IL-12 and IL-23—Close Relatives with Structural Homologies but Distinct Immunological Functions

Total Page:16

File Type:pdf, Size:1020Kb

IL-12 and IL-23—Close Relatives with Structural Homologies but Distinct Immunological Functions cells Review IL-12 and IL-23—Close Relatives with Structural Homologies but Distinct Immunological Functions Doreen M. Floss *, Jens M. Moll and Jürgen Scheller Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, D-40225 Düsseldorf, Germany; [email protected] (J.M.M.); [email protected] (J.S.) * Correspondence: doreen.fl[email protected]; Tel.: +49-211-811-1642 Received: 10 September 2020; Accepted: 27 September 2020; Published: 28 September 2020 Abstract: Cytokines of the IL-12 family show structural similarities but have distinct functions in the immune system. Prominent members of this cytokine family are the pro-inflammatory cytokines IL-12 and IL-23. These two cytokines share cytokine subunits and receptor chains but have different functions in autoimmune diseases, cancer and infections. Accordingly, structural knowledge about receptor complex formation is essential for the development of new therapeutic strategies preventing and/or inhibiting cytokine:receptor interaction. In addition, intracellular signaling cascades can be targeted to inhibit cytokine-mediated effects. Single nucleotide polymorphisms can lead to alteration in the amino acid sequence and thereby influencing protein functions or protein–protein interactions. To understand the biology of IL-12 and IL-23 and to establish efficient targeting strategies structural knowledge about cytokines and respective receptors is crucial. A highly efficient therapy might be a combination of different drugs targeting extracellular cytokine:receptor assembly and intracellular signaling pathways. Keywords: IL-12 family cytokines; IL-12; IL-23; signaling; autoimmune diseases 1. Introduction Cytokines are important mediators of the immune system. They are involved in pathophysiological processes including autoimmunity and cancer development. In contrast to hormones, cytokines are produced by more than one cell type. Most cytokines act locally in an autocrine or paracrine fashion. Exceptions are cytokines, which enter the bloodstream and signal endocrine, or membrane-bound cytokines, which act juxtacrine. Cytokines are classified according to their function or structure, or based on the receptors they bind. The latter is a reasonable classification because cytokines bind to multimeric receptor complexes in which often one subunit is also found in receptor complexes utilized by other cytokines [1,2]. Accordingly, cytokines and cytokine receptors are subdivided into seven major families [3]. The largest family are class I cytokine receptors and corresponding cytokines. A central feature of class I cytokines is a common up-up-down-down topology of their four antiparallel α helices. Therefore, these cytokines have also been referred to as the α-helical bundle cytokine family [4]. Class I cytokines are further subdivided based on the shared receptor subunit [3]. One group are IL-6 family cytokines, which are defined as cytokines that use the common signaling receptor subunit gp130 and originally comprise eight