarz, H.A., Absolute constants chemistry of aqueous solutions of nitrous some hydrogen atom reactions in aqueous oxide, PROC. ROY. SOC. (LONDON) SER. A solution, J. PHYS. CHEM. 67: 2827-30 (1963). 285: 339-59 (1965). 0049 Nehari, S.; Rabani, J., The reaction of H 65-0013 Meissner, G.; Henglein, A., Die Reaktionen - atoms with OH in the radiation chemistry des Schwefelwasserstoffs mit hydratisierten of aqueous solutions, J. PHYS. CHEM. 67: Electronen und freien Wasserstoffatomen. 1609-13 (1963). BER. BUNSENGES. PHYSIK. CHEM. 69: 3-7 (1965). 0043 Gordon, S.; Hart, E.J.; Thomas, J.K., The 65-0014 Navon, G.; Stein, G., Electron transfer ultraviolet spectra of transients produced between atomic hydrogen and cobalt(III) in the radiolysis of aqueous solutions, complexes in aqueous solution, J. PHYS. CHEM. 68: J. PHYS. CHEM. 1262-4 (1964). 69: 1390-4 (1965). 64-0049 Intensity effects, Schwarz, H.A., pulsed-beam 65-0016 Riesz, P., The radiolysis of acetone in effects, and the current status of diffusion air-free aqueous solutions, J. PHYS. CHEM. kinetics, RADIAT. RES. SUPPL. 4: 89-113 (1964). 69: 1366-73 (1965). 64-0092 Fricke, H.; Thomas, J.K., Pulsed electron beam 65-0017 Thomas, J.K., The nature of the reducing kinetics, RADIAT. RES. SUPPL. 4: 35-53 (1964). species in the radiolysis of acidic aqueous 64-0093 Sweet, J.P.; Thomas, J.K., Absolute rate solutions at high intensities, INTERN. J. constants for H atom reactions in aqueous APPL. RADIAT. ISOTOPES 16: 451-6 (1965). solutions, J. PHYS. CHEM. 68: 1363-8 (1964). 65-0044 Baxendale, J.H.; Fielden, E.M.; Keene, J.P., 64-0095 Scholes, G.; Simic, M., Reactivity of the The pulse radiolysis of aqueous solutions of hydrogen atoms produced in the radiolysis of some inorganic compounds, PROC. ROY. SOC. 1738-43 aqueous systems. J. PHYS. CHEM. 68: (LONDON) SER. A 286: 320-36 (1965). (1964). 65-0085 Anbar, M.; Meyerstein, D., Effect of ligands 64-0108 Matheson, M.S., The formation and detection on the rate of reduction of cobalt(III) of intermediates in water radiolysis, RADIAT. complexes by radiolytically produced hydrogen 4: 1-23 RES. SUPPL. (1964). atoms, NATURE (LONDON) 206: 818-9 (1965). 64-0133 Asmus, K.-D.; Henglein, A.; Ebert, M.; 65-0155 Haissinsky, M., Radiolyse y de solutions Keene, J.P., Pulsradiolytische Untersuchung alcalines et neutres. II. Effet du pH sur les schneller Reaktionen von hydratisierten rendements, J. CHIM. PHYS. 62: 1149-54 (1965). Elektronen, freien Radikalen und Ionen mit 65-0183 Rabani, J.; Mulac, W.A.; Matheson, M.S., The Tetranitromethan in waessriger Loesung, pulse radiolysis of aqueous tetranitromethane. BER. BUNSENGES. PHYSIK. CHEM. 68: 657-63 I. Rate constants and the extinction (1964). coefficient of e„,”. II. Oxygenated solutions,

64-0141 Anbar, M.; Meyerstein, D., Isotope effects in J. PHYS. CHEM. 69: 53-70 (1965). the hydrogen abstraction from aliphatic 65-0188 Riesz, P.; Morris, T., The radiolysis of compounds by radiolytically produced hydrogen aqueous methylammonium ion, RADIAT. RES. 26:

atoms in aqueous solutions, J. PHYS. CHEM. 1-11 (1965). 68: 3184-7 (1964). 65-0192 Hayon, E.; Moreau, M., Reactivite des atomes 64-0151 Armstrong, D.A.; Wilkening, V.G., Effects of pH H avec quellques composes organiques et in the y-radiolysis of aqueous solutions of mineraux en solutions aqueuses, J. CHIM. PHYS.

cysteine and methyl mercaptan, CAN. J. CHEM. 62: 391-4 (1965). 42: 2631-5 (1964). 65-0371 Kuan-lin, H.; Bugaenko, L.T., The radiolysis 64-0245 Rama Rao, K.V.S.; Kamala, R.; Jain, S.K., of iron ions in sulphuric acid solutions,

Effect of iodine and methyl iodide on RUSS. J. INORG. CHEM. (ENGLISH TRANSL.) 10: radiolysis of water, Proc. Nucl. Radiat. Chem. 401-5 (1965). Symposium, Bombay, India, Mar. 16-9, 1964, 65-0372 Sawai, T.; Shinozaki, Y.; Meshitsuka, G., p.73-8. Radical yields in the radiolysis of neutral 64- 0293 Pikaev, A.K.; Glazunov, P.Ya., Radiolysis aqueous solutions, ANN. REPT. TOKYO of aqueous ferrous sulphate solutions under METROPOLITAN ISOTOPE RES. CENTER (4):

51 43-50 (1965). 66-0422 Anbar, M.; Meyerstein, D.; Neta, P., 65-Q375 Guetlbauer, F.; Getoff, N., Kinetic studies Reactivities of aliphatic compounds toward in the radiochemical carboxylation of bromine and hydrogen atoms in aqueous solution,

methanol, Z. PHYSIK. CHEM. 47(5-6): 299-305 J. CHEM. SOC. PT. A: 572-5 (1966). (1965). 66-0500 Anbar, M.; Meyerstein, D.; Neta, P., Reactivity 65-0382 Sutton, H.C.; Adams, G.E.; Boag, J.W.; of aromatic compounds towards hydrogen atoms, Michael, B.D., Radical yields and kinetics in NATURE 209: 1348 (1966). the pulse radiolysis of potassium bromide 66-0559 Baxendale, J.H.; Stott, D.A., Unpublished solutions, Pulse Radiolysis, Ebert, M., data quoted in 67-0103.

