The New Material of Large Mammals from Azokh and Comments on the Older Collections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Impact of Large Terrestrial Carnivores on Pleistocene Ecosystems Blaire Van Valkenburgh, Matthew W
The impact of large terrestrial carnivores on SPECIAL FEATURE Pleistocene ecosystems Blaire Van Valkenburgha,1, Matthew W. Haywardb,c,d, William J. Ripplee, Carlo Melorof, and V. Louise Rothg aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bCollege of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom; cCentre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa; dCentre for Wildlife Management, University of Pretoria, Pretoria, South Africa; eTrophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331; fResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; and gDepartment of Biology, Duke University, Durham, NC 27708-0338 Edited by Yadvinder Malhi, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 6, 2015 (received for review February 28, 2015) Large mammalian terrestrial herbivores, such as elephants, have analogs, making their prey preferences a matter of inference, dramatic effects on the ecosystems they inhabit and at high rather than observation. population densities their environmental impacts can be devas- In this article, we estimate the predatory impact of large (>21 tating. Pleistocene terrestrial ecosystems included a much greater kg, ref. 11) Pleistocene carnivores using a variety of data from diversity of megaherbivores (e.g., mammoths, mastodons, giant the fossil record, including species richness within guilds, pop- ground sloths) and thus a greater potential for widespread habitat ulation density inferences based on tooth wear, and dietary in- degradation if population sizes were not limited. -
Mammalia, Cervidae) During the Middle Holocene in the Cave of Bizmoune (Morocco, Essaouira Region
Quaternary International xxx (2015) 1e14 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint The last occurrence of Megaceroides algericus Lyddekker, 1890 (Mammalia, Cervidae) during the middle Holocene in the cave of Bizmoune (Morocco, Essaouira region) * Philippe Fernandez a, , Abdeljalil Bouzouggar b, c, Jacques Collina-Girard a, Mathieu Coulon d a Aix Marseille Universite, CNRS, MCC, LAMPEA UMR 7269, 13094, Aix-en-Provence, France b Institut National des Sciences de l'Archeologie et du Patrimoine, Rabat, Morocco c Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany d Aix Marseille Universite, CNRS, LAMES UMR 7305, 13094, Aix-en-Provence, France article info abstract Article history: During the course of archaeological test excavations carried out in 2007 in the cave of Bizmoune Available online xxx (Essaouira region, Morocco), seven archaeological layers yielding Pleistocene and Holocene artefacts and faunal remains were identified. In the layers C4, C3 and C2, respectively from the oldest to the most Keywords: recent, terrestrial Helicidae mollusk shells (Helix aspersa) were dated by 14C. These layers also contained Giant deer many fragments of eggshell, belonging to Struthio cf. camelus, associated with mammal remains such as Extinction Oryctolagus/Lepus, Gazella sp., Sus scrofa, Ammotragus lervia, Alcelaphus buselaphus, Equus sp., Pha- Holocene cochoerus aethiopicus and an undetermined Caprini. Among these remains, an incomplete mandible of North Africa Speciation Megaceroides algericus Lydekker, 1890 with M1 and M2 was found in layer C3. The 6641 to 6009 cal BP Palaeoecology time range attributed to this layer has provided the most recent date known so far for M. -
