Design of the Space Station Habitable Modules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Acquisition of the Space Station Propulsion Module, IG-01-027
IG-01-027 AUDIT ACQUISITION OF THE SPACE STATION REPORT PROPULSION MODULE May 21, 2001 OFFICE OF INSPECTOR GENERAL National Aeronautics and Space Administration Additional Copies To obtain additional copies of this report, contact the Assistant Inspector General for Auditing at (202) 358-1232, or visit www.hq.nasa.gov/office/oig/hq/issuedaudits.html. Suggestions for Future Audits To suggest ideas for or to request future audits, contact the Assistant Inspector General for Auditing. Ideas and requests can also be mailed to: Assistant Inspector General for Auditing Code W NASA Headquarters Washington, DC 20546-0001 NASA Hotline To report fraud, waste, abuse, or mismanagement contact the NASA Hotline at (800) 424-9183, (800) 535-8134 (TDD), or at www.hq.nasa.gov/office/oig/hq/hotline.html#form; or write to the NASA Inspector General, P.O. Box 23089, L’Enfant Plaza Station, Washington, DC 20026. The identity of each writer and caller can be kept confidential, upon request, to the extent permitted by law. Reader Survey Please complete the reader survey at the end of this report or at www.hq.nasa.gov/office/oig/hq/audits.html. Acronyms ATV Autonomous Transfer Vehicle FAR Federal Acquisition Regulation FGB Functional Energy Block GAO General Accounting Office ICM Interim Control Module ISS International Space Station NPD NASA Policy Directive NPG NASA Procedures and Guidelines OIG Office of Inspector General OMB Office of Management and Budget OPTS Orbiter Propellant Transfer System SRR Systems Requirements Review USPM United States Propulsion Module USPS United States Propulsion System W May 21, 2001 TO: A/Administrator FROM: W/Inspector General SUBJECT: INFORMATION: Audit of Acquisition of the Space Station Propulsion Module Report Number IG-01-027 The NASA Office of Inspector General (OIG) has completed an Audit of Acquisition of the Space Station Propulsion Module. -
WORLD SPACECRAFT DIGEST by Jos Heyman PROPOSED SPACECRAFT Version: 15 January 2016 © Copyright Jos Heyman
WORLD SPACECRAFT DIGEST by Jos Heyman PROPOSED SPACECRAFT Version: 15 January 2016 © Copyright Jos Heyman This file includes details of selected proposed spacecraft and programmes where such spacecraft are related to actual spacecraft listed in the main body of the database. Name: CST-100 Starliner Country: USA Launch date: 2017 Re-entry: Launch site: Cape Canaveral Launch vehicle: to be determined Orbit: The Crew Space Transportation (CST)-100 spacecraft, was developed by Boeing in cooperation with Bigelow Aerospace as part of NASA’s Commercial Orbital Transportation Services (COTS), later Commercial Crew Transportation Capability (CCtCap) programme. The CST-100 (with ‘100’ referring to 100 km from ground to low Earth orbit) will be able to carry a crew of seven and is designed to support the International Space Station as well as Bigelow’s proposed Orbital Space Complex, a privately owned space station based on Bigelow's proposed BA 330 inflatable space station module. CTS-100 is bigger than Apollo but smaller than Orion and can be flown with Atlas, Delta or Falcon rockets. Each CTS- 100 should be able to fly up to 10 missions. CST-100 pad and ascent abort tests are scheduled for 2013 and 2014, followed by an automated unmanned orbital demo mission. Whilst working on the CST-100 contract for NASA’s crewed spacecraft, Boeing is proposing to also develop a cargo transport version. This version will have the typical crewed mission requirements, such as the launch abort system, deleted providing more cargo space. The cargo transport version will also have the capability to return cargo to Earth, landing in the western United States like the crewed version. -
CS 4604: Introduction to Database Management Systems
