Stephanorhinus Hundsheimensis

Total Page:16

File Type:pdf, Size:1020Kb

Stephanorhinus Hundsheimensis Quaternary International 302 (2013) 169e183 Contents lists available at SciVerse ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Stephanorhinus hundsheimensis (Rhinocerontidae, Mammalia) teeth from the early Middle Pleistocene of Isernia La Pineta (Molise, Italy) and comparison with coeval British material Manuel Ballatore a, Marzia Breda b,* a Department of Physics and Earth Sciences, University of Ferrara, Via Saragat, 1, Ferrara 44122, Italy b Department of Humanistic Studies, University of Ferrara, Corso Ercole I D’Este, 32, Ferrara 44100, Italy article info abstract Article history: The present work examines the abundant dental remains from the renowned anthropic site of Isernia La Available online 9 February 2013 Pineta (Molise, Italy), early Middle Pleistocene (Middle Galerian). The rhinoceros, Stephanorhinus hundsheimensis, is the most represented species after Bison, and is represented mainly by skull and dental remains and by strongly fractured long bones (suggesting exploitation of the carcasses by the hominine). The high sample size of the dental remains allowed a detailed analysis of the dental mor- phology. The frequency analysis of the morphological characters shows a high degree of regional var- iation within the species with the Isernia population significantly widening the morphological variability of S. hundsheimensis (thus limiting the diagnostic power of several characters). In particular, comparing S. hundsheimensis from Isernia with coeval British populations, some specimens could be safely assigned to S. hundsheimensis that do look strongly anomalous within the British sample but find a match in the wider morphological range of the Isernia specimens. From a biometrical point of view, the Isernia population attains slightly smaller sizes than the coeval British specimens, suggesting a latitudinal size increase gradient. Ó 2013 Elsevier Ltd and INQUA. All rights reserved. 1. Introduction Four Stephanorhinus species are recorded from the European Pleistocene: Stephanorhinus etruscus (Middle and Late Villafranchian, A great variety of rhinoceros species is recorded from the Eu- Early Pleistocene), Stephanorhinus hundsheimensis (Late Villa- ropean Pleistocene. Rhinocerontidae are among the most typical franchian and Galerian, late EarlyeMiddle Pleistocene), Stephano- elements of the Pleistocene mammal faunas and, thanks to their rhinus hemitoechus (Middle Galerian and Aurelian, MiddleeLate wide geographical distribution and number of forms and to their Pleistocene) and Stephanorhinus kirchbergensis (Late Galerian and good preservation rate, are useful biochronological markers. Re- Aurelian, late MiddleeLate Pleistocene). These species are morpho- mains of this taxon are known from the XVII century and were first logically very similar to each other and, due to the scarcity of remains referred to the genus Rhinoceros (at present represented by two in the different sites, the correct specific attribution is sometimes Asian species). During the past century, the European fossils rhi- difficult. In order to find diagnostic characters distinctive among the noceroses were located in the genus Dicerorhinus (at present rep- different species, researchers concentrate on dental material resented by D. sumatrensis), along with the well known extinct (Guérin, 1980; Fortelius et al., 1993; Lacombat, 2005, 2006a; van der Asian genus Coelodonta. Nowadays, the species from the European Made, 2010) which is generally more frequent and best preserved Pleistocene are referred to the genus Stephanorhinus (Groves, 1983) than the cranial or postcranial skeletal elements. This paper reports in which Fortelius et al. (1993) include Pliocene species. However, a detailed analysis of the rhinoceros dental material from Isernia La the name Dicerorhinus is still used by some authors (e.g. Guérin, Pineta (Molise, Italy), which has been attributed to S. hundsheimensis 2004). by Sala (1983) and Sala and Fortelius (1993). 