Keene, J.P., Swallow, A.J., Baxendale, J.H. 66-0616 Sutton, J.; Moreau, M., On the origin of the (eds.). Academic Press, New York, 1965, yield of primary hydrogen atoms in water p.61-81. radiolysis, Proc. of the Second Tihany

65-0384 Keene, J.P.; Raef, Y.; Swallow, A.J., Pulse Symposium on Radiation Chemistry, Dobo, J., radiolysis studies of carboxyl and related Hedvig, P. (eds.). Publishing House of the radicals, Ibid, p.99-106. Hungarian Acad, of Sci., Budapest, 1967, 65-0385 Baxendale, J.H.; Keene, J.P.; Stott, D.A., p.95-103.

Determination of some fast reaction rates 66-0621 Draganic, I., Some competition studies in 65- using the pulsed radiolysis of permanganate gamma irradiated aqueous solutions at solutions, Ibid, p.107-15. various pH, Ibid, p.129-32. 65-7006 Dainton, F.S.; Fowles, P., The photolysis of 66-0810 Rama Rao, K.V.S.; Srinivasan, K.; 66- 66- aqueous systems at 1849 A. I. Solutions Shastri, L.V., Radiolysis of aqueous solutions, containing nitrous oxide, PROC. ROY. SOC. Proc. of the Nuclear and Radiation Chemistry (LONDON) SER. A 287: 295-311 (1965). Symposium, Bombay, Jan. 20-2, 1966, p.109-18. 67- 7019 Halmann, M.; Platzner, I., The photochemistry 66-0842 Brown, D.M., Unpublished data quoted in of phosphorus compounds. Part III. Photolysis 67-0103. of ethyl dihydrogen phosphate in aqueous 66-0843 Anbar, M.; Meyerstein, D.; Neta, P.,

solution, J. CHEM. SOC.: 5380-5 (1965). Unpublished data quoted in 67-0103.

0010 Halpern, J.; Rabani, J., Reactivity of 9002 Chutny, B., Contribution to the oxidation hydrogen atoms toward some cobalt(III) mechanism of ferrous ions by hydroxyl radicals

complexes in aqueous solutions, J. AMER. CHEM. in the presence of organic compounds, COLLECT. SOC. 88: 699-704 (1966). CZECH. CHEM. COMMUN. 31: 358-61 (1966). 66-0114 Sawai, T., Radical yields in the radiolysis of 0008 Farhataziz, Cobalt-60 y radiolysis of solutions neutral aqueous solutions, BULL. CHEM. SOC. of potassium bromide in 0.8 N sulfuric acid,

JAPAN 39(5): 955-60 (1966). J. PHYS. CHEM. 71: 598-602 (1967).

66-0138 Micic, O.; Draganic, I., A study of some 67-0041 Thomas, J.K., Pulse radiolysis of aqueous free-radical reactions in aqueous y radiolysis solutions of methyl iodide and methyl bromide. + by direct measurements of Cu intermediates The reactions of iodine atoms and methyl

during irradiation, J. PHYS. CHEM. 70(7): radicals in water, J. PHYS. CHEM. 71(6): 2212-19 (1966). 1919-25 (1967). ^ 66-0147 Chouraqui, M.; Sutton, J., Origin of primary 67-0050 Anbar, M.; Neta, P., Reactions of hydrogen atom yield in radiolySis of aqueous halogenoaliphatic acids with free radicals in

solutions, TRANS. FARADAY SOC. 62(8): 2111-20 aqueous solution. Part I. Reactions with

(1966). hydrogen atoms, J. CHEM. SOC. PT. A: 834-37 66-0182 Anbar, M.; Meyerstein, D., H/D isotope effects (1967). in the formation of hydrogen from the 67-0064 Burchill, C.E.; Dainton, F.S.; Smithies, D., combination of two radicals in aqueous Radical and molecular product yields in solutions, TRANS. FARADAY SOC. 62(524): x-irradiated alkaline aqueous solutions, TRANS. 2121-31 (1966). FARADAY SOC. 63(4): 932-43 (1967). 66-0286 Haissinsky, M.; Koulkes, A.-M.; Masri, E., 67-0094 Seddon, W.A.; Allen, A.O., Radiation chemistry Radiolyse y de solutions de ferro- et of aqueous solutions of ethanol, J. PHYS. CHEM. ferric-cyanures de potassium. II. Solutions 71: 1914-8 (1967). acides degazees. III. Solutions alcalines, 67-0099 Anbar, M.; Neta, P., Reaction of fluoride ions J. CHIM. PHYS. 63: 1129-34 (1966). with hydrogen atoms in aqueous solution. TRANS. 66-0334 Koulkes-Pujo, A.-M.; Mantaka, A., Effect des FARADAY SOC. 63(529): 141-6 (1967). rayons y de ^Co sur le systeme 67-0103 Anbar, M.; Neta, P., A compilation of specific

Fe^-Fe^-Cu^-O 2 en solution aqueuse. bimolecular rate constants for the reactions Determination des rapports des constantes de of hydrated electrons, hydrogen atoms, and + vitesse pour les intermediaires H, et inorganic and organic H0 2 Cu , hydroxyl radicals with COMPT. REND., SER. C 263(5): 371-4 (1966). compounds in aqueous solution, INT. J. APPL. 66-0345 Navon, G.; Stein, G., The reactivity of some RADIAT. ISOTOP. 18: 493-523 (1967). high— and low-spin iron(III) complexes with 67-0115 Anbar, M.; Hart, E.J., The formation of

atomic hydrogen in aqueous solution, J. PHYS. hydrated electrons by the reaction of

