Immuno-Endocrine Interactions in Intestinal Inflammation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Assessing Immunomodulatory Effects of Penicillium Mycotoxins Using Bovine Macrophages Cell Line
Assessing Immunomodulatory Effects of Penicillium Mycotoxins using Bovine Macrophages Cell Line by Se-Young Oh A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Animal and Poultry Science (Toxicology) Guelph, Ontario, Canada © Se-Young Oh, December, 2014 ABSTRACT Assessing Immunomodulatory Effects of Penicillium Mycotoxins using Bovine Macrophages Cell Line Se-Young Oh Advisor: Dr. Niel A. Karrow University of Guelph , 2014 Co-Advisor: Dr. Herman J. Boermans The present study assessed the immunomodulatory effects on macrophages of the following Penicillium mycotoxins (PMs), including citrinin (CIT), ochratoxin A (OTA), patulin (PAT), mycophilic acid (MPA) and penicillic acid (PA), by using a bovine macrophage cell line (BoMacs). Initially, concentration-response curves for each of these PMs were established based on cell proliferation and viability. The potency of these PMs based on their IC50s (concentration that inhibits 50% cell proliferation) from highest to lowest was: 0.56 µM (PAT) > 12.88 µM (OTA) > 29.85 µM (PA) > 91.20 µM (CIT) > not determined (MPA). LC50s (concentrations that kill 50% of cells) for PAT and PA were determined to be 4.46 μM and 175.79 μM, respectively. In addition to this, binary mixtures of some PMs at their respective IC25 and lower were shown to have significant interactions on cell proliferation. CIT+OTA had significant synergism, while PAT+MPA, CIT+MPA, CIT+PA and MPA+PA exhibited significant antagonism. PAT+PA showed significant antagonism at their respective IC25s, but were antagonistic at lower concentrations. The PMs at their sub-lethal levels of IC25s also differentially altered the gene expression of the following cytokines, including IL-1α, IL-6, IL-10, IL-12, IL-23 and TGF-. -
Mechanism of Homodimeric Cytokine Receptor Activation and Dysregulation by Oncogenic Mutations
This is a repository copy of Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/155270/ Version: Accepted Version Article: Wilmes, Stephan, Hafer, Maximillian, Vuorio, Joni et al. (15 more authors) (2020) Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations. Science. pp. 643-652. ISSN 0036-8075 https://doi.org/10.1126/science.aaw3242 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Submitted Manuscript: Confidential Title: Mechanism of homodimeric cytokine receptor activation and dysregulation by oncogenic mutations Authors: 5 Stephan Wilmes1, 2*, Maximillian Hafer1*, Joni Vuorio3,4, Julie A. Tucker5, Hauke Winkelmann1, Sara Löchte1, Tess A. Stanly5, Katiuska D. Pulgar Prieto5, Chetan Poojari3, Vivek Sharma3,6, Christian P. Richter1, Rainer Kurre1, Stevan R. Hubbard7, K. Christopher Garcia8,9, Ignacio Moraga2, Ilpo Vattulainen3,4,10†, Ian S. Hitchcock5† and Jacob Piehler1† Affiliations: 10 1 Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany. -
Stony Brook University
SSStttooonnnyyy BBBrrrooooookkk UUUnnniiivvveeerrrsssiiitttyyy The official electronic file of this thesis or dissertation is maintained by the University Libraries on behalf of The Graduate School at Stony Brook University. ©©© AAAllllll RRRiiiggghhhtttsss RRReeessseeerrrvvveeeddd bbbyyy AAAuuuttthhhooorrr... Regulation of Dimerization and Activation of the Thrombopoietin Receptor A Dissertation Presented by Miki Itaya to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University December 2012 Copyright by Miki Itaya 2012 Stony Brook University The Graduate School Miki Itaya We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Steven O. Smith, Ph.D. - Dissertation Advisor Professor, Department of Biochemistry and Cell Biology Erwin London, Ph.D. - Chairperson of Defense Professor, Department of Biochemistry and Cell Biology Robert C. Rizzo, Ph.D. Associate Professor, Department of Applied Mathematics and Statistics Nancy Reich Marshall, Ph.D. Professor, Department of Molecular Genetics and Microbiology This dissertation is accepted by the Graduate School Charles Taber Interim Dean of the Graduate School ii Abstract of the Dissertation Regulation of Dimerization and Activation of the Thrombopoietin Receptor by Miki Itaya Doctor of Philosophy in Biochemistry and Structural Biology Stony Brook University 2012 The thrombopoietin receptor (TpoR) is -