1.1. Stephanorhinus hundsheimensis (Toula, 1902) * Corresponding author. S. hundsheimensis is a slender and medium sized rhinoceros, E-mail addresses: [email protected], [email protected] (M. Breda). with a partially ossified nasal septum. The dentition is reduced to 1040-6182/$ e see front matter Ó 2013 Elsevier Ltd and INQUA. All rights reserved. http://dx.doi.org/10.1016/j.quaint.2013.02.002 170 M. Ballatore, M. Breda / Quaternary International 302 (2013) 169e183 the jugal teeth, with the lack of first premolar. The teeth of The palaeoenvironment reconstruction supported by pollen S. hundsheimensis are low-crowned and very similar, in shape and analysis of the sediment from the archaeosurfaces, indicates proportions, to those of its possible parent species S. etruscus and, a steppe-grassland environment, with dominant Graminaceae, but as in the latter, probably adapted to a browsing diet. S. hemitoechus also tree species related to wet and marshy environment such as is distinguishable because of its higher hypsodonty (especially of Alnus, Salix and Populus (Accorsi et al., 1996). Presence of extended the molars), while S. kirchbergensis because of its larger size and grassland and restricted woodland, particularly in the valley bot- “molten” shape of the molars (Fortelius et al., 1993). tom and related to the presence of water, is in accordance with the S. hundsheimensis is recorded in the whole of Europe, in the late variety of large mammals: bison, rhinoceros and elephant are Early and Middle Pleistocene (Fortelius et al., 1993; Mazza et al., typical inhabitants of grassland; deer and wild boar of bush; hip- 1993; Lacombat, 2005; Schreiber, 2005; van der Made, 2010). popotamus indicates the presence of abundant water bodies and Lacombat (2006b), Fortelius et al. (1993), and Breda and Marchetti swamp. (2007) recognize two evolutionary stages: a smaller form from the Early Pleistocene (often misidentified with S. etruscus) and a larger 2. Materials and methods one from the early Middle Pleistocene. On the contrary, van der Made (2010) believes that these small forms are actually S. etruscus. In the teeth analysis, a total of 202 specimens have been studied, The brachyodont dentition and the slender, subcursorially some of them consisting in associated teeth, thus getting to a total structured limbs suggest that both S. etruscus and S. hundsheimensis number of 229 studied teeth. The material comes from the Isernia probably inhabited environments with variable forest cover similar La Pineta levels identified as 3a, 3coll and 3s 10-1 (Thun Hohenstein to those in which black rhino lives today, i.e. open scrub woodlands et al., 2009), and is now stored partially in the Museo del Paleolitico, and the margins of small woods (Mazza, 1993). Evidence for a var- in Isernia La Pineta, and partially in the Palaeontology and Prehis- iable forest cover has been suggested by the pollen analysis of the tory Museum “Piero Leonardi” of the University of Ferrara sediment adhering to S. etruscus-hundsheimensis bones from Leffe, (Department of Biology and Evolution). Northern Italy (Ravazzi et al., 2009). The Leffe record documents Most of the dental material is represented by isolated teeth so the occurrence of this rhinoceros in warm-temperate dense mixed the recognition of their place in the tooth row is sometimes diffi- forest to conifer forest, to open xerophytic communities and steppe cult. Identification of P2 and M3 is straightforward but distinction with tree birch and with sparse woodland patches. between P3 and P4 or M1 and M2 is often problematic because of The extinction of S. hundsheimensis is probably due to ecological their close morphology. A size-based distinction is not used in order competition: the more specialized rhinoceroses S. hemitoechus, to avoid data circularity and amplification of the average size dif- a grazer, and S. kirchbergensis, a stricter browser, probably over- ference among dental types. The following morphological dis- came the generalist S. hundsheimensis in both forest and grassland tinction for molars are used: in comparison to M1,M2 has a more habitats leading to its extinction through bilateral competition distally elongated metaloph resulting in a wider lingual valley, and (Kahlke and Kaiser, 2011). in a more trapezoidal shape in occlusal view (distal side shorter than medial one); M1 differs from M2 for the presence of a bulge along the syncline (see Fig. 1 for dental nomenclature). The pre- 1.2. Isernia La Pineta Palaeolithic site molars cannot be identified with certainty. Morphological analysis considered the characters analysed in Discovered in 1978 and now dated to 610,000 Æ 10,000 years previous studies on this taxon by Guérin (1980), Fortelius et al. (Coltorti et al., 2005), the archaeological levels of Isernia yielded an (1993) and Lacombat (2005). Fig. 