cytokines—IL-6, IL-11, IL-27, oncostatin M (OSM), leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF), cardiotrophin 1 (CT-1), and cardiotrophin-like cytokine factor 1 (CLCF1) [2]. IL-35, and IL-39 have been recently added to the family because they share gp130 in their receptor complexes [5]. A second group of class I cytokines are IL-12 family cytokines. Members of the IL-12 family form soluble heterodimers consisting of a four-helix-bundle α subunit (IL-23p19, IL-27p28 or IL-12p35) and a β subunit (Epstein–Barr virus-induced gene 3, EBI3 or IL-12p40), which is structurally related to soluble IL-6 receptor alpha (sIL-6Rα)[6]. At the moment, the IL-12 cytokine Cells 2020, 9, 2184; doi:10.3390/cells9102184 www.mdpi.com/journal/cells Cells 2020, 9, 2184 2 of 24 Cells 2020, 9, x 2 of 23 familyIL-6 receptor has five alpha members—IL-12, (sIL-6Rα) [6]. IL-23, At the IL-27, moment, IL-35 the and IL-12 IL-39 cytokine (Table 1family, Figure has1). five IL-27, members—IL-12, IL-35 and IL-39 areIL-23, shared IL-27, with IL-35 the IL-6and family.IL-39 (Table A possible 1, Figure sixth 1). member,IL-27, IL-35 called and IL-Y,IL-39 hasare currentlyshared with only the been IL-6 describedfamily. asA a geneticallypossible sixth engineered member, called heterodimer IL-Y, has IL-27p28 currently/IL-12p40 only been [7, 8described]. as a genetically engineered heterodimer IL-27p28/IL-12p40 [7,8]. Table 1. IL-12 Cytokine Family Members. Table 1. IL-12 Cytokine Family Members. α Subunits α Subunits p19p19 p28 p28 p35 p35 p40p40 IL-23IL-23 [9 [9]] IL-Y IL-Y [7,8] [7, 8]IL-12 [10–14] IL-12 [10 –14] β subunitsβ subunits EBI3EBI3 IL-39IL-39 [15 [15–17]–17] IL-27 IL-27 [18] [18 ]IL-35 [19,20] IL-35 [ 19,20] IL-12 IL-23 IL-27 IL-35 IL-39 p35 p19 p28 p35 p19 p40 p40 EBI3 EBI3 EBI3 IL-12Rβ1 IL-12Rβ1 WSX-1 WSX-1IL-12Rβ2 IL-12Rβ2 gp130 IL-23R IL-12Rβ2 IL-23R gp130 IL-12Rβ2 gp130 IL-12Rβ2 gp130 gp130 FigureFigure 1. 1.Cytokines Cytokines and and cognate cognate receptorsreceptors of the IL-12 family. family. Schematic Schematic overview overview of ofheterodimeric heterodimeric IL-12IL-12 type type cytokines cytokines and and their their cognate cognate receptors. receptors. IL-12, IL-12, composed composed of of IL-12p40 IL-12p40 and and IL-12p35, IL-12p35, binds binds to to the IL-12the receptorIL-12 receptor complex complex comprised comprised of two of receptors, two receptors, IL-12R βIL-12R1 andβ IL-12R1 and βIL-12R2. Theβ2. heterodimeric The heterodimeric cytokine IL-23cytokine is formed IL-23 by is IL-12p40formed by and IL-12p40 IL-23p19, and andIL-23p19, binds and the IL-23binds receptor the IL-23 complex receptor comprised complex comprised of IL-12R β1 andof IL-23R.IL-12Rβ1 EBI3 and andIL-23R. IL-27p28 EBI3 and form IL-27p28 IL-27, whichform IL-27, binds which to WSX-1 binds andto WSX-1 gp130, and the gp130, signal the transducer signal oftransducer IL-6. IL-35 of is IL-6. composed IL-35 is of composed EBI3 and of IL-12p35. EBI3 and FourIL-12p35. different Four IL-35different receptor IL-35 complexesreceptor complexes have been proposed:have been WSX-1 proposed:/IL-12R WSX-1/IL-12Rβ2, IL-12Rβ2β/gp130,2, IL-12R IL-12Rβ2/gp130,β2/IL-12R IL-12Rβ2β and2/IL-12R gp130β2/gp130. and gp130/gp130. The cytokine The IL-39, formedcytokine