CHEM. 70(11): 3630-40 (1966). hydrogen atoms with fluoride ions. J. PHYS. 66-0401 Anbar, M.; Meyerstein, D., Unpublished data CHEM. 71(13): 4163-5 (1967). quoted in 67-0103. 67-0122 Land, E.J.; Ebert, M., Pulse radiolysis studies 66—0402 Anbar, M.; Neta, P., Unpublished data quoted of aqueous phenol. Water elimination from in 67-0103. dihydroxycyclohexadienyl radicals to form 52 phenoxyl, TRANS. FARADAY SOC. 63: 1181-90 aqueuses du tellure par les rayons y. III. (1967). Solutions acides, J. CHIM. PHYS. 65(7-8): 67-0148 Wilkening, V.G.; Lai, M.; Arends, M.; 1386-92 (1968). Armstrong, D.A., The y-radiolysis of cysteine 68-0359 Loman, H.; Blok, J., On the radiation chemistry of thymine in aqueous solution, RADIAT. RES. in deaerated 1 N HC10 4 solutions. CAN. J. CHEM. 1-13 45: 1209-14 (1967). 36: (1968). 68-0436 Bevan, P.L.T., Radiolysis studies in aqueous 67-0180 Sutton, J.; Tran Dinh Son, Vitesses de reaction de trois nitroparaffines avec les atomes solution, Ph.D., Thesis, Univ. of Manchester, d'hydrogene et les electrons solvates en milieu Sept., 1968, 172p. 68-0444 Baxendale, J.H.; Dixon, R.S.; Stott, D.A., aqueux, J. CHIM. PHYS. 64(4): 688-90 (1967). 3 2+ 67-0222 Baxendale, J.H.; Rodgers, M.A.J., Hydrogen Reactivity of hydrogen atoms with Fe *, FeOH 2+ solutions, yields in the y-radiolysis of 1,4-dioxan and and Cu in aqueous TRANS. FARADAY dioxan + water mixtures, TRANS. FARADAY SOC. SOC. 64(549): 2398-2401 (1968). 63: 2004-11 (1967). 68-0502 Fiti, M.; Sutton, J., Vitesses des reactions l'acetylene les radicalaires 67-0231 Knight, R.J.; Sutton, H.C., Radiolysis of de avec especes l'eau irradiee, aqueous solutions of nitric oxide, TRANS. produites dans Unpublished FARADAY SOC. 63: 2628-39 (1967). data. Draganic, I.; Markovic, V., data. 67-0246 Sauer, M.C.Jr.; Ward, B., The reactions of 68-0503 Unpublished hydrogen atoms with benzene and toluene studied 68-0525 Hentz, R.R.; Farhataziz, Milner, D.J., by pulsed radiolysis: Reaction rate constants y Radiolysis of liquids at high pressures. VI. reactions in 0.8 and transient spectra in the gas phase and Hydrogen-atom aqueous N H 2 S0 4 solutions, J. CHEM. PHYS. 49(5): 2153-7 (1968). aqueous solution, J. PHYS. CHEM. 71(12): 68-0540 Al-Thannon, A. A-M., Kinetics of the gamma 3971-83 (1967). 67-0251 Cercek, B.; Ebert, M., Pulse radiolysis studies radiolytic decomposition of aqueous cysteine of the reaction of H and OH radicals and solutions, Ph.D, Thesis, Univ. of Delaware, hydrated electrons with pyridine, TRANS. Newark, 1968, 147p. FARADAY SOC. 63: 1687-98 (1967). 68-0593 Ogura, H., Radiolysis of hydrogen cyanide in 67-045867- Asmus, K.D.; Cercek, B.; Ebert, M.; an aqueous system. Part II. Effects of Henglein, A.; Wigger, A., Pulse radiolysis of additives and reaction mechanism, BULL. CHEM. nitrobenzene solutions, TRANS. FARADAY SOC. SOC. JAPAN 41(12): 2871-6 (1968). 63(10): 2435-41 (1967). 68-0597 Theard, L.P.; Peterson, F.C., Pulse radiolysis 68- 67 0498 Murgulescu, I.G.; Oncescu, T.; Paun, J.; study of protection of pyrimidine base Mihalcea, I., The radiolysis of the complex components of nucleic acid by aminothiols in oxalates in aqueous solutions. I. Kinetics and aqueous solution, GA-8872, lllp., Sept. 1968. mechanism of the radiolysis of (Gulf General Atomic, San Diego, Calif.) Co-trisoxalato-complex in aqueous solution, 68-0643 Pleticha-Lansky, R., Oscillo-polarographic REV. ROUM. CHIM. 12(5): 573-81 (1967). studies of the effects of y-radiation on 0550 Baxendale, J.H.; Bevan, P.L.T., Absolute rates adenine in aqueous solution, INT. J. RADIAT. of hydrogen atom reactions in aqueous solution. BIOL. 14(4): 331-39 (1968). The Chemistry of Ionization and Excitation, 68-0693 Czapski, G.; Peled, E., On the pH-dependence

Johnson, G.R.A. and Scholes, G. (ed.), Taylor of G redndB< in the radiation chemistry of and Francis Ltd, London, 1967, p.253-7. aqueous solutions, ISRAEL J. CHEM. 6: 0052 Basson, R.A.; duPlessis, T.A., The radiolytic 421-36 (1968). oxidation of ethylene in aqueous solution, 68-3038 Scholes, G.; Simic, M., Radiolysis of aqueous RADIAT. RES. 33: 183-93 (1968). solutions of DNA and related substances: 68-0302 Ghosh-Mazumdar, A.S.; Hart, E.J., A pulse reaction of hydrogen atoms, BIOCHIM. BIOPHYS. radiolysis study of bivalent and zerovalent ACTA 166: 255-8 (1968). gold in aqueous solutions, ADVAN. CHEM. SER. 68-7194 Czapski, G.; Ottolenghi, M., Scavenging 81: 193-209,(1968). kinetics in the photochemistry of some ions in

68-0305 Amphlett, C.B.; Adams, G.E.; Michael, B.D., aqueous solution, ISRAEL J. CHEM. 6(2): Pulse radiolysis studies of deaerated aqueous 75-83 (1968). salicylate solutions, ADVAN. CHEM. SER. 81: 69-0001 Neta, P.; Dorfman, L.M., Pulse radiolysis 231-50 (1968). studies. XIV. Rate constants for the reactions

68-0324 Rabani, J.; Meyerstein, D., Pulse radiolytic of hydrogen atoms with aromatic compounds in

studies of the competition H + H and H + aqueous solution, J. PHYS. CHEM. 73(2): ferricyanide. The absolute rate constants, 413-17 (1969).