2 summarizes the characters extremely rich and well-preserved amount of palaeontological re- examined and the different possible states for each. For the median mains and lithic artefacts, evidence of an ancient human settlement fossette (character d) a new state is introduced, here called along the river side. The mammal fauna from Isernia is particularly abundant and well-documented, although made up of isolated and commonly fragmented specimens (Arobba et al., 2004; Thun Hohenstein et al., 2009). Rhinoceroses are well represented by cranial and postcranial elements, with long bones usually frag- mented, but teeth and short bones generally intact. In terms of number of remains, S. hundsheimensis
Recommended publications
  • The Impact of Large Terrestrial Carnivores on Pleistocene Ecosystems Blaire Van Valkenburgh, Matthew W
    The impact of large terrestrial carnivores on SPECIAL FEATURE Pleistocene ecosystems Blaire Van Valkenburgha,1, Matthew W. Haywardb,c,d, William J. Ripplee, Carlo Melorof, and V. Louise Rothg aDepartment of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095; bCollege of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom; cCentre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa; dCentre for Wildlife Management, University of Pretoria, Pretoria, South Africa; eTrophic Cascades Program, Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR 97331; fResearch Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool L3 3AF, United Kingdom; and gDepartment of Biology, Duke University, Durham, NC 27708-0338 Edited by Yadvinder Malhi, Oxford University, Oxford, United Kingdom, and accepted by the Editorial Board August 6, 2015 (received for review February 28, 2015) Large mammalian terrestrial herbivores, such as elephants, have analogs, making their prey preferences a matter of inference, dramatic effects on the ecosystems they inhabit and at high rather than observation. population densities their environmental impacts can be devas- In this article, we estimate the predatory impact of large (>21 tating. Pleistocene terrestrial ecosystems included a much greater kg, ref. 11) Pleistocene carnivores using a variety of data from diversity of megaherbivores (e.g., mammoths, mastodons, giant the fossil record, including species richness within guilds, pop- ground sloths) and thus a greater potential for widespread habitat ulation density inferences based on tooth wear, and dietary in- degradation if population sizes were not limited.
    [Show full text]
  • High Herbivore Density Associated with Vegetation Diversity in Interglacial Ecosystems
    High herbivore density associated with vegetation diversity in interglacial ecosystems Christopher J. Sandoma,b,1, Rasmus Ejrnæsb, Morten D. D. Hansenc, and Jens-Christian Svenninga,1 aEcoinformatics and Biodiversity, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark; bWildlife Ecology, Biodiversity and Conservation, Department of Bioscience, Kalø, Aarhus University, DK-8410 Rønde, Denmark; cNatural History Museum Aarhus, DK-8000 Aarhus C, Denmark Edited by William J. Sutherland, University of Cambridge, Cambridge, United Kingdom, and accepted by the Editorial Board February 4, 2014 (received for review June 25, 2013) The impact of large herbivores on ecosystems before modern and the late Holocene (2,000–0yB.P.)(seeMaterials and Methods human activities is an open question in ecology and conservation. for further details). The Last Interglacial and Holocene periods For Europe, the controversial wood–pasture hypothesis posits that harbored temperate climates that allowed forest cover in the grazing by wild large herbivores supported a dynamic mosaic of region but with highly divergent assemblages of large herbivores vegetation structures at the landscape scale under temperate con- and under different human influences. The Last Interglacial had ditions before agriculture. The contrasting position suggests that 11 species of large herbivores (≥10 kg; Table S1) with a median European temperate vegetation was primarily closed forest with body weight of 524 kg (range, 19–6,500 kg), the largest being relatively small open areas, at most impacted locally by large her- Elephas antiquus (straight-tusked elephant) (Fig. 1), and no bivores. Given the role of modern humans in the world-wide dec- modern humans, because modern humans arrived in Europe only imations of megafauna during the late Quaternary, to resolve this 40–50,000 y ago (14).