by IL-39, EBI3 andformed IL-23p19, by EBI3 binds and IL-23p19, to gp130 bi andnds IL-23R.to gp130 Ig-domains and IL-23R. areIg-domains shown as are circles shown and as in thecircles same and color in as the cytokine-binding same color as cytokine-binding homology region homology (CHR). Membrane region (CHR). proximal Membrane fibronectin-type-III proximal domainsfibronectin-type-III are presented domains in light are colors. presented The WSXWS in light colors. motifs The within WSXWS IL-12p40, motifs EBI3 within and IL-12p40, the receptors EBI3are indicatedand the byreceptors thick black are indicated lines and by conserved thick black cysteine lines and residues conserved by thin cysteine black lines.residues by thin black lines. Homodimeric members have also been described for IL-12p40 (p80) [21] and IL-27p28 (IL-30) [22]. Surprisingly,Homodimeric the IL-12 members family have is still also growing been described because for new IL-12p40 combinations (p80) [21] formingand IL-27p28 heterodimeric (IL-30) cytokines[22]. Surprisingly, containing the atIL-12 least family one is αstillor growingβ subunit because have new been combinations identified forming (IL-12p40 heterodimeric/CD5L [23 ], IL-12p35cytokines/CRLF1 containing [24], IL-6 at /leastEBI3 [one25], α IL-27p28 or β subunit/CRLF1 have [22], been IL-27p28 identifi/sIL-6Red (IL-12p40/CD5L [26]). Receptor [23], complexes IL- 12p35/CRLF1 [24], IL-6/EBI3 [25], IL-27p28/CRLF1 [22], IL-27p28/sIL-6R [26]). Receptor complexes of of IL-12 family cytokines are also heterodimeric and consist of IL-12Rβ1, IL-12Rβ2, IL-23R, WSX-1 IL-12 family cytokines are also heterodimeric and consist of IL-12Rβ1, IL-12Rβ2, IL-23R, WSX-1 and and gp130 (Figure1,[ 27]). IL-12 signals via IL-12Rβ1 and IL-12Rβ2, and IL-23 signals via IL-12Rβ1 gp130 (Figure 1, [27]). IL-12 signals via IL-12Rβ1 and IL-12Rβ2, and IL-23 signals via IL-12Rβ1 and and IL-23R, whereas IL-27 and IL-35 shares receptor subunits with the IL-6 family (gp130/WSX1 and IL-23R, whereas IL-27 and IL-35 shares receptor subunits with the IL-6 family (gp130/WSX1 and gp130/IL-12Rβ2, gp130/gp130, IL-12Rβ2/IL-12Rβ2, WSX1/IL-12Rβ2, respectively) [6]. Using engineered gp130/IL-12Rβ2, gp130/gp130, IL-12Rβ2/IL-12Rβ2, WSX1/IL-12Rβ2, respectively) [6]. Using chimericengineered cytokine chimeric receptors cytokine we receptors showed, we that showed additional, that combinations additional combinations of receptors of are receptors possible are [28 ]. Basedpossible on their[28]. sharedBased on use their of gp130 shared IL-6 use and of gp13 IL-120 cytokinesIL-6 and IL-12 are oftencytokines considered are often members considered of the IL-6members/IL-12 familyof the IL-6/IL-12 comprising family both comprising IL-6 and both IL-12 IL family-6 and IL-12 cytokines family [ cytokines29]. Functionally, [29]. Functionally, IL-6/IL-12 cytokinesIL-6/IL-12 are cytokines key regulators are key of regulators the immune of the system. immune They system. have They pleiotropic have pleiotropic functions andfunctions play criticaland rolesplay in critical multiple roles immune in multiple responses, immune and responses, a variety ofand physiological a variety of andphysiological pathological and processes pathological [27].