J. PHYS. CHEM. 72(5): 1599-1603 (1968). 69-0022 Lai, M.; Armstrong, D.A.; Wieser, M., The 68-0343 Volkert, W.A.; Kuntz, R.R., The reactions of cobalt-60 gamma-radiolysis of reduced hydrogen atoms in aqueous solutions. Some glutathione in deaerated aqueous solutions,

amino acids. J. PHYS. CHEM. 72(10): 3394-3400 RADIAT. RES. 37: 246-52 (1969).

(1968). 69-0051 Moreau, M.; Sutton, J., Influence of pH on 68-0355 Mantaka, A.; Koulkes-Pujo, A-M., Radiolyse du yield of hydrogen atoms in radiolysis of 3+ 2+ 2+ -0 solution melange Fe -Fe 2 -Cu en aqueuse aqueous solutions, TRANS. FARADAY SOC.

et sulfurique, J. CHIM. PHYS. 65(7-8): 65(554): 380-9 (1969). 1291-300 (1968). 69-0083 Pagsberg, P.; Christensen, H.; Rabani, J.;

68-0356 Haissinsky, M., Radiolyse de solutions Nilsson, G.; Fenger, J.; Nielsen, S.O.,

53 Far- ultraviolet spectra of hydrogen and y radiation, J. PHYS. CHEM. 74(12): 2475-9 hydroxyl radicals from pulse radiolysis of (1970). aqueous solutions. Direct measurement of 70-0211 Michael, B.D.; Hart, E.J., The rate constants

the rate of H + H, J. PHYS. CHEM. 73(4): of hydrated electron, hydrogen atom, and 1029-38 (1969). hydroxyl radical reactions with benzene,

69-0275 Faraggi, M.; Desalos, J., Effect of positively I, 3-cyclohexadiene, 1,4-cyclohexadiene, and

charged ions on the "molecular" hydrogen yield cyclohexene, J. PHYS. CHEM. 74(15): 2878-84

in the radiolysis of aqueous solutions, INT. J. (1970). RADIAT. PHYS. CHEM. 1: 335-44 (1969). 70-0213 Neilsen, S.O.; Pagsberg, P.; Hojberg, K.S.; 69-0338 Hentz, R.R.; Johnson, C.G.Jr., y Radiolysis of Christensen, H.C.; Nilsson, G., Direct liquids at high pressures. VII. Oxidation of spectrophotometric determination of the rate iodide ion by hydrogen atoms in aqueous of H + OH in aqueous solution, Internat.

solutions, J. CHEM. PHYS. 51(3): 1236-41 Meeting on Primary Radiation Effects in (1969). Chemistry and Biology, Buenos Aires, Argentina, 69-0434 Jayson, G.G.; Keene, J.P.; Stirling, D.A.; March 9-14, 1970, Abstr. No. A-2. Swallow, A.J., Pulse-radiolysis study of some 70-0240 Badiello, R.; Fielden, E.M., Pulse radiolysis

unstable complexes of iron, TRANS. FARADAY SOC. of selenium-containing radioprotectors: I.

65(561): 2453-64 (1969). Selenourea, INT. J. RADIAT. BIOL. 17(1):

69-0445 Chrysochoos, J., Pulse-radiolysis studies of 1-14 (1970).

p-hydroxyphenylpropionic acid, J. PHYS. CHEM. 70-0468 Sawai, T.; Hamill, W.H., Evidence for very 73(12): 4188-93 (1969). early effects in the radiolysis of water,

69-0459 Armstrong, R.C.; Swallow, A.J., Pulse- and J. PHYS. CHEM. 74(22): 3914-24 (1970). gamma-radiolysis of aqueous solutions of 70-0533 Tsuda, S.; Kikuti, Y., Studies in the

tryptophan, RADIAT. RES. 40(3): 563-79 (1969). radiolysis of ferrous sulfate solutions. I. 69-0500 Vacek, K.; von Sonntag, C., H-D isotope effect Effect of oxygen concentration of 0.8 N

in the reaction of hydrogen radicals with sulfuric acid, DOITAI TO HOSHASEN 4(3): in 206-13 (1970). isopropyl alcohol 6M-H 2 S0 4 in the liquid and in the glassy state, CHEM. COMMUN. 1256-7 70-0534 Tsuda, S.; Kikuti, Y., Studies in the (1969). radiolysis of ferrous sulfate solutions. 2. 69-0503 Adsetts, J.R.; Gold, V., Kinetics of hydrogen Effect of oxygen concentration in 0.05 N

isotope exchange reactions. Part XVI. Aromatic sulfuric acid, DOITAI TO HOSHASEN 4(3): exchange under the influence of /3-radiation on 214-20 (1970).

aqueous solutions of mesitylene, J. CHEM. SOC. 70-0567 Greenstock, C.L., Radiation chemistry of orotic

69- PT. B (9): 1108-14 (1969). acid as studied by pulse radiolysis, TRANS. 69-0571 Greenstock, C.L.; Hunt, J.W.; Ng, M., Pulse FARADAY SOC. 66: 2541-50 (1970).

radiolysis studies of uracil and its 70-0657 Chutny, B.; Swallow, A.J., Aromatic anions and derivatives. Primary species attack, TRANS. free radicals in the pulse radiolysis of 70- FARADAY SOC. 65: 3279-87 (1969). aqueous solutions of benzonitrile, TRANS 69-0598 Belloni, J.; Haissinsky, M., Radiolyse y de FARADAY SOC. 66: 2847-54 (1970).

solutions aqueuses d'hydrazine, INT. J. 70-0859 Hickel, B., Radiolysis of concentrated nitrate RADIAT. PHYS. CHEM. 1: 519-27 (1969). and formate solutions, CEA-R-4046, Aug., 1970,

69—0646 Micic, O.; Draganic, I., Some reactions of 64p. (Saclay, France). hydrated electron in acid medium (pH 0. 6-4.0), 70-1056 Christie Hospital and Holt Radium Inst.,

INT. J. RADIAT. PHYS. CHEM. 1(3): 287-95 Paterson Laboratories Annual Report, 1970, (1969). 188p. (Manchester, England).