    [Show full text]
  • PDF Viewing Archiving 300
    Bull. Soc. belge Géol., Paléont., Hydrol. T. 79 fasc. 2 pp. 167-174 Bruxelles 1970 Bull. Belg. Ver. Geol., Paleont., Hydrol. V. 79 deel 2 blz. 167-174 Brussel 1970 MAMMALS OF THE CRAG AND FOREST BED B. McW1LLIAMs SuMMARY. In the Red and Norwich Crags mastodonts gradually give way to the southern elephant, large caballine horses and deer of the Euctenoceros group become common. Large rodents are represented by Castor, Trogontherium and rarely Hystrix; small forms include species of Mimomys. Carnivores include hyaena, sabre-toothed cat, leopard, polecat, otter, bear, seal and walrus. The Cromer Forest Bed Series had steppe and forest forms of the southern elephant and the mastodont has been lost. Severa! species of giant deer become widespread and among the many rodents are a. number of voles which develop rootless cheek teeth. The mole is common. Warmth indicators include a monkey, and more commonly hippopotamus. Possible indicators of cold include glutton and musk ox. Rhinoceros is widespread, and it is a time of rapid evolution for the elk. Carnivores include hyaena, bear, glutton, polecat, marten, wold and seal. The interpretation of mammalian finds from is represented by bones which resemble the the Crags and Forest Bed is not an easy mole remains but are about twice their size. matter. A proportion of the remains have been derived from eatlier horizons, others are Order Primates discovered loose in modern coastal deposits, and early collectors often kept inadequate The order is represented at this period m records. Owing to the uncertain processes of England by a single record of Macaca sp., the fossilisation or inadequate collecting there are distal end of a teft humerus from a sandy many gaps in our knowledge of the mammal­ horizon of the Cromerian at West Runton, ian faunas of these times.
    [Show full text]
  • Last Interglacial (MIS 5) Ungulate Assemblage from the Central Iberian Peninsula: the Camino Cave (Pinilla Del Valle, Madrid, Spain)
    Palaeogeography, Palaeoclimatology, Palaeoecology 374 (2013) 327–337 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Last Interglacial (MIS 5) ungulate assemblage from the Central Iberian Peninsula: The Camino Cave (Pinilla del Valle, Madrid, Spain) Diego J. Álvarez-Lao a,⁎, Juan L. Arsuaga b,c, Enrique Baquedano d, Alfredo Pérez-González e a Área de Paleontología, Departamento de Geología, Universidad de Oviedo, C/Jesús Arias de Velasco, s/n, 33005 Oviedo, Spain b Centro Mixto UCM-ISCIII de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4, 28029 Madrid, Spain c Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria, 28040 Madrid, Spain d Museo Arqueológico Regional de la Comunidad de Madrid, Plaza de las Bernardas, s/n, 28801-Alcalá de Henares, Madrid, Spain e Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, s/n, 09002 Burgos, Spain article info abstract Article history: The fossil assemblage from the Camino Cave, corresponding to the late MIS 5, constitutes a key record to un- Received 2 November 2012 derstand the faunal composition of Central Iberia during the last Interglacial. Moreover, the largest Iberian Received in revised form 21 January 2013 fallow deer fossil population was recovered here. Other ungulate species present at this assemblage include Accepted 31 January 2013 red deer, roe deer, aurochs, chamois, wild boar, horse and steppe rhinoceros; carnivores and Neanderthals Available online 13 February 2013 are also present. The origin of the accumulation has been interpreted as a hyena den. Abundant fallow deer skeletal elements allowed to statistically compare the Camino Cave fossils with other Keywords: Early Late Pleistocene Pleistocene and Holocene European populations.