Recommended publications
  • Stat4 Consensus and Mutant Oligonucleotides
    SANTA CRUZ BIOTECHNOLOGY, INC. Stat4 Consensus and Mutant Oligonucleotides BACKGROUND PRODUCT Electrophoretic mobility shift assays (EMSAs), also known as gel shift assays, Stat4 CONSENSUS OLIGONUCLEOTIDE: sc-2569 provide a relatively straightforward and sensitive method for studying bind- ■ binding site for Stat4 (3) ing interactions between transcription factors and consensus DNA binding elements. For such studies, DNA probes are provided as double-stranded 5’ — GAG CCT GA T TTC CCC GAA AT G ATG AGC TAG — 3’ oligonucleotides designed with 5' OH blunt ends to facilitate labeling to high 3’ — CTC GGA C T A AAG GGG CTT TA C TAC TCG ATC — 5’ specific activity with polynucleotide kinase. These are constructed both with Stat4 MUTANT OLIGONUCLEOTIDE: sc-2570 specific DNA binding consensus sequences for various transcription factors ■ identical to sc-2569 with the exception of a “CCC” “TTT” substitution in and as control or “mutant” probes in which one or more nucleotides mapping → the Stat4 binding motif (3) within the consensus binding site has been substituted. 5’ — GAG CCT GA T TTC TTT GAA AT G ATG AGC TAG — 3’ REFERENCES 3’ — CTC GGA C T A AAG AAA CTT TA C TAC TCG ATC — 5’ 1. Dignam, J.D., et al. 1983. Accurate transcription initiation by RNA poly- merase II in a soluble extract from isolated mammalian nuclei. Nucleic SELECT PRODUCT CITATIONS Acids Res. 11: 1475-1489. 1. Ahn, H.J., et al. 1998. Requirement for distinct Janus kinases and STAT 2. Murre, C., et al. 1991. B cell- and myocyte-specific E2-box-binding factors proteins in T cell proliferation versus IFN-g production following IL-12 contain E12/E47-like subunits.
    [Show full text]
  • Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer
    Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer Juming Yan,1,2 Mark J. Smyth,2,3 and Michele W.L. Teng1,2 1Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia 2School of Medicine, University of Queensland, Herston 4006, Queensland, Australia 3Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia Correspondence: [email protected] The balance of proinflammatory cytokines interleukin (IL)-12 and IL-23 plays a key role in shaping the development of antitumor or protumor immunity. In this review, we discuss the role IL-12 and IL-23 plays in tumor biology from preclinical and clinical data. In particular, we discuss the mechanism by which IL-23 promotes tumor growth and metastases and how the IL-12/IL-23 axis of inflammation can be targeted for cancer therapy. he recognized interleukin (IL)-12 cytokine composition whereby the a-subunit (p19, Tfamily currently consists of IL-12, IL-23, p28, p35) and b-subunit (p40, Ebi3) are differ- IL-27, and IL-35 and these cytokines play im- entially shared to generate IL-12 (p40-p35), IL- portant roles in the development of appropriate 23 (p40-p19), IL-27 (Ebi3-p28), and IL-35 immune responses in various disease conditions (p40-p35) (Fig. 1A). Given their ability to share (Vignali and Kuchroo 2012). They act as a link a- and b-subunits, it has been predicted that between the innate and adaptive immune system combinations such as Ebi3-p19 and p28-p40 through mediating the appropriate differentia- could exist and serve physiological function tion of naı¨ve CD4þ T cells into various T helper (Fig.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Cytokine Nomenclature
    RayBiotech, Inc. The protein array pioneer company Cytokine Nomenclature Cytokine Name Official Full Name Genbank Related Names Symbol 4-1BB TNFRSF Tumor necrosis factor NP_001552 CD137, ILA, 4-1BB ligand receptor 9 receptor superfamily .2. member 9 6Ckine CCL21 6-Cysteine Chemokine NM_002989 Small-inducible cytokine A21, Beta chemokine exodus-2, Secondary lymphoid-tissue chemokine, SLC, SCYA21 ACE ACE Angiotensin-converting NP_000780 CD143, DCP, DCP1 enzyme .1. NP_690043 .1. ACE-2 ACE2 Angiotensin-converting NP_068576 ACE-related carboxypeptidase, enzyme 2 .1 Angiotensin-converting enzyme homolog ACTH ACTH Adrenocorticotropic NP_000930 POMC, Pro-opiomelanocortin, hormone .1. Corticotropin-lipotropin, NPP, NP_001030 Melanotropin gamma, Gamma- 333.1 MSH, Potential peptide, Corticotropin, Melanotropin alpha, Alpha-MSH, Corticotropin-like intermediary peptide, CLIP, Lipotropin beta, Beta-LPH, Lipotropin gamma, Gamma-LPH, Melanotropin beta, Beta-MSH, Beta-endorphin, Met-enkephalin ACTHR ACTHR Adrenocorticotropic NP_000520 Melanocortin receptor 2, MC2-R hormone receptor .1 Activin A INHBA Activin A NM_002192 Activin beta-A chain, Erythroid differentiation protein, EDF, INHBA Activin B INHBB Activin B NM_002193 Inhibin beta B chain, Activin beta-B chain Activin C INHBC Activin C NM005538 Inhibin, beta C Activin RIA ACVR1 Activin receptor type-1 NM_001105 Activin receptor type I, ACTR-I, Serine/threonine-protein kinase receptor R1, SKR1, Activin receptor-like kinase 2, ALK-2, TGF-B superfamily receptor type I, TSR-I, ACVRLK2 Activin RIB ACVR1B