High Herbivore Density Associated with Vegetation Diversity in Interglacial Ecosystems
High herbivore density associated with vegetation diversity in interglacial ecosystems Christopher J. Sandoma,b,1, Rasmus Ejrnæsb, Morten D. D. Hansenc, and Jens-Christian Svenninga,1 aEcoinformatics and Biodiversity, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark; bWildlife Ecology, Biodiversity and Conservation, Department of Bioscience, Kalø, Aarhus University, DK-8410 Rønde, Denmark; cNatural History Museum Aarhus, DK-8000 Aarhus C, Denmark Edited by William J. Sutherland, University of Cambridge, Cambridge, United Kingdom, and accepted by the Editorial Board February 4, 2014 (received for review June 25, 2013) The impact of large herbivores on ecosystems before modern and the late Holocene (2,000–0yB.P.)(seeMaterials and Methods human activities is an open question in ecology and conservation. for further details). The Last Interglacial and Holocene periods For Europe, the controversial wood–pasture hypothesis posits that harbored temperate climates that allowed forest cover in the grazing by wild large herbivores supported a dynamic mosaic of region but with highly divergent assemblages of large herbivores vegetation structures at the landscape scale under temperate con- and under different human influences. The Last Interglacial had ditions before agriculture. The contrasting position suggests that 11 species of large herbivores (≥10 kg; Table S1) with a median European temperate vegetation was primarily closed forest with body weight of 524 kg (range, 19–6,500 kg), the largest being relatively small open areas, at most impacted locally by large her- Elephas antiquus (straight-tusked elephant) (Fig. 1), and no bivores. Given the role of modern humans in the world-wide dec- modern humans, because modern humans arrived in Europe only imations of megafauna during the late Quaternary, to resolve this 40–50,000 y ago (14). -
Last Interglacial (MIS 5) Ungulate Assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla Del Valle, Madrid, Spain)
Palaeogeography, Palaeoclimatology, Palaeoecology 374 (2013) 327–337 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: The Camino Cave (Pinilla del Valle, Madrid, Spain) Diego J. Álvarez-Lao a,⁎, Juan L. Arsuaga b,c, Enrique Baquedano d, Alfredo Pérez-González e a Área de Paleontología, Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain b Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4, 28029 Madrid, Spain c Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain d Museo Arqueológico Regional de la Comunidad de Madrid, Plaza de las Bernardas, s/n, 28801-Alcalá de Henares, Madrid, Spain e Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain article info abstract Article history: The fossil assemblage from the Camino Cave, corresponding to the late MIS 5, constitutes a key record to un- Received 2 November 2012 derstand the faunal composition of Central Iberia during the last Interglacial. Moreover, the largest Iberian Received in revised form 21 January 2013 fallow deer fossil population was recovered here. Other ungulate species present at this assemblage include Accepted 31 January 2013 red deer, roe deer, aurochs, chamois, wild boar, horse and steppe rhinoceros; carnivores and Neanderthals Available online 13 February 2013 are also present. The origin of the accumulation has been interpreted as a hyena den. Abundant fallow deer skeletal elements allowed to statistically compare the Camino Cave fossils with other Keywords: Early Late Pleistocene Pleistocene and Holocene European populations. -