    [Show full text]
  • (Panthera Leo Fossilis) at the Gran Dolina Site, Sierra De Atapuerca, Spain
    Journal of Archaeological Science 37 (2010) 2051e2060 Contents lists available at ScienceDirect Journal of Archaeological Science journal homepage: http://www.elsevier.com/locate/jas The hunted hunter: the capture of a lion (Panthera leo fossilis) at the Gran Dolina site, Sierra de Atapuerca, Spain Ruth Blasco a,*, Jordi Rosell a, Juan Luis Arsuaga b,c, José M. Bermúdez de Castro d, Eudald Carbonell a,e a IPHES (Institut català de Paleoecologia Humana i Evolució Social), Unidad Asociada al CSIC, Àrea de Prehistòria, Universitat Rovira i Virgili, Plaça Imperial Tarraco, 1, 43005 Tarragona, Spain b Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, 28040 Madrid, Spain c Centro de Investigación (UCM-ISCIII) de Evolución y Comportamiento Humanos, C/Sinesio Delgado, 4 (Pabellón 14), 28029 Madrid, Spain d CENIEH (Centro Nacional de Investigación sobre Evolución Humana), Avenida de la Paz 28, 09004 Burgos, Spain e Visiting professor, Institute of Vertebrate Paleontology and Paleoanthropology of Beijing (IVPP) article info abstract Article history: Many Pleistocene caves and rock shelters contain evidence of carnivore and human activities. For this Received 22 December 2009 reason, it is common to recover at these sites faunal remains left by both biological agents. In order to Received in revised form explain the role that carnivores play at the archaeological sites it is necessary to analyse several elements, 15 March 2010 such as the taxonomical and skeletal representation, the age profiles, the ratio of NISP to MNI, the Accepted 17 March 2010 anthropogenic processing marks on the carcasses (location and purpose of cutmarks and burning and bone breakage patterns), carnivore damage (digested bones, location and frequencies of toothmarks and bone Keywords: breakage), length of the long bones, frequencies of coprolites and vertical distribution of the faunal Subsistence strategies Hunting remains, inter alia.
    [Show full text]
  • Large Mammal Biochronology Framework in Europe at Jaramillo: the Epivillafranchian As a Formal Biochron
    Quaternary International 389 (2015) 84e89 Contents lists available at ScienceDirect Quaternary International journal homepage: www.elsevier.com/locate/quaint Large mammal biochronology framework in Europe at Jaramillo: The Epivillafranchian as a formal biochron Luca Bellucci a, Raffaele Sardella a, Lorenzo Rook b, * a Dipartimento di Scienze della Terra, “Sapienza e Universita di Roma”, P.le A. Moro 5, 00185, Roma, Italy b Dipartimento di Scienze della Terra, Universita di Firenze, via G. La Pira 4, 50121, Firenze, Italy article info abstract Article history: European large mammal assemblages in the 1.2e0.9 Ma timespan included Villafranchian taxa together Available online 3 December 2014 with newcomers, mostly from Asia, persisting in the Middle Pleistocene. A number of biochronological schemes have been suggested to define these “transitional” faunas. The term Epivillafranchian, originally Keywords: proposed by Bourdier in 1961 and reconsidered as a biochron by Kahlke in the 1990s, is at present widely Biochronology introduced in the literature. This contribution, after selecting the most representative European large Jaramillo mammal assemblages within this chronological interval, provides a new definition proposal for the Epivillafranchian Epivillafranchian as a biochron included within the Praemegaceros verticornis FO/Bison menneri FO, and Late Villafranchian Crocuta crocuta Galerian FO. Europe © 2014 Elsevier Ltd and INQUA. All rights reserved. 1. Historical background communities of this time span primarily include survivors from the latest Villafranchian, as well as more evolved taxa characteristic of The Villafranchian Mammal Age corresponds, in the Interna- the beginning Middle Pleistocene (Kahlke, 2007; Rook and tional Stratigraphic Scale, to a timespan from Late Pliocene to most Martinez Navarro, 2010).