0649 Moreau, M.; Schmidt, M.; Sutton, J., The 70-1059 Nichiporov, F.G.; Byakov, V.M., Reactivity of 4* radiolysis of aqueous solutions of Fremy's Ce ions in irradiated aqueous solutions of

salt: Rate constants for the reactions with sulfuric acid, HIGH ENERGY CHEM. 4(6): 496-7

solvated electrons and hydrogen atoms, INT. (1970) (translated from KHIM. VYS. ENERG. 4(6):

J. RADIAT. PHYS. CHEM. 1(4): 433-40 (1969). 546-7 (1970)). 0052 Chambers, K.W.; Collinson, E.; Dainton, F.S., 70-3023 Ogura, H.; Murata, M.; Kondo, M., Radiolysis

Addition of e H- and OH to acrylamide in of ascorbic acid in aqueous solution, aqueous solution and reactions of the adducts, RADIOISOTOPES (TOKYO) 19: 89-91 (1970). TRANS. FARADAY SOC. 66: 142-62 (1970). 70-7235 Getoff, N.; Lehmann, H.P., Reactions of 70-0063 Feng, P.Y.; Brynjolfsson, A.; Halliday, J.W.; methanol and carbon monoxide in water

Jarrett, R.D., High-intensity radiolysis of photolysis at 184.9 nm, INT. J. RADIAT. PHYS. aqueous ferrous sulfate-cupric sulfate-sulfuric CHEM. 2(2): 91-6 (1970).

acid solutions, J. PHYS. CHEM. 74(6): 1221-7 71—0003 Neta, P.; Fessenden, R.W.; Schuler, R.H., An (1970). electron spin resonance study of the rate

70-0094 Rama Rao, K.V.S.; Shastri, L.V.; Shankar, J., constants for reaction of hydrogen atoms with

Radiation chemistry of tris(acetylacetonato) organic compounds in aqueous solution, J. PHYS. cobalt(III) in aqueous solutions, RADIAT. EFF. CHEM. 75(11): 1654-66 (1971). 2(3): 193-200 (1970). 71-0007 Peled, E.; Mirski, U.; Czapski, G., On the 70—0169 Matthews, R.W.; Mahlman, H.A.; Sworski, T.J., contribution of H atoms to G Hl in the

Kinetics of the oxidation of cerium(III) by radiation chemistry of aqueous solutions, J. peroxysulfuric acids induced by cobalt-60 PHYS. CHEM. 75(1): 31-5 (1971).

54 D

71-0017 Neta, P.; Holdren, G.R.; Schuler, R.H., On the 71-0619 Willson, R.L., Pulse radiolysis studies of rate constants for reaction of hydrogen atoms electron transfer in aqueous quinone solutions,

in aqueous solutions, J. PHYS. CHEM. 75(4): TRANS. FARADAY SOC. 67(10): 3020-9 (1971). 449-54 (1971). 71-0710 Schoeneshoefer, M., Pulse radiolysis of the 71-0026 Balkas, T.I.; Fendler, J.H.; Schuler, R.H., tropylium ion, tropylcarbinol and tropilidene The radiation chemistry of aqueous solutions of in aqueous solution, Z. NATURFORSCH. PT. B CI, 26(11): 1120-4 (1971). CFC1 3 , CFjClj, and CF 3 J. PHYS. CHEM. 75(4): 455-66 (1971). 71-0778 Koester, R.; Asmus, K.D.; Die Reduktion von 71-0038 Draganic, I.G.; Draganic, Z.D.; Holroyd, R.A., Tetrachlorkohlenstoff durch hydratisierte Pulse radiolysis of aqueous cyanogen solution, Elektronen, H-Atome und reduzierende Radikale,

J. PHYS. CHEM. 75(5): 608-12 (1971). Z. NATURFORSCH. PT. B 26(11): 1104-8 (1971). 71-0040 Neta, P.; Schuler, R.H., Rate constants for 71-0925 Sehested, K.; Markovic, V., Radiolysis of reaction of hydrogen atoms with compounds of aqueous solutions of some simple compounds

biochemical interest, RADIAT. RES. 47: 612-27 containing aldehyde groups. Part II. (1971). Glyoxylic acid, Proc. of the Third Tihany

71-0055 Phillips, G.O.; Filby, W.G.; Moore, J.S.; Symposium on Radiation Chemistry, Vol. 2,

Davies, J.V., Radiation studies of aryl J. Dobn and P. Hedvig (eds.), Akademiai

glycosides. Part II. Mechanism of radiolysis Kiado, Budapest, Hungary, 1971, p. 1225-67. of phenyl 8-d-glucopyranoside in aqueous 71-0930 Nilsson, K.; Fagsberg, P., The reduction of j solution, CARBOHYDRATE RES. 16(1): 89-103 (1971). ferricytochrome C to ferrocytochrome C

71-0143 Feitelson, J.; Hayon, E., Unpublished data. studied by pulse radiolysis, Ibid. p. 131 1—7. 71-0175 Jayson, G.G.; Stirling, D.A.; Swallow, A.J., 71-3087 Lichtin, N.N.; Ogdan, J.; Stein, G., Fast Pulse- and X-radiolysis of 2-mercaptoethanol consecutive intramolecular processes involving

in aqueous solution, INT. J. RADIAT. BIOL. protein and Fe(III) in ferri-cytochrome-c in