Fossil Deer Assemblage from Sea Bottom of Bisan
"FOSSIL DEER ASSEMBLAGE FROM SEA BOTTOM OF BISAN-SETO AREA WITH SPECIAL REFERENCE TO THEIR STRATIGRAPHIC POSITIONS (PLEISTOCENE DEER FAUNA IN SETO INLAND SEA, ----PART III)" 著者 "OTSUKA Hiroyuki" journal or 鹿児島大学理学部紀要. 地学・生物学 publication title volume 22 page range 55-87 別言語のタイトル 備讃瀬戸の海底に於ける鹿類化石群集-特にその産 出相に関連して (瀬戸内海の第四期鹿類化石群-そ の3) URL http://hdl.handle.net/10232/5980 FOSSIL DEER ASSEMBLAGE FROM SEA BOTTOM OF BISAN-SETO AREA WITH SPECIAL REFERENCE TO THEIR STRATIGRAPHIC POSITIONS (PLEISTOCENE DEER FAUNA IN SETO INLAND SEA, ----PART III) 著者 OTSUKA Hiroyuki journal or 鹿児島大学理学部紀要. 地学・生物学 publication title volume 22 page range 55-87 別言語のタイトル 備讃瀬戸の海底に於ける鹿類化石群集-特にその産 出相に関連して (瀬戸内海の第四期鹿類化石群-そ の3) URL http://hdl.handle.net/10232/00001718 Rep. Fac. Sci., Kagoshima Univ.,(Earth Sci. & Biol.) No. 22, p.55-87, 1989. FOSSIL DEER ASSEMBLAGE FROM SEA BOTTOM OF BISAN-SETO AREA WITH SPECIAL REFERENCE TO THEIR STRATIGRAPHIC POSITIONS PLEISTOCENE DEER FAUNA IN SETO INLAND SEA, 一一-PART I Hiroyuki Otsuka (Received August 30, 1989) Abstract This paper presents the results of paleontological and geological studies of fossil deer fauna collected from the sea bottom of the Bisan-seto area, in the eastern part of the Seto Inland Sea, West Japan. The fossil deer assemblages in this area are associated with abundant mammals of forest- to grassland habitats such as Naumann's elephant (Palaeoloxodon naumanni) and also with a few Stegodon, wild ox, rhino and water buffalo specimens. As a result of the present study, nine species fossil deer belonging to the family Cervidae were distinguished, among which six species are referred to the genus Cervus and others to the genus Elaphurus and SinamegaFeros. -
(Panthera Leo Fossilis) at the Gran Dolina Site, Sierra De Atapuerca, Spain
Journal of Archaeological Science 37 (2010) 2051e2060 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The hunted hunter: the capture of a lion (Panthera leo fossilis) at the Gran Dolina site, Sierra de Atapuerca, Spain Ruth Blasco a,*, Jordi Rosell a, Juan Luis Arsuaga b,c, José M. Bermúdez de Castro d, Eudald Carbonell a,e a IPHES (Institut català de Paleoecologia Humana i Evolució Social), Unidad Asociada al CSIC, Àrea de Prehistòria, Universitat Rovira i Virgili, Plaça Imperial Tarraco, 1, 43005 Tarragona, Spain b Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain c Centro de Investigación (UCM-ISCIII) de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4 (Pabellón 14), 28029 Madrid, Spain d CENIEH (Centro Nacional de Investigación sobre Evolución Humana), Avenida de la Paz 28, 09004 Burgos, Spain e Visiting professor, Institute of Vertebrate Paleontology and Paleoanthropology of Beijing (IVPP) article info abstract Article history: Many Pleistocene caves and rock shelters contain evidence of carnivore and human activities. For this Received 22 December 2009 reason, it is common to recover at these sites faunal remains left by both biological agents. In order to Received in revised form explain the role that carnivores play at the archaeological sites it is necessary to analyse several elements, 15 March 2010 such as the taxonomical and skeletal representation, the age profiles, the ratio of NISP to MNI, the Accepted 17 March 2010 anthropogenic processing marks on the carcasses (location and purpose of cutmarks and burning and bone breakage patterns), carnivore damage (digested bones, location and frequencies of toothmarks and bone Keywords: breakage), length of the long bones, frequencies of coprolites and vertical distribution of the faunal Subsistence strategies Hunting remains, inter alia. -