    [Show full text]
  • The Rhinoceroses from Neumark-Nord and Their Nutrition
    During the Pleistocene, there were three main groups of Im Pleistozän traten drei Hauptgruppen von Nashörnern auf, rhinoceroses, each of them in a different part of the Old jede in einem anderen Teil der Alten Welt: die afrikanische World: the African lineage leads to the modern square- Linie führt zu den heutigen Breitmaul- und Spitzmaulnashör- lipped rhinoceros and black rhinoceros, the Asian group nern, die asiatische Gruppe umfasst das Panzer-, das Suma- includes the great one-horned rhinoceros, the Sumatra tra- und das Javanashorn sowie ihre Vorfahren. Zur dritten rhinoceros and the Java rhinoceros as well as their ances- Gruppe, die im späten Pleistozän ausstarb, gehören Coelo- tors. The third group, which became extinct in the Late donta und Stephanorhinus. Das Wollhaarnashorn (Coelodonta Pleistocene, includes Coelodonta and Stephanorhinus. The antiquitatis) trat in Europa zum ersten Mal während der woolly rhinoceros (Coelodonta antiquitatis) appeared in Elsterkaltzeit auf. Stephanorhinus kirchbergensis, das Wald- Europe for the first time during the Elsterian cold period. nashorn, ist auf die Interglaziale beschränkt und wanderte Stephanorhinus kirchbergensis, the forest rhinoceros, is lim- wahrscheinlich nach jeder Kaltzeit erneut von Asien aus ein. ited to the interglacial periods and probably dispersed again Das Steppennashorn (Stephanorhinus hemitoechus) ist wie- and again after each cold period from Asia into Europe. The derum in Europa seit 450 000 Jahren heimisch. In Neumark- steppe rhinoceros (Stephanorhinus hemitoechus) again has Nord konnten diese drei Nashörner zusammen nachgewiesen been present in Europe for 450,000 years. All three types werden, was umso bemerkenswerter ist, weil das Wollhaar- of rhinoceros together could be documented in Neumark- nashorn im Allgemeinen als Vertreter der Glazialfaunen gilt.
    [Show full text]
  • Insular Vertebrate Evolution: the Palaeontological Approach
    21 FOOD HABITS OF uPRAEMEGACEROS" CAZ/OTI (DEPÉRET, 1897) FROM DRAGONARA CAVE (NW SARDINIA, ITALY) INFERRED FROM CRANIAL MORPHOLOGY AND DENTAL WEAR Maria Rita PALOMBO PALOMBO, M.R. 2005. Food habits of "Praemegaceros"cazioti (Depéret, 1897) from Dragonara Cave (NW Sardinia, Italy) inferred from cra­ nial morphology and dental wear. In ALCOVER, JA & BOVER, P. (eds.): Proceedings ofthe International Symposium "Insular Vertebrate Evo­ lution: the Palaeontological Approach': Monografies de la Societat d'Història Natural de les Balears, 12: 233-244. Resum S'ha estudiat l'adaptació alimentària de "Praemegaceros" cazioti (Depéret, 1897), en base a la rica mostra trobada als dipòsits del Pleistocè tardà de la cova de Dragonara (nord-oest de Sardenya, Itàlia). Amb aquest objecte, s'han pres en consi­ deració els trets cranials, així com el gradient de desgast d'abrasió - atrició (mesodesgast), i els efectes produïts a l'esmalt den­ tari per les particules contingudes als vegetals, per l'acidesa i/o duresa del menjar i per la força i direcció dels moviments mandibulars (microdesgast). Els resultats de les anàlisis qualitatives i quantitatives són consistents amb una adaptació alimentària a una dieta mixta, tal com també ho són algunes característiques cranio-dentàries: en particular, el morro, més aviat quadrat, les grans àrees d'inserció del musculus masseter, el desenvolupament de la prominència massetèrica sobre el M', la profunditat i altura del corpus i ramus a I' angulus mandibulae, la superfície d'inserció reduïda del musculus temporalis a la mandibula i les dents hipsodontes. Els resultats de la nostra anàlisi suggereixen que el cèrvid de la Cova Dragonara era un animal de dieta mixta, que va incrementar el consum d'herba en comparació amb el seu possible ancestre.