Surface Display of an Anti-DEC-205 Single Chain Fv Fragment in Lactobacillus Plantarum Increases Internalization and Plasmid
Christophe et al. Microb Cell Fact (2015) 14:95 DOI 10.1186/s12934-015-0290-9 RESEARCH Open Access Surface display of an anti‑DEC‑205 single chain Fv fragment in Lactobacillus plantarum increases internalization and plasmid transfer to dendritic cells in vitro and in vivo Michon Christophe1,2, Katarzyna Kuczkowska3, Philippe Langella1,2, Vincent G H Eijsink3, Geir Mathiesen3 and Jean‑Marc Chatel1,2* Abstract Background: Lactic acid bacteria (LAB) are promising vehicles for delivery of a variety of medicinal compounds, including antigens and cytokines. It has also been established that LAB are able to deliver cDNA to host cells. To increase the efficiency of LAB-driven DNA delivery we have constructed Lactobacillus plantarum strains targeting DEC- 205, which is a receptor located at the surface of dendritic cells (DCs). The purpose was to increase uptake of bacterial cells, which could lead to improved cDNA delivery to immune cells. Results: Anti-DEC-205 antibody (aDec) was displayed at the surface of L. plantarum using three different anchoring strategies: (1) covalent anchoring of aDec to the cell membrane (Lipobox domain, Lip); (2) covalent anchoring to the cell wall (LPXTG domain, CWA); (3) non-covalent anchoring to the cell wall (LysM domain, LysM). aDec was success‑ fully expressed in all three strains, but surface location of the antibody could only be demonstrated for the two strains with cell wall anchors (CWA and LysM). Co-incubation of the engineered strains and DCs showed increased uptake when anchoring aDec using the CWA or LysM anchors. In a competition assay, free anti-DEC abolished the increased uptake, showing that the internalization is due to specific interactions between the DEC-205 receptor and aDec. -
GM-CSF Receptor-Beta, Human, Recombinant Recombinant Human Granulocyte/Macrophage Colony Stimulating Factor Receptor Beta
GM-CSF Receptor-beta, human, recombinant Recombinant Human Granulocyte/Macrophage Colony Stimulating Factor Receptor beta Instruction Manual Catalog Number C-60430 Synonyms CSF2RB,Colony Stimulating Factor 2 Receptor, Beta, Low-Affinity (Granulocyte-Macrophage), GM-CSF/IL-3/IL-5 Receptor Common Beta Subunit, CDw131, IL3RB, SMDP5, IL5RB, Interleukin 3 Receptor/Granulocyte-Macrophage Colony Stimulating Factor 3 Receptor, Beta (High Affinity), Colony-Stimulating Factor-2 Receptor, Beta, Low-Affinity, GM-CSF/IL-3/IL-5 Receptor Common Beta-Chain, Cytokine Receptor Common Subunit Beta, CD131 Antigen, CD131 Description GM-CSF Receptor-beta, also known as CSF2RB is a member of the type I cytokine receptor family. CSF2RB is a high affinity receptor for interleukin-3, interleukin-5 as well as granulocyte- macrophage colony-stimulating factor. The CSF2RB unique form of receptor assembly applies also to IL-3 and IL-5 receptors, providing a structural basis for understanding their activation mechanism which is essential for the development of therapeutics. Human recombinant GM-CSF Receptor-beta produced in Sf9 cells is a single, glycosylated polypeptide chain of 435 amino acids (17-443 a.a), having a molecular mass of 49.7 kDa (migrates at 40-57 kDa on SDS-PAGE under reducing conditions). CSF2RB is fused to an 8 amino acid His-tag at the C-terminus and purified using proprietary chromatographic techniques. Quantity 10 µg Molecular Mass 49.7 kDa Source Sf9 insect cells Biological-Activity NA Specific Activity NA Formulation Sterile-filtered, clear protein solution (0.5 mg/ml) containing phosphate-buffered saline (pH 7.4) and 10% glycerol. Reconstitution Please Note: Always centrifuge product briefly before opening vial. -
Facteurs Génétiques De Prédisposition a La Maladie Coeliaque Et L’Oesophagite Éosinophilique