The Rhinoceroses from Neumark-Nord and Their Nutrition
During the Pleistocene, there were three main groups of Im Pleistozän traten drei Hauptgruppen von Nashörnern auf, rhinoceroses, each of them in a different part of the Old jede in einem anderen Teil der Alten Welt: die afrikanische World: the African lineage leads to the modern square- Linie führt zu den heutigen Breitmaul- und Spitzmaulnashör- lipped rhinoceros and black rhinoceros, the Asian group nern, die asiatische Gruppe umfasst das Panzer-, das Suma- includes the great one-horned rhinoceros, the Sumatra tra- und das Javanashorn sowie ihre Vorfahren. Zur dritten rhinoceros and the Java rhinoceros as well as their ances- Gruppe, die im späten Pleistozän ausstarb, gehören Coelo- tors. The third group, which became extinct in the Late donta und Stephanorhinus. Das Wollhaarnashorn (Coelodonta Pleistocene, includes Coelodonta and Stephanorhinus. The antiquitatis) trat in Europa zum ersten Mal während der woolly rhinoceros (Coelodonta antiquitatis) appeared in Elsterkaltzeit auf. Stephanorhinus kirchbergensis, das Wald- Europe for the first time during the Elsterian cold period. nashorn, ist auf die Interglaziale beschränkt und wanderte Stephanorhinus kirchbergensis, the forest rhinoceros, is lim- wahrscheinlich nach jeder Kaltzeit erneut von Asien aus ein. ited to the interglacial periods and probably dispersed again Das Steppennashorn (Stephanorhinus hemitoechus) ist wie- and again after each cold period from Asia into Europe. The derum in Europa seit 450 000 Jahren heimisch. In Neumark- steppe rhinoceros (Stephanorhinus hemitoechus) again has Nord konnten diese drei Nashörner zusammen nachgewiesen been present in Europe for 450,000 years. All three types werden, was umso bemerkenswerter ist, weil das Wollhaar- of rhinoceros together could be documented in Neumark- nashorn im Allgemeinen als Vertreter der Glazialfaunen gilt. -
Megaloceros Giganteus) from the Pleistocene in Poland
Palaeontologia Electronica palaeo-electronica.org Healed antler fracture from a giant deer (Megaloceros giganteus) from the Pleistocene in Poland Kamilla Pawłowska, Krzysztof Stefaniak, and Dariusz Nowakowski ABSTRACT We evaluated the skull of an ancient giant deer with a deformity of one antler. The skull was found in the 1930s in the San River near Barycz, in southeastern Poland. Its dating (39,800±1000 yr BP) corresponds to MIS-3, when the giant deer was wide- spread in Europe. Our diagnostics for the antler included gross morphology, radiogra- phy, computed tomography, and histopathology. We noted signs of fracture healing of the affected antler, including disordered arrangement of lamellae, absence of osteons, and numerous Volkmann’s canals remaining after blood vessel loss. The antler defor- mity appears to be of traumatic origin, with a healing component. No similar evaluation process has been described previously for this species. Kamilla Pawłowska. corresponding author, Institute of Geology, Adam Mickiewicz University, Maków Polnych 16, Poznań 61-606, Poland, [email protected] Krzysztof Stefaniak. Division of Palaeozoology, Department of Evolutionary Biology and Ecology, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław 50-335, Poland, [email protected] Dariusz Nowakowski. Department of Anthropology, Wroclaw University of Environmental and Life Sciences, Kożuchowska 6/7, Wrocław 51-631, Poland, [email protected] Keywords: giant deer; Megaloceros giganteus; paleopathology; Pleistocene; Poland INTRODUCTION -