CS 4604: Introduction to Database Management Systems B. Aditya Prakash Lecture #12: NoSQL and MapReduce (some slides from Xiao Yu) NO SQL Prakash 2018 VT CS 4604 2 Why No SQL? Prakash 2018 VT CS 4604 3 RDBMS § The predominant choice in storing data – Not so true for data miners since we much in txt files. § First formulated in 1969 by Codd – We are using RDBMS everywhere Prakash 2018 VT CS 4604 4 Slide from neo technology, “A NoSQL Overview and the Benefits of Graph Databases" Prakash 2018 VT CS 4604 5 When RDBMS met Web 2.0 Slide from Lorenzo Alberton, "NoSQL Databases: Why, what and when" Prakash 2018 VT CS 4604 6 What to do if data is really large? § Peta-bytes (exabytes, zettabytes ….. ) § Google processed 24 PB of data per day (2009) § FB adds 0.5 PB per day Prakash 2018 VT CS 4604 7 BIG data Prakash 2018 VT CS 4604 8 What’s Wrong with Relational DB? § Nothing is wrong. You just need to use the right tool. § Relational is hard to scale. – Easy to scale reads – Hard to scale writes Prakash 2018 VT CS 4604 9 What’s NoSQL? § The misleading term “NoSQL” is short for “Not Only SQL”. § non-relational, schema-free, non-(quite)-ACID – More on ACID transactions later in class § horizontally scalable, distributed, easy replication support § simple API Prakash 2018 VT CS 4604 10 Four (emerging) NoSQL Categories § Key-value (K-V) stores – Based on Distributed Hash Tables/ Amazon’s Dynamo paper * – Data model: (global) collection of K-V pairs – Example: Voldemort § Column Families – BigTable clones ** – Data model: big table, column families -
Pdf 10.1371/Journal.Pone.0006883 34
Peer-Reviewed Journal Tracking and Analyzing Disease Trends Pages 1941–2136 EDITOR-IN-CHIEF D. Peter Drotman Associate Editors EDITORIAL BOARD Paul Arguin, Atlanta, Georgia, USA Timothy Barrett, Atlanta, Georgia, USA Charles Ben Beard, Fort Collins, Colorado, USA Barry J. Beaty, Fort Collins, Colorado, USA Ermias Belay, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA David Bell, Atlanta, Georgia, USA Richard Bradbury, Atlanta, Georgia, USA Christopher Braden, Atlanta, Georgia, USA Sharon Bloom, Atlanta, GA, USA Arturo Casadevall, New York, New York, USA Mary Brandt, Atlanta, Georgia, USA Kenneth C. Castro, Atlanta, Georgia, USA Corrie Brown, Athens, Georgia, USA Benjamin J. Cowling, Hong Kong, China Charles Calisher, Fort Collins, Colorado, USA Vincent Deubel, Shanghai, China Michel Drancourt, Marseille, France Isaac Chun-Hai Fung, Statesboro, Georgia, USA Paul V. Effler, Perth, Australia Kathleen Gensheimer, College Park, Maryland, USA Anthony Fiore, Atlanta, Georgia, USA Duane J. Gubler, Singapore David Freedman, Birmingham, Alabama, USA Richard L. Guerrant, Charlottesville, Virginia, USA Peter Gerner-Smidt, Atlanta, Georgia, USA Scott Halstead, Arlington, Virginia, USA Stephen Hadler, Atlanta, Georgia, USA Katrina Hedberg, Portland, Oregon, USA Matthew Kuehnert, Atlanta, Georgia, USA David L. Heymann, London, UK Keith Klugman, Seattle, Washington, USA Nina Marano, Atlanta, Georgia, USA Takeshi Kurata, Tokyo, Japan Martin I. Meltzer, Atlanta, Georgia, USA S.K. Lam, Kuala Lumpur, Malaysia David Morens, Bethesda, Maryland, USA Stuart Levy, Boston, Massachusetts, USA J. Glenn Morris, Gainesville, Florida, USA John S. MacKenzie, Perth, Australia Patrice Nordmann, Fribourg, Switzerland John E. McGowan, Jr., Atlanta, Georgia, USA Didier Raoult, Marseille, France Jennifer H. McQuiston, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Tom Marrie, Halifax, Nova Scotia, Canada Frank Sorvillo, Los Angeles, California, USA Nkuchia M. -
WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman
WORLD SPACECRAFT DIGEST by Jos Heyman 1998 Version: 10 July 2016 © Copyright Jos Heyman 1998 001A (25131) Name: Lunar Prospector Country: USA Launch date: 7 January 1998 Re-entry: 31 July 1999 Launch site: Cape Canaveral Launch vehicle: Athena 2 Orbit: 99 x 100 km, inclination: 90.1 ° The Lunar Prospector was the third mission in NASA's Discovery series of spacecraft and was built by Lockheed Martin. The mission objective was to place the spacecraft in a lunar orbit from which it spend a year mapping the surface of the Moon whilst at the same time looking for reservoirs of water which might be in the polar caps. The 126 kg spacecraft carried a series of instruments which evolved from Apollo instrumentation from the seventies: 1. the Gamma Ray Spectrometer (GSR) which provided global maps of the elemental composition of the surface layer of the Moon; 2. the Alpha Particle Spectrometer (APS) to detect radon outgassing on the lunar surface; 3. the Neutron Spectrometer (NS) to detect water ice; 4. the Electron Reflectometer (ER) to map the lunar magnetic fields; 5. the Magnetometer (MAG), another instrument to map the lunar magnetic fields; 6. the Doppler Gravity Experiment (DGE) to determine the lunar gravity field. Also carried was a small container with the ashes of Eugene Shoemaker, a famous discoverer of comets who had passed away in 1997. This container was designated as Celestis-2 and the payload was also known as Luna 1 flight. The spacecraft did not carry a control computer, instead it was fully controlled by a team on Earth. -
Closing Comments
Closing Comments The Shuttle had its faults and its critics, but once on-orbit it was nearly always able to complete its tasks. Its capabilities enabled the fleet of just three Orbiters not merely to visit a space station, albeit a Russian one, but to expand it, resupply it, and deliver and retrieve resident crewmembers. After countless designs and studies stretching back almost five decades and with the Shuttle having been flying for fifteen years, the fleet was given the chance to do what it had been designed to accomplish, namely to assemble and maintain a much larger space sta- tion as an international venture. The legacies of the Shuttle are many and varied across the 135 missions of the thirty- year program but paramount in any assessment must be the creation of the International Space Station. Nevertheless the physical assembly of the station is not the full story. As related in these pages, that legacy took an international team many years to achieve and included devising how to prepare the hardware and deliver hundreds of tons of logistics and cargo into space, where most of it was linked together. For just a few days on each mission, crews blended their skills in robotics, spacewalking, and cargo handling into a smooth and almost seamless operation. A great deal was learned, not only by the Russians and Americans, but by the other partners from Shuttle-Mir and various other joint ventures. This cooperative teamwork delivered significant results for each expedition flown to the ISS, even after the Shuttle was retired. Experience from past cooperation, together with new lessons learned from the fiasco of Space Station Freedom and the success of Shuttle-Mir, helped to establish firm foundations for the future. -
Assembly of the International Space Station
Assembly of the International Space Station The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained unmanned for the next one and a half years, until in July 2000 the Russian module Zvezda was added, allowing a maximum crew of two astronauts or cosmonauts to be on the ISS permanently. The ISS has a planned pressurized volume of approximately 1,000 cubic meters, a mass of approximately 400,000 kilograms, approximately 100 kilowatts of power output, a truss 108.4 meters long, modules 74 meters long, and a crew of six. Building the complete station required more than 40 assembly flights. As of March 2011, 26 Space Shuttle flights have docked with ISS to add elements, and 9 other Shuttle flights have flown logistics-servicing missions to ISS without adding major external elements. These 35 Shuttle missions include 9 SpaceHab and 10 MPLM logistics-servicing missions in various combinations. The last two Shuttle flights added one of the two final elements of ISS, followed by one last Proton launch which delivered the ERA. Other assembly flights consisted of modules lifted by the Russian Proton rocket or in the case ofPirs and Poisk by a Soyuz-U rocket. An artist's impression of theInternational Space Station's configuration as of November 2010.