    [Show full text]
  • Mechanism of Homodimeric Cytokine Receptor Activation and Dysregulation by Oncogenic Mutations
    This is a repository copy of Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155270/ Version: Accepted Version Article: Wilmes, Stephan, Hafer, Maximillian, Vuorio, Joni et al. (15 more authors) (2020) Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. pp. 643-652. ISSN 0036-8075 https://doi.org/10.1126/science.aaw3242 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Submitted Manuscript: Confidential Title: Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations Authors: 5 Stephan Wilmes1, 2*, Maximillian Hafer1*, Joni Vuorio3,4, Julie A. Tucker5, Hauke Winkelmann1, Sara Löchte1, Tess A. Stanly5, Katiuska D. Pulgar Prieto5, Chetan Poojari3, Vivek Sharma3,6, Christian P. Richter1, Rainer Kurre1, Stevan R. Hubbard7, K. Christopher Garcia8,9, Ignacio Moraga2, Ilpo Vattulainen3,4,10†, Ian S. Hitchcock5† and Jacob Piehler1† Affiliations: 10 1 Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany.
    [Show full text]
  • Stony Brook University
    SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Regulation of Dimerization and Activation of the Thrombopoietin Receptor A Dissertation Presented by Miki Itaya to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University December 2012 Copyright by Miki Itaya 2012 Stony Brook University The Graduate School Miki Itaya We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Steven O. Smith, Ph.D. - Dissertation Advisor Professor, Department of Biochemistry and Cell Biology Erwin London, Ph.D. - Chairperson of Defense Professor, Department of Biochemistry and Cell Biology Robert C. Rizzo, Ph.D. Associate Professor, Department of Applied Mathematics and Statistics Nancy Reich Marshall, Ph.D. Professor, Department of Molecular Genetics and Microbiology This dissertation is accepted by the Graduate School Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Regulation of Dimerization and Activation of the Thrombopoietin Receptor by Miki Itaya Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University 2012 The thrombopoietin receptor (TpoR) is
    [Show full text]
  • Immuno-Endocrine Interactions in Intestinal Inflammation
    IMMUNO-ENDOCRINE INTERACTIONS IN INTESTINAL INFLAMMATION PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Immuno-endocrine interactions in intestinal inflammation By Md. Sharif Shajib, BSc. (Hons) A Thesis Submitted to the School of Graduate Studies in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Md. Sharif Shajib, 2017. PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Descriptive notes Doctor of Philosophy (2017) McMaster University, Hamilton, Ontario (Medical Sciences) TITLE Immuno-endocrine interactions in intestinal inflammation AUTHOR Md. Sharif Shajib, BSc. (Hons) SUPERVISOR Dr. Waliul I. Khan NUMBER OF PAGES: XX, 292. II PhD Thesis- Shajib, MS; McMaster University-Medical Sciences Lay abstract The gut produces most of the serotonin found in our body, where it regulates many normal functions. A group of special cells, named enterochromaffin cells, produces nearly all of the serotonin in the gut. In diseases of the gut, especially ones that involve inflammation resulting in symptoms like abdominal pain, diarrhea and bleeding, the number of these cells and serotonin concentration are different from that in the normal gut. I found that these changes are controlled by a particular protein produced by immune cells, called interleukin-13, and alteration in serotonin levels, in turn, contributes to the inflammatory process. Our laboratory experiments with cells and animals establish this connection between interleukin-13 and serotonin in gut inflammation. We further confirm this association between interleukin-13 and serotonin in human inflammatory bowel disease. Moreover, we identify a potential genetic cause of these changes in serotonin concentrations which may ultimately result in inflammatory bowel disease.