Université de Montréal FACTEURS GÉNÉTIQUES DE PRÉDISPOSITION A LA MALADIE COELIAQUE ET L’OESOPHAGITE ÉOSINOPHILIQUE Par Freha Nour el Hayet CHERIEF Département de Microbiologie et Immunologie Faculté de Médecine Mémoire présenté à la Faculté des études supérieures en vue de l’obtention du grade de Maîtrise en Microbiologie et Immunologie Novembre 2012 © Freha Nour el Hayet CHERIEF, 2012 i Université de Montréal Faculté des études supérieures Ce mémoire intitulé : FACTEURS GÉNÉTIQUES DE PRÉDISPOSITION A LA MALADIE COELIAQUE ET L’OESOPHAGITE ÉOSINOPHILIQUE Présenté par : Freha nour el hayet CHERIEF a été évalué par un jury composé des personnes suivantes : Ali Ahmad Président-rapporteur Idriss Djilali-Saïah Directeur de recherche Cristophe Faure Membre du jury ii Résumé Les maladies immunitaires chroniques incluant les maladies auto-immunes et inflammatoires touchent 20 à 25% de la population des pays occidentaux. La comparaison des taux de concordance chez les jumeaux ou l’histoire familiale de sujets atteints de la maladie cœliaque (maladie auto-immune de l’intestin) ou de l’œsophagite éosinophilique (maladie inflammatoire de l’œsophage) indiquent que des facteurs génétiques et environnementaux interviennent dans la susceptibilité à ces maladies. Cependant, ces études ne distinguent pas de manière claire la prédisposition génétique selon l’hétérogénéité clinique (enfants versus adultes) ou ethnique (stratification des populations). Méthodes. Les haplotypes HLA de prédisposition à la maladie cœliaque et les polymorphismes des gènes candidats -
University of Alberta DENDRITIC CELL-TARGETED NANOPARTICLES for the DELIVERY of DNA and PROTEIN VACCINES by Dharmendra Raghuwans
University of Alberta DENDRITIC CELL-TARGETED NANOPARTICLES FOR THE DELIVERY OF DNA AND PROTEIN VACCINES By Dharmendra Raghuwanshi A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences Faculty of Pharmacy and Pharmaceutical Sciences © Dharmendra Raghuwanshi Fall 2012 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Dedication I dedicate this thesis to my beloved Mother with all my love and respect. Your memories and affection will always be alive in my heart. ABSTRACT Dendritic cells (DCs) play a central role in shaping antigen-specific immune response. Antibody-mediated antigen targeting to DC-specific surface receptors is a promising approach to enhance vaccine efficacy. The objective of this thesis was to develop DC-targeted nanoparticulate formulations for the delivery of DNA and protein antigen using a novel strategy. The approach involved use of a two- component DC targeted delivery system for enhanced immune response. -
WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/067991 Al 12 April 2018 (12.04.2018) W !P O PCT (51) International Patent Classification: achusetts 021 15 (US). THE BROAD INSTITUTE, A61K 51/10 (2006.01) G01N 33/574 (2006.01) INC. [US/US]; 415 Main Street, Cambridge, Massachu C07K 14/705 (2006.01) A61K 47/68 (2017.01) setts 02142 (US). MASSACHUSETTS INSTITUTE OF G01N 33/53 (2006.01) TECHNOLOGY [US/US]; 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (US). (21) International Application Number: PCT/US2017/055625 (72) Inventors; and (71) Applicants: KUCHROO, Vijay K. [IN/US]; 30 Fairhaven (22) International Filing Date: Road, Newton, Massachusetts 02149 (US). ANDERSON, 06 October 2017 (06.10.2017) Ana Carrizosa [US/US]; 110 Cypress Street, Brookline, (25) Filing Language: English Massachusetts 02445 (US). MADI, Asaf [US/US]; c/o The Brigham and Women's Hospital, Inc., 75 Francis (26) Publication Language: English Street, Boston, Massachusetts 021 15 (US). CHIHARA, (30) Priority Data: Norio [US/US]; c/o The Brigham and Women's Hospital, 62/405,835 07 October 2016 (07.10.2016) US Inc., 75 Francis Street, Boston, Massachusetts 021 15 (US). REGEV, Aviv [US/US]; 15a Ellsworth Ave, Cambridge, (71) Applicants: THE BRIGHAM AND WOMEN'S HOSPI¬ Massachusetts 02139 (US). SINGER, Meromit [US/US]; TAL, INC. [US/US]; 75 Francis Street, Boston, Mass c/o The Broad Institute, Inc., 415 Main Street, Cambridge, (54) Title: MODULATION OF NOVEL IMMUNE CHECKPOINT TARGETS CD4 FIG. -
A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University