19(2): 143-56 (1971). aqueous solution, ISRAEL J. CHEM. 9(5): 71-0268 Frunze, T.A.; Kabakchi, S.A.; Shubin, V.N.; 71- 579-82 (1971). Dolin, P.I., Radiolysis in a periodic source 71-9218 Shagisultanova, G.A.; Tikhonov, A.S.; field, HICH ENERGY CHEM. 5(1): 73 (1971) Karaban, A. A., Determination of the reaction (translated from KHIM. VYS. ENERG. 5(1): 72- rate constants for hydrogen atoms with some 85 (1971)). complex compounds of Co(III), Fe(III), and 71-0282 Cohen, H.; Meyerstein, D., Oxidation of Cr(III), HIGH ENERGY CHEM. 5(2): 173-4 (1971) benzoatopentaamminecobalt(III) by hydroxyl (translated from KHIM. VYS. ENERG. 5(2): 189-90

radicals, J. AMER. CHEM. SOC. 93(17): (1970)).

4179-83 (1971). 5(2): 173-4 (1971).

71-0295 Chrysochoos, J.; Shihabi, D.S., X-radiolysis 9384 Kongshaug, M.; Steen, H.B., New method for the of aqueous erythrosin, RADIAT. RES. 47: 392-401 study of reactions of H atoms in aqueous (1971). solutions, NATURE PHYS. SCI. 234(45): 37-8 71-0303 Smaller, B.; Avery, E.C.; Remko, J.R., EPR (1971). pulse radiolysis studies of the hydrogen atom 0013 Boyd, A.W.; Willis, C.; Lalor, G.C., Isotope

in aqueous solution. I. Reactivity of the effects and hydrogen yields in the radiolysis rates, hydrogen atom, J. CHEM. PHYS. 55(5): 2414-8 of HjO— 2 0 mixtures at very high dose

(1971). CAN. J. CHEM. 50(1): 83-92 (1972).

71-0354 Chrysochoos, J.; Shihabi, D.S., Reactivity of 72-0025 Neta, P.; Schuler, R.H., Rate constants for hydrogen atoms and hydrated electrons toward reaction of hydrogen atoms with aromatic and

aqueous erythrosin. X-radiolysis, J. PHYS. heterocyclic compounds. The electrophilic

CHEM. 75(19): 3020-2 (1971). nature of hydrogen atoms, J. AMER. CHEM. SOC. 71-0529 Theard, L.M.; Peterson, F.C.; Myers, L.S.Jr., 94(4): 1056-9 (1972). Nanosecond pulse radiolysis studies of aqueous 72-0039 Neta, P.; Schuler, R.H., The effect of ionic

thymine solutions, J. PHYS. CHEM. 75(25): dissociation of organic compounds on their

3815-21 (1971). rate of reaction with hydrogen atoms, J. PHYS. 71-0582 Simic, M.; Ebert, M., Pulse radiolysis of CHEM. 76(19): 2673-9 (1972). aqueous solutions of carboxy, carbamido and 72-0049 Patterson, L.K.; Bansal, K.M., Pulse radiolysis

pyridyl derivatives of pyridine, INT. J. studies of 5-halouracils in aqueous solutions,

RADIAT. PHYS. CHEM. 3: 259-72 (1971). J. PHYS. CHEM. 76(17): 2392-9 (1972). 71-0586 Bansal, K.M.; Patterson, L.K.; Fendler, E.J.; 72-0066 Faraggi, M.; Feder, A., Pulse radiolysis Fendler, J.H., Reactions of hydrated electrons, studies in lanthanide aqueous solutions.

hydrogen atoms and hydroxyl radicals in II. Formation, spectrum, and some chemical

micellar systems, INT. J. RADIAT. PHYS. CHEM. properties of praseodymium (IV) in aqueous

3(3): 321-31 (1971). solution. J. CHEM. PHYS. 56(7): 3294-7 (1972). 71-0595 Getoff, N.; Schwoerer, F., Pulsradiolyse von 72-0144 Hayon, E.; Simic, M., Radiation sensitization

Methylamin in waesseriger Loesung, INT. J. reactions of N-ethylmaleimide with model RADIAT. PHYS. CHEM. 3(3): 429-39 (1971). compounds, RADIAT. RES. 50(3): 464-78 (1972). 71-0618 Willson, R.L., Pulse radiolysis studies on 72-0171 Hayon, E.; Ibata, T.; Lichtin, N.N.; Simic, M., reaction of triacetoneamine-N-oxyl with Electron and hydrogen atom attachment to radiation-induced free radicals, TRANS. aromatic carbonyl compounds in aqueous FARADAY SOC. 67(10): 3008-19 (1971). solution. Absorption spectra and dissociation

55 I. Reaction with H atoms. BIOCHIM. BIOPHYS. constants of ketyl radicals, J. PHYS. CHEM. 263: 14-30 76(15): 2072-8 (1972). ACTA (1972). 73-0003 Feitelson, Hayon, E., Electron ejection and 72-0264 Draganic, Z.D.; Draganic, I.G., Studies on the J.; capture phenolic formation of primary hydrogen yield electron by compounds, J. PHYS. atom (G H ) CHEM. 77(1): 10-5 (1973). in the y radiolysis of water, J. PHYS. CHEM. 73-0030 Bambenek, Ross, A.B., Selected 76(19): 2733-7 (1972). Anbar, M.; M.; 72-0266 Schoeneshoefer, M., Pulsradiolytische specific rates of reactions of transients from Untersuchung zur Oxidation der Ascorbinsaeure water in aqueous solution. I. Hydrated durch OH-Radikale und Halogen-Radikal-Komplexe electron, NSRDS-NBS— 43, 1973, 54p. in waessriger Loesung, Z. NATURFORSCH. PT. B 73-0043 Nazhat, N.B.; Asmus, K.-D., Reduction of hydrated electrons 27(6): 649-59 (1972). mercuric chloride by radicals in aqueous solutions. 72-0289 Christensen, H., Pulse radiolysis of aqueous and reducing solutions of aniline and substituted anilines, Formation and reactions of HgCl, J. PHYS. 77(5): 614-20 (1973). INT. J. RADIAT. PHYS. CHEM. 4(3): 311-33 CHEM. (1972). 73-0053 Witter, R.A.; Neta, P., On mode of reaction with organic compounds in 72-029U Faraggi, M.; Amozig, A., Pulse radiolysis of of hydrogen atoms aqueous solutions, J. ORG. CHEM. 38: 484-7 metallic ions in aqueous solutions. I. Pulse 2+ 2+ (1973). radiolysis in Hg and Hg 2 ions aqueous 73-0097 Hayon, E.; Simic, M., Acid-base properties of solutions, INT. J. RADIAT. PHYS. CHEM. 4(3): 353-8 (1972). radical anions of cis and trans isomers. 72-0359 Nelson, D.A.; Hayon, E., Ketyl radicals of I. Fumarates and maleates, J. AMER. CHEM. SOC.