    [Show full text]
  • Selective Neutralization of IL-12 P40 Monomer Induces Death in Prostate Cancer Cells Via IL-12–IFN-Γ
    Selective neutralization of IL-12 p40 monomer induces death in prostate cancer cells via IL-12–IFN-γ Madhuchhanda Kundua, Avik Roya, and Kalipada Pahana,b,1 aDepartment of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612; and bDivision of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612 Edited by Xiaojing Ma, Weill Medical College, New York, NY, and accepted by Editorial Board Member Carl F. Nathan September 18, 2017 (received for review April 12, 2017) Cancer cells are adept at evading cell death, but the underlying p40 and p402 and developed an ELISA to monitor these cytokines mechanisms are poorly understood. IL-12 plays a critical role in the separately (10). Mouse squamous (KLN), prostate (TRAMP), early inflammatory response to infection and in the generation of breast (4T1), and liver hepatoma (Hepa) cells were cultured under T-helper type 1 cells, favoring cell-mediated immunity. IL-12 is com- serum-free condition for 48 h, followed by measurement of the posed of two different subunits, p40 and p35. This study underlines levels of p40, p402, IL-12, and IL-23 by sandwich ELISA. In gen- the importance of IL-12 p40 monomer (p40) in helping cancer cells to eral, the levels of IL-12 and IL-23 were very low compared with escape cell death. We found that different mouse and human cancer p40 and p402 in each of these cell lines (Fig. 1 A–C). Interestingly, cells produced greater levels of p40 than p40 homodimer (p402), the level of p40 was much higher than the levels of p402, IL-12, or IL-12, or IL-23.
    [Show full text]
  • Entinostat Augments NK Cell Functions Via Epigenetic Upregulation of IFIT1-STING-STAT4 Pathway
    www.oncotarget.com Oncotarget, 2020, Vol. 11, (No. 20), pp: 1799-1815 Research Paper Entinostat augments NK cell functions via epigenetic upregulation of IFIT1-STING-STAT4 pathway John M. Idso1, Shunhua Lao1, Nathan J. Schloemer1,2, Jeffrey Knipstein2, Robert Burns3, Monica S. Thakar1,2,* and Subramaniam Malarkannan1,2,4,5,* 1Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA 2Division of Pediatric Hematology-Oncology-BMT, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA 3Bioinformatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA 4Divson of Hematology-Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA 5Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA *Co-senior authors Correspondence to: Monica S. Thakar, email: [email protected] Subramaniam Malarkannan, email: [email protected] Keywords: NK cells; histone deacetylase inhibitor; Ewing sarcoma; rhabdomyosarcoma; immunotherapy Received: September 10, 2019 Accepted: March 03, 2020 Published: May 19, 2020 Copyright: Idso et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Histone deacetylase inhibitors (HDACi) are an emerging cancer therapy; however, their effect on natural killer (NK) cell-mediated anti-tumor responses remain unknown. Here, we evaluated the impact of a benzamide HDACi, entinostat, on human primary NK cells as well as tumor cell lines. Entinostat significantly upregulated the expression of NKG2D, an essential NK cell activating receptor. Independently, entinostat augmented the expression of ULBP1, HLA, and MICA/B on both rhabdomyosarcoma and Ewing sarcoma cell lines.