    [Show full text]
  • Evolutionary History of Red Deer with Special Reference to Islands
    Evolutionary History of Red Deer with Special Reference to Islands Adrian Lister, Natural History Museum, London Mitochondrial DNA phylogeny of red/sika deer Meiri et al 2017 elaphus hanglu nippon canadensis Currently suggested taxonomy Lorenzini & Garofalo 2015, Meiri et al 2017, IUCN 2017 C. elaphus C. hanglu C. nippon C. canadensis Suggested region of origin and dispersal RITA LORENZINI and LUISA GAROFALO 2015 Earliest red deer fossils European early Middle Pleistocene Kashmir stag C. hanglu (0.9 Ma) ‘Cervus acoronatus’ Later… European coronate red deer E. Asian wapiti type (C. canadensis) (C. elaphus) from 400 ka fossils modern distribution historical distribution Meiri et al 2017 The dwarf deer of Jersey Belle Hougue Cave Age 120 ka (Last Interglacial) Lister 1989, 1995 The bones are a small form of red deer, Cervus elaphus Shoulder ht Body mass Mainland 1.25-1.30 m 200-250 kg Jersey 0.7 m 36 kg Three ways to get onto an island: 1. You are already there. Sea level rises and cuts off the island 2. You swim or raft across open sea 3. You are taken there by people large deer La Cotte, Jersey – large deer large deer 150ka: 100m contour 125ka: 10m contour 6,000 years of isolation in the Last Interglacial. Dwarf form lost when Jersey reconnected in last glaciation. Mediterranean islands: degree of endemicity, and subspecies/species status, depends on time of isolation Praemegaceros ‘Pseudodama’ Megaloceros Cervus Dama d Eucladoceros a c b a b c CORSICA/SARDINIA d MALTA SICILY CRETE Praemegaceros cazioti Cervus spp. & C. e. corsicanus Dama carburangelensis & C.
    [Show full text]
  • Beatriz Fajardo
    stone age institute publication series Series Editors Kathy Schick and Nicholas Toth Stone Age Institute Gosport, Indiana and Indiana University, Bloomington, Indiana Number 1. THE OLDOWAN: Case Studies into the Earliest Stone Age Nicholas Toth and Kathy Schick, editors Number 2. BREATHING LIFE INTO FOSSILS: Taphonomic Studies in Honor of C.K. (Bob) Brain Travis Rayne Pickering, Kathy Schick, and Nicholas Toth, editors Number 3. THE CUTTING EDGE: New Approaches to the Archaeology of Human Origins Kathy Schick, and Nicholas Toth, editors Number 4. THE HUMAN BRAIN EVOLVING: Paleoneurological Studies in Honor of Ralph L. Holloway Douglas Broadfield, Michael Yuan, Kathy Schick and Nicholas Toth, editors STONE AGE INSTITUTE PUBLICATION SERIES NUMBER 3 Series Editors Kathy Schick and Nicholas Toth the cutting edge: New Approaches to the Archaeology of Human Origins Editors Kathy Schick Stone Age Institute & Indiana University Nicholas Toth Stone Age Institute & Indiana University Stone Age Institute Press · www.stoneageinstitute.org 1392 W. Dittemore Road · Gosport, IN 47433 COVER CAPTIONS AND CREDITS Top: Homo habilis Utilizing Stone Tools. Painting by artist-naturalist Jay H. Matternes. Copyright 1995, Jay H. Matternes. Inspired by a prehistoric scenario by K. Schick and N. Toth in Making Silent Stones Speak: Human Origins and the Dawn of Technology (1993), Simon and Schuster, New York. Pp.147-149. Lower right: Whole fl ake of trachyte lava from the 2.6 million-year-old site of Gona EG-10, Ethiopia. Reported by S. Semaw (2006), “The Oldest Stone Artifacts from Gona (2.6-2.5 Ma), Afar, Ethiopia: Implications for Understanding the Earliest Stages of Knapping” in The Oldowan: Case Studies into the Earliest Stone Age, eds.