benzoylpyridines. J. PHYS. CHEM. 76(22): 95(8): 2433-9 (1973). 3200-7 (1972). 73-0121 Robinson, E.A.; Schulte-Frohlinde, D., Pulse 72-0380 Shafferman, A., The free-radical cleavage of radiolysis of 1,4-dicyanobenzene in aqueous the disulfide bond (studied by pulse solutions in the presence and absence of T1(I)

radiolysis), ISRAEL J. CHEM. 10(3): 725-33 ions. J. CHEM. SOC. FARADAY TRANS. I 69(4): (1972). 707-18 (1973). 72-0381 Baxendale, J.H.; Fiti, M., Transient species 73-0241 Tung, T.-L.; Kuntz, R.R., The reactions of in the reactions of some pyridyl complex ions hydrogen atoms in aqueous solutions: Thiols.

with hydrated electrons, J. CHEM. SOC. DALTON RADIAT. RES. 55: 10-7 (1973). TRANS. (18): 1995-8 (1972). 73-1015 Roebke, W.; Schoeneshoefer, M.; Henglein, A., 72-0462 Martin, J.E.; Hart, E.J.; Adamson, A.W.; Die y-Radiolyse und Pulsradiolyse des

Gafney, H.; Halpern, J., Chemiluminescence from Schwefelkohlenstoffs in waessriger Loesung. the reaction of the hydrated electron with Z. NATURFORSCH. PT. B 28(1-2): 12-22 (1973).

tris(bipyridyl)ruthenium(III), J. AM. CHEM. 73-1018 Greenstock, C.L.; Dunlop, I., Pulse SOC. 94(26): 9238-40 (1972). radiolysis studies of nitrofurans. 72-0541 Shetiya, R.S.; Rao, K.N.; Shankar, J., Radiation chemistry of nifuroxime. Determination of rate constants for the CHEM. 77(15): 1834-8 (1973). ~ J. PHYS. reactions of H, OH and e iq with indole-3-acetic acid 73-1049 Grabner, G.; Getoff, N.; Schwoerer, F., and other plant hormones, RADIAT. EFF. 2- und Pulsradiolyse von H 3 P0 4 , H 2 P0 4 , HPO 14(3-4): 185-9 (1972). - P2O7 in waessriger Loesung. I. 72-1002 Nilsson, K., The reduction of ferricytochrome Geschwindigkeitskonstanten der Reaktionen C studied by pulse radiolysis. ISRAEL J. CHEM. mit den Primaerprodukten der Wasserradiolyse, 10(6): 1011-9 (1972). INT. RADIAT. PHYS. CHEM. 5: 393-403 (1973). 72-1004 Lichtin, N., Consecutive radical reactions and J.

the role of protein in the pulse radiolysis of 73-1053 Farhataziz; Mihalcea, I.; Sharp, L.J.;

enzymes. ISRAEL J. CHEM. 10(6): 1041-58 (1972). Hentz, R.R., Pulse radiolysis of liquids at

72-3094 Lichtin, N.; Ogdan, J.; Stein, G., Fast high pressures. IV. Hydrogen-atom reactions in

consecutive radical processes within the aqueous 0.1M HC10 4 solutions, J. CHEM. PHYS. ribonuclease in aqueous solution. 59(5): 2309-15 (1973).

56 FORM NBS-114A d-71) U.S. DEPT. OF COMM. 1. PUBLICATION OR REPORT NO. 2. Gov’t Accession 3. Recipient’s Accession No. No. BIBLIOGRAPHIC DATA 51 SHEET NSRDS-NBS 4. TITLE AND SUBTITLE 5. Publication Date 1975 Selected Specific Rates of Reactions of Transients from Water May in Aqueous Solution. II. Hydrogen Atom. 6. Performing Organization Code

Organization 7. AUTHOR(S) 8. Performing Michael Anbar, Farhat azi z, Alberta B. Ross 10. Project/Task/Work Unit No. 9. PERFORMING ORGANIZATION NAME AND ADDRESS NATIONAL BUREAU OF STANDARDS DEPARTMENT OF COMMERCE 11. Contract/Grant No. WASHINGTON, D.C. 20234

15. 12. Sponsoring Organization Name and Address 13. Type of Report & Period Covered NA 16. Same as No. 9. 14. Sponsoring Agency Code

SUPPLEMENTARY NOTES Library of Congress Catalog Card Number: 73-600329

ABSTRACT (A 200-word or less factual summary of most significant information. If document includes a significant bibliography or literature survey, mention it here.)

Rates of reactions of hydrogen atoms (from radiolysis of water and other sources) with organic and inorganic molecules, ions, and transients in aqueous solution have been tabulated. Directly measured rates obtained by kinetic spectroscopy or conductimetric methods, and relative rates determined by competition kinetics are included.

17.