Chapman University Chapman University Digital Commons Pharmacy Faculty Articles and Research School of Pharmacy 7-31-2018 “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Emira Bousoik Chapman University Hamidreza Montazeri Aliabadi Chapman University, [email protected] Follow this and additional works at: https://digitalcommons.chapman.edu/pharmacy_articles Part of the Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Cell Anatomy Commons, Cell Biology Commons, Enzymes and Coenzymes Commons, Oncology Commons, and the Other Pharmacy and Pharmaceutical Sciences Commons Recommended Citation Bousoik E, Montazeri Aliabadi H. “Do we know jack” about JAK? A closer look at JAK/STAT signaling pathway. Front. Oncol. 2018;8:287. doi: 10.3389/fonc.2018.00287 This Article is brought to you for free and open access by the School of Pharmacy at Chapman University Digital Commons. It has been accepted for inclusion in Pharmacy Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway Comments This article was originally published in Frontiers in Oncology, volume 8, in 2018. DOI: 10.3389/ fonc.2018.00287 Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 License. Copyright The uthora s This article is available at Chapman University Digital Commons: https://digitalcommons.chapman.edu/pharmacy_articles/590 -
Transformation of Hematopoietic Cells and Activation of JAK2-V617F by IL-27R, a Component of a Heterodimeric Type I Cytokine Receptor
Transformation of hematopoietic cells and activation of JAK2-V617F by IL-27R, a component of a heterodimeric type I cytokine receptor Anuradha Pradhan, Que T. Lambert, and Gary W. Reuther* Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 Edited by Stephen P. Goff, Columbia University College of Physicians and Surgeons, New York, NY, and approved October 5, 2007 (received for review March 14, 2007) From a patient with acute myeloid leukemia (AML), we have shown to be leukemogenic in mice (9), further validating our identified IL-27Ra (also known as TCCR and WSX1) as a gene whose approach to identify genes that contribute to leukemia formation. expression can induce the transformation of hematopoietic cells. In this study, we have used a functional genetic screen to IL-27Ra (IL-27R) is a type I cytokine receptor that functions as the identify genes that contribute to myeloid cell transformation and ligand binding component of the receptor for IL-27 and functions perhaps AML formation. Here, we describe our identification of with the glycoprotein 130 (gp130) coreceptor to induce signal the ligand binding component of the receptor for IL-27 (IL- transduction in response to IL-27. We show that IL-27R is expressed 27R), as a unique transforming gene product. We show that on the cell surface of the leukemic cells of AML patients. 32D IL-27R is expressed on the cell surface of leukemic cells of AML myeloid cells transformed by IL-27R contain elevated levels of patients and demonstrate that IL-27R can transform hemato- activated forms of various signaling proteins, including JAK1, JAK2, poietic cells in a JAK-dependent manner. -
Science Journals
SCIENCE IMMUNOLOGY | RESEARCH RESOURCE T CELL MEMORY Copyright © 2020 The Authors, some rights reserved; Early precursors and molecular determinants of tissue- exclusive licensee + American Association resident memory CD8 T lymphocytes revealed by for the Advancement of Science. No claim single-cell RNA sequencing to original U.S. Nadia S. Kurd1*†, Zhaoren He2,3*, Tiani L. Louis1, J. Justin Milner3, Kyla D. Omilusik3, Government Works Wenhao Jin2, Matthew S. Tsai1, Christella E. Widjaja1, Jad N. Kanbar1, Jocelyn G. Olvera1, Tiffani Tysl1, Lauren K. Quezada1, Brigid S. Boland1, Wendy J. Huang2, Cornelis Murre3, Ananda W. Goldrath3, Gene W. Yeo2,4‡, John T. Chang1,5‡§ + During an immune response to microbial infection, CD8 T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including Downloaded from a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid + tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8 T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional + heterogeneity within the siIEL CD8 T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these http://immunology.sciencemag.org/ + findings may inform strategies to optimize CD8 T cell responses to protect against microbial infection and cancer. INTRODUCTION composed of distinct subsets that play unique roles in mediating CD8+ T cells responding to microbial challenge differentiate into protective immunity.