    [Show full text]
  • IL-1 Secretion Innate T Cell Responses Through Effects On
    Autophagy Regulates IL-23 Secretion and Innate T Cell Responses through Effects on IL-1 Secretion This information is current as Celia Peral de Castro, Sarah A. Jones, Clíona Ní Cheallaigh, of September 24, 2021. Claire A. Hearnden, Laura Williams, Jan Winter, Ed C. Lavelle, Kingston H. G. Mills and James Harris J Immunol 2012; 189:4144-4153; Prepublished online 12 September 2012; doi: 10.4049/jimmunol.1201946 Downloaded from http://www.jimmunol.org/content/189/8/4144 Supplementary http://www.jimmunol.org/content/suppl/2012/09/12/jimmunol.120194 Material 6.DC1 http://www.jimmunol.org/ References This article cites 48 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/8/4144.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 24, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Autophagy Regulates IL-23 Secretion and Innate T Cell Responses through Effects on IL-1 Secretion Celia Peral de Castro,*,† Sarah A.
    [Show full text]
  • IL-17-Secreting Th Cells Stat3 and Stat4 Direct Development Of
    Stat3 and Stat4 Direct Development of IL-17-Secreting Th Cells Anubhav N. Mathur, Hua-Chen Chang, Dimitrios G. Zisoulis, Gretta L. Stritesky, Qing Yu, John T. O'Malley, This information is current as Reuben Kapur, David E. Levy, Geoffrey S. Kansas and Mark of September 29, 2021. H. Kaplan J Immunol 2007; 178:4901-4907; ; doi: 10.4049/jimmunol.178.8.4901 http://www.jimmunol.org/content/178/8/4901 Downloaded from References This article cites 38 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/178/8/4901.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 29, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Stat3 and Stat4 Direct Development of IL-17-Secreting Th Cells1 Anubhav N. Mathur,2*† Hua-Chen Chang,2*† Dimitrios G. Zisoulis,‡ Gretta L.
    [Show full text]
  • Astrocyte-Specific Expression of Interleukin 23 Leads to An
    Nitsch et al. Journal of Neuroinflammation (2021) 18:101 https://doi.org/10.1186/s12974-021-02140-z RESEARCH Open Access Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model Louisa Nitsch1*†, Simon Petzinna1†, Julian Zimmermann1, Linda Schneider1,2, Marius Krauthausen1, Michael T. Heneka3, Daniel R. Getts4, Albert Becker5 and Marcus Müller1,6 Abstract Background: Interleukin 23 is a critical cytokine in the pathogenesis of multiple sclerosis. But the local impact of interleukin 23 on the course of neuroinflammation is still not well defined. To further characterize the effect of interleukin 23 on CNS inflammation, we recently described a transgenic mouse model with astrocyte-specific expression of interleukin 23 (GF-IL23 mice). The GF-IL23 mice spontaneously develop a progressive ataxic phenotype with cerebellar tissue destruction and inflammatory infiltrates with high amounts of B cells most prominent in the subarachnoid and perivascular space. Methods: To further elucidate the local impact of the CNS-specific interleukin 23 synthesis in autoimmune neuroinflammation, we induced a MOG35-55 experimental autoimmune encephalomyelitis (EAE) in GF-IL23 mice and WT mice and analyzed the mice by histology, flow cytometry, and transcriptome analysis. Results: We were able to demonstrate that local interleukin 23 production in the CNS leads to aggravation and chronification of the EAE course with a severe paraparesis and an ataxic phenotype. Moreover, enhanced multilocular neuroinflammation was present not only in the spinal cord, but also in the forebrain, brainstem, and predominantly in the cerebellum accompanied by persisting demyelination. Thereby, interleukin 23 creates a pronounced proinflammatory response with accumulation of leukocytes, in particular B cells, CD4+ cells, but also γδ T cells and activated microglia/macrophages.
    [Show full text]