Историческое Развитие Парнопалых (Artiodactyla) Северной Евразии И Этапы Эв
ÝÂÎËÞÖÈß ÁÈÎÑÔÅÐÛ È ÁÈÎÐÀÇÍÎÎÁÐÀÇÈß 4. ÏÀËÅÎÝÊÎËÎÃÈß È ÝÂÎËÞÖÈß ÑÎÎÁÙÅÑÒ ÓÄÊ 569.73: 415 (551.77) Èñòîðè÷åñêîå ðàçâèòèå ïàðíîïàëûõ (Àrtiodactyla) Ñåâåðíîé Eâðàçèè è ýòàïû ýâîëþöèè èõ ñîîáùåñòâ â êàéíîçîå È.À. Âèñëîáîêîâà Ïàëåîíòîëîãè÷åñêèé èíñòèòóò ÐÀÍ, Ìîñêâà E-mail: [email protected] Ïðîàíàëèçèðîâàíà ýâîëþöèÿ ñîîáùåñòâ ïàðíîïàëûõ â êàéíîçîå è âûäåëåíû îñíîâíûå ýòàïû â èíòåðâàëå îò 56 äî 0,4 ìëí. ëåò íàçàä. Ðîñò ðàçíîîáðàçèÿ ïàðíîïàëûõ òåñíî ñâÿçàí ñ ýâîëþöèåé è äèâåðñèôèêàöèåé ðàñòèòåëüíîãî ïîêðîâà è èçìåíåíèÿìè êëèìàòà è ëàíä- øàôòîâ. Îñíîâíûå ðóáåæè ïðåîáðàçîâàíèÿ ñîîáùåñòâ â ïàëåîãåíå ñèíõðîííû êðóïíåé- øèì áèîñôåðíûì ñîáûòèÿì, à ïëèîöåí-ïëåéñòîöåíîâûå èçìåíåíèÿ îòðàæàþò êðóïíûå êîëåáàíèÿ êëèìàòà â ñåâåðíîì ïîëóøàðèè. Êëþ÷åâûå ñëîâà: ïàðíîïàëûå, ýâîëþöèÿ, îñíîâíûå ýòàïû, áèîðàçíîîáðàçèå, êàéíîçîé, Ñåâåðíàÿ Åâðàçèÿ. Îòðÿä ïàðíîïàëûõ (Artiodactyla) îäíî èç ìàãèñòðàëüíûõ íàïðàâëåíèé ýâîëþöèè ïëàöåíòàðíûõ ìëåêîïèòàþùèõ (Eutheria). Âîçíèêíóâ â ìåçîçîå, îí äîìèíèðóåò ñðåäè êðóï- íûõ ìëåêîïèòàþùèõ ïëàíåòû íàðÿäó ñ ïðèìàòàìè è õèùíûìè. Ýòî äèíàìè÷íî ðàçâèâàâ- øàÿñÿ ãðóïïà ìëåêîïèòàþùèõ õîðîøî ïðåäñòàâëåíà â èñêîïàåìîì ñîñòîÿíèè è óíèêàëüíà äëÿ èçó÷åíèÿ çàêîíîìåðíîñòåé ìàêðîýâîëþöèè è èçìåíåíèÿ áèîðàçíîîáðàçèÿ. Èñòîðèÿ ïàðíîïàëûõ òåñíî ñâÿçàíà ñ ýâîëþöèåé áèîñôåðû è ýâîëþöèåé ðàñòèòåëüíîãî ïîêðîâà Çåìëè è ðàçâîðà÷èâàëàñü íà ôîíå èçìåíåíèé î÷åðòàíèé ìàòåðèêîâ, ñîñòàâà àòìîñôåðû è åå öèðêóëÿöèè, êëèìàòà è ëàíäøàôòîâ. Õîðîøèå èíäèêàòîðû ïîñëåäíèõ, ýòè â îñíîâíîì ðàñòèòåëüíîÿäíûå ìëåêîïèòàþùèå ñ óñïåõîì èñïîëüçóþòñÿ ïðè ðåêîíñòðóêöèè ïðèðîä- íîé ñðåäû ïðîøëûõ ýïîõ è â áèîñòðàòèãðàôèè. Áîëüøîå ðàçíîîáðàçèå è õîðîøàÿ èçó÷åí- íîñòü ïàðíîïàëûõ ïîçâîëÿþò èñïîëüçîâàòü èõ äëÿ ïîçíàíèÿ èñòîðèè íàçåìíûõ áèîöåíî- çîâ êàéíîçîÿ è îñîáåííîñòåé ôîðìèðîâàíèÿ ñîâðåìåííûõ áèîìîâ.  ñòàòüå àíàëèçèðóþòñÿ ñóêöåññèè êîìïëåêñîâ ïàðíîïàëûõ, ñóùåñòâîâàâøèõ â Ñå- âåðíîé Åâðàçèè (íà òåððèòîðèè Ðîññèè, Ìîëäàâèè, Óêðàèíû, Ãðóçèè, Êàçàõñòàíà, Êèð- ãèçèè, Òàäæèêèñòàíà, Ìîíãîëèè è Ñåâåðíîãî Êèòàÿ) îò ýîöåíà äî ñåðåäèíû ñðåäíåãî ïëåéñòîöåíà (560,4 ìëí. -
Middle Pleistocene Protein Sequences from the Rhinoceros Genus Stephanorhinus and the Phylogeny of Extant and Extinct Middle/Late Pleistocene Rhinocerotidae
Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae Frido Welker1,2, Geoff M. Smith3,4, Jarod M. Hutson3,6, Lutz Kindler3,5, Alejandro Garcia-Moreno3, Aritza Villaluenga3, Elaine Turner3 and Sabine Gaudzinski-Windheuser3,5 1 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 2 BioArCh, Department of Archaeology, University of York, York, UK 3 MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, RGZM, Neuwied, Germany 4 Department of Anthropology, University of California Davis, Davis, CA, USA 5 Department of Pre- and Protohistoric Archaeology, Institute of Ancient Studies, Johannes-Gutenberg Universita¨t Mainz, Mainz, Germany 6 Current affiliation: Department of Paleobiology, Smithsonian Institution, Washington, D.C., USA ABSTRACT Background: Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore, -