KEY WORDS (Alphabetical order, separated by semicolons) Aqueous solution; chemical kinetics; data compilation; hydrogen atom; radiation chemistry: rates. 18. AVAILABILITY STATEMENT 19. SECURITY CLASS 21. NO. OF PAGES (THIS REPORT) 56 fXl UNLIMITED. UNCL ASSIFIED

20. SECURITY CLASS 22. Price I I FOR OFFICE AL DISTRIBUTION. DO NOT RELEASE TO NTIS. (THIS PAGE)

UNCLASSIFIED $1.20 USCOMM-DC 66244-P71

*U.S. GOVERNMENT PRINTING OFFICE: 1975-582-653/130

NBS TECHNICAL PUBLICATIONS

PERIODICALS program coordinated by NBS. Program under authority of National Standard Data Act (Public Law 90-396). JOURNAL OF RESEARCH reports National Bureau At present the principal publication outlet for of Standards research and development in physics, NOTE: these data is the Journal of Physical and Chemical mathematics, and chemistry. It is published in two sec- Reference Data (JPCRD) published quarterly for NBS tions, available separately: by the American Chemical Society (ACS) and the Amer- • Physics and Chemistry (Section A) ican Institute of Physics (AIP). Subscriptions, reprints, Papers of interest primarily to scientists working in and supplements available from ACS, 1155 Sixteenth these fields. This section covers a broad range of physi- St. N. W., Wash. D. C. 20056. cal and chemical research, with major emphasis on Building Science Series—Disseminates technical infor- standards of physical measurement, fundamental con- mation developed at the Bureau on building materials, stants, and. properties of matter. Issued six times a components, systems, and whole structures. The series year. Annual subscription: Domestic, $17.00; Foreign, presents research results, test methods, and perform- $21.25. ance criteria related to the structural and environmen- • Mathematical Sciences (Section B) tal functions and the durability and safety character- istics of building elements and systems. Studies and compilations designed mainly for the math- ematician and theoretical physicist. Topics in mathe- Technical Notes—Studies or reports which are complete matical statistics, theory of experiment design, numeri- in themselves but restrictive in their treatment of a cal analysis, theoretical physics and chemistry, logical subject. Analogous to monographs but not so compre- design and programming of computers and computer hensive in scope or definitive in treatment of the sub- systems. Short numerical tables. Issued quarterly. An- ject area. Often serve as a vehicle for final reports of nual subscription: Domestic. $9.00; Foreign, $11.25. work performed at NBS under the sponsorship of other government agencies. DIMENSIONS/NBS (formerly Technical News Bul- letin) —This monthly magazine is published to inform Voluntary Product Standards—Developed under pro- scientists, engineers, businessmen, industry, teachers, cedures published by the Department of Commerce in of the latest advances in students, and consumers Part 10, Title 15, of the Code of Federal Regulations. science and technology, with primary emphasis on the The purpose of the standards is to establish nationally work at NBS. The magazine highlights and reviews such recognized requirements for products, and to provide research, fire protection, building tech- issues as energy all concerned interests with a basis for common under- nology, metric conversion, pollution abatement, health standing of the characteristics of the products. NBS and safety, and consumer product performance. In addi- administers this program as a supplement to the activi- tion, it reports the results of Bureau programs in ties of the private sector standardizing organizations. measurement standards and techniques, properties of matter and materials, engineering standards and serv- Federal Information Processing Standards Publications ices, instrumentation, and automatic data processing. (FIPS PUBS)—Publications in this series collectively constitute the Federal Information Processing Stand- Annual subscription: Domestic, $9.45; Foreign, $11.85. ards Register. Register serves as the official source of information in the Federal Government regarding stand- NONPERIODICALS ards issued by NBS pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 Stat. Monographs—Major contributions to the technical liter- (79 1127), and as implemented ature on various subjects related to the Bureau’s scien- by Executive Order 11717 (38 FR 12315, dated May 11, tific and technical activities. 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations). Handbooks—Recommended codes of engineering and Consumer Information Series Practical information, industrial practice (including safety codes) developed — based on NBS research and experience, covering areas in cooperation with interested industries, professional of interest to the consumer. Easily understandable organizations, and regulatory bodies. language and illustrations provide useful background Special Publications—Include proceedings of confer- knowledge for shopping in today’s technological ences sponsored by NBS, NBS annual reports, and other marketplace. special publications appropriate to this grouping such NBS Interagency Reports (NBSIR)—A special series of as wall charts, pocket cards, and bibliographies. interim or final reports on work performed by NBS for outside sponsors (both government and non-govern- Applied Mathematics Series—Mathematical tables, ment). In general, initial distribution is manuals, and studies of special interest to physicists, handled by the sponsor; engineers, chemists, biologists, mathematicians, com- public distribution is by the National Technical Information Service (Springfield, Va. in paper puter programmers, and others engaged in scientific 22161) and technical work. copy or microfiche form.

National Standard Reference Data Series—Provides Order NBS publications (except NBSIR’s and Biblio- quantitative data on the physical and chemical proper- graphic Subscription Services) from: Superintendent of ties of materials, compiled from the world’s literature Documents, Government Printing Office, Washington, and critically evaluated. Developed under a world-wide D.C. 20402. BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and literature-survey survey issued quarterly. Annual subscription: $20.00. bibliographies are issued periodically by the Bureau: Send subscription orders and remittances for the pre- Cryogenic Data Center Current Awareness Service ceding bibliographic services to National Technical Information Service, Springfield, Va. 22161. A literature survey issued biweekly. Annual sub- scription: Domestic, $20.00; foreign, $25.00. Electromagnetic Metrology Current Awareness Service Issued monthly. Annual subscription: $100.00 (Spe- Liquefied Natural Gas. A literature survey issued quar- terly. Annual cial rates for multi-subscriptions). Send subscription subscription : $20.00. order and remittance to Electromagnetics Division, Superconducting Devices and Materials. A literature National Bureau of Standards, Boulder, Colo. 80302. U.S. DEPARTMENT OF COMMERCE National Bureau of Standards Washington. D.C. 20234