    [Show full text]
  • Middle Pleistocene Protein Sequences from the Rhinoceros Genus Stephanorhinus and the Phylogeny of Extant and Extinct Middle/Late Pleistocene Rhinocerotidae
    Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae Frido Welker1,2, Geoff M. Smith3,4, Jarod M. Hutson3,6, Lutz Kindler3,5, Alejandro Garcia-Moreno3, Aritza Villaluenga3, Elaine Turner3 and Sabine Gaudzinski-Windheuser3,5 1 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany 2 BioArCh, Department of Archaeology, University of York, York, UK 3 MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, RGZM, Neuwied, Germany 4 Department of Anthropology, University of California Davis, Davis, CA, USA 5 Department of Pre- and Protohistoric Archaeology, Institute of Ancient Studies, Johannes-Gutenberg Universita¨t Mainz, Mainz, Germany 6 Current affiliation: Department of Paleobiology, Smithsonian Institution, Washington, D.C., USA ABSTRACT Background: Ancient protein sequences are increasingly used to elucidate the phylogenetic relationships between extinct and extant mammalian taxa. Here, we apply these recent developments to Middle Pleistocene bone specimens of the rhinoceros genus Stephanorhinus. No biomolecular sequence data is currently available for this genus, leaving phylogenetic hypotheses on its evolutionary relationships to extant and extinct rhinoceroses untested. Furthermore, recent phylogenies based on Rhinocerotidae (partial or complete) mitochondrial DNA sequences differ in the placement of the Sumatran rhinoceros (Dicerorhinus sumatrensis). Therefore,
    [Show full text]
  • Human Origin Sites and the World Heritage Convention in Eurasia
    World Heritage papers41 HEADWORLD HERITAGES 4 Human Origin Sites and the World Heritage Convention in Eurasia VOLUME I In support of UNESCO’s 70th Anniversary Celebrations United Nations [ Cultural Organization Human Origin Sites and the World Heritage Convention in Eurasia Nuria Sanz, Editor General Coordinator of HEADS Programme on Human Evolution HEADS 4 VOLUME I Published in 2015 by the United Nations Educational, Scientific and Cultural Organization, 7, place de Fontenoy, 75352 Paris 07 SP, France and the UNESCO Office in Mexico, Presidente Masaryk 526, Polanco, Miguel Hidalgo, 11550 Ciudad de Mexico, D.F., Mexico. © UNESCO 2015 ISBN 978-92-3-100107-9 This publication is available in Open Access under the Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) license (http://creativecommons.org/licenses/by-sa/3.0/igo/). By using the content of this publication, the users accept to be bound by the terms of use of the UNESCO Open Access Repository (http://www.unesco.org/open-access/terms-use-ccbysa-en). The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of UNESCO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The ideas and opinions expressed in this publication are those of the authors; they are not necessarily those of UNESCO and do not commit the Organization. Cover Photos: Top: Hohle Fels excavation. © Harry Vetter bottom (from left to right): Petroglyphs from Sikachi-Alyan rock art site.
    [Show full text]