Deer from Late Miocene to Pleistocene of Western Palearctic: Matching Fossil Record and Molecular Phylogeny Data
Zitteliana B 32 (2014) 115 Deer from Late Miocene to Pleistocene of Western Palearctic: matching fossil record and molecular phylogeny data Roman Croitor Zitteliana B 32, 115 – 153 München, 31.12.2014 Institute of Cultural Heritage, Academy of Sciences of Moldova, Bd. Stefan Cel Mare 1, Md-2028, Chisinau, Moldova; Manuscript received 02.06.2014; revision E-mail: [email protected] accepted 11.11.2014 ISSN 1612 - 4138 Abstract This article proposes a brief overview of opinions on cervid systematics and phylogeny, as well as some unresolved taxonomical issues, morphology and systematics of the most important or little known mainland cervid genera and species from Late Miocene and Plio-Pleistocene of Western Eurasia and from Late Pleistocene and Holocene of North Africa. The Late Miocene genera Cervavitus and Pliocervus from Western Eurasia are included in the subfamily Capreolinae. A cervid close to Cervavitus could be a direct forerunner of the modern genus Alces. The matching of results of molecular phylogeny and data from cervid paleontological record revealed the paleozoogeographical context of origin of modern cervid subfamilies. Subfamilies Capreolinae and Cervinae are regarded as two Late Miocene adaptive radiations within the Palearctic zoogeographic province and Eastern part of Oriental province respectively. The modern clade of Eurasian Capreolinae is significantly depleted due to climate shifts that repeatedly changed climate-geographic conditions of Northern Eurasia. The clade of Cervinae that evolved in stable subtropical conditions gave several later radiations (including the latest one with Cervus, Rusa, Panolia, and Hyelaphus) and remains generally intact until present days. During Plio-Pleistocene, cervines repeatedly dispersed in Palearctic part of Eurasia, however many of those lineages have become extinct. -
Variation and Mechanisms of Life History Evolution in Insular Dwarfism As Revealed
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.23.424186; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Title: 2 Variation and mechanisms of life history evolution in insular dwarfism as revealed 3 by a natural experiment 4 5 Author affiliation: 6 Shoji Hayashi1,2,*,**, Mugino O. Kubo3,*,**, Marcelo R. Sánchez-Villagra4, Hiroyuki 7 Taruno5, Masako Izawa6, Tsunehiro Shiroma6, Takayoshi Nakano2, Masaki Fujita7 8 9 1 Faculty of Biosphere-Geosphere Science, Okayama University of Science, Kita-ku 10 Ridaicho 1-1, Okayama, 700-0005, Japan; 2 Division of Materials and Manufacturing 11 Science, Graduate School of Engineering, Osaka University, Yamada-Oka, Suita, Osaka, 12 565-0871, Japan; 3 Department of Natural Environmental Studies, Graduate School of 13 Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277- 14 8563, Japan; 4 Paläontologisches Institut und Museum der Universität Zürich, Karl 15 Schmid-Strasse 4, CH-8006 Zürich, Switzerland; 5 Osaka Museum of Natural History, 16 Nagai Park 1-23, Higashi-Sumiyoshi-ku, Osaka, 546-0034, Japan; 6 Faculty of Science, 17 University of the Ryukyus, Okinawa 903-0213, Japan; 7 Department of Anthropology, 18 National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki 305- 19 0005, Japan 20 * Both authors contributed equally to this work. 21 ** Authors for correspondence: Shoji Hayashi e-mail: [email protected], Mugino 22 O.