Bsc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Bsc Chemistry SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No.4: Instrumental Methods and Analysis Module No. and Title MODULE No.16: Microwave Spectroscopy Module Tag FSC_P4_M16 FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction- Microwave Spectroscopy 3. Difference between Infrared and Microwave Spectroscopy 4. Instrumentation for Microwave spectroscopy 5. Working of microwave spectrometer 6. Applications of Microwave Spectroscopy 7. Summary FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy 1. Learning Outcomes After studying this module, you shall be able to know about- Introduction to Microwave Spectroscopy Differences between infrared and microwave spectroscopy Instrumentation for microwave spectroscopy Applications of microwave spectroscopy 2. Introduction: Microwave Spectroscopy Microwave spectroscopy is proving in recent years a great asset in the study of various problems in physics, chemistry, electronics and even astronomy. Particularly, this has been found to be very useful in the determination of the structures of those molecules which do not give good results by using Raman and infrared spectroscopy. The ability to measure frequencies more precisely in the microwave region allows very accurate calculations, than in the infrared-visible-ultraviolet region and accuracy of the order of 0.001 to 0.005 Aº is possible. These spectra result from transitions between the rotational energy levels of a gaseous molecule on the absorption of radiations falling in the microwave region. These spectra are shown by molecules which possess a permanent dipole moment, e.g. HCl, CO, H2O vapor, NO, etc. Homo-nuclear diatomic molecules such as H2, Cl2, etc., and linear polyatomic molecules such as CO2, which do not possess a dipole moment, do not show microwave spectra. The microwave spectroscopy explores that part of the electromagnetic spectrum which is extending from 100µm (3x1013 Hz) to 1 centimeter (3x1010 Hz). This region of electromagnetic spectrum is designated as the microwave region. This lies between the far infrared and conventional radio frequency regions. Spectroscopic applications of microwave consist almost exclusively of absorption works, rather than the emission type. In most of the cases, absorption of microwave energy represents changes of the absorbing molecule from one rotational level to another. FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy Therefore, the microwave spectroscopy deals with the pure rotational motion of the molecules and is also known as rotational spectroscopy. The condition for observing resonance in that region is that a molecule must possess permanent dipole moment. When a molecule having dipole moment rotates, it generates an electric field which can interact with the electric component of the microwave radiation. During the interaction, energy can be absorbed or emitted and thus the rotation of the molecule gives rise to a spectrum. If molecules are not having dipole moment, interactions are not possible and these molecules are said to be “microwave inactive”. Examples of such molecules are H2, Cl2, etc. On the other hand, the molecules like HCl, CH3Cl, etc. are having dipole moments and their interaction will give rise to a spectrum. Such molecules are said to be “microwave active”. 3. Generally, the microwave spectra obtained in most of the molecules are absorption spectra. Theoretical considerations reveal that the probability of microwave spectra is only about one per cent of the optical absorption. 3. Differences between Infrared and Microwave spectroscopy 4. The main differences between infrared and microwave spectroscopy are as follows: - 1. The absorption spectrum in the microwave region is characteristic of the absorbing molecule as a whole, whereas spectrum in the infrared region is characteristic of the functional groups present in the absorbing molecule. 2. The resolution of the lines in the microwave spectrum is very much greater than that obtained by the infrared method. 3. In microwave spectroscopy, the substance must be in the gaseous state. On the other hand, in the infrared spectrum the substance must be in the solid, liquid or gaseous state. 4. In microwave spectroscopy, the spectra observed are nearly always absorption spectra. But in the infrared spectroscopy the spectra observed may be absorption or emission spectra. FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy 4. Instrumentation for Microwave Spectroscopy A microwave spectrometer consists of the following essential components: 1. The source and Monochromator- Reflex klystron valve is the main source of radiations in the microwave region. As the klystron valve emits radiations of a very narrow frequency range (called monochromatic), it acts as its own Monochromator. Furthermore, the frequency of the emitted radiation depends on the voltage that is applied to the klystron valve. As the voltage is varied over a given range, the emitted radiation can thus be made to sweep through a region of the microwave range. Klystrons are readily available from 3000 to 5000 Mc/second and weaker signals up to 250000 Mc/second may be obtained with harmonic generators. One slight disadvantage of the klystron valve is that it radiates out very small energy which is of the order of 30 milliwatts. However, since the energy radiated is concentrated into very narrow frequency band, a sharply tuned detector may be activated to produce a strong signal. 2. The Beam Direction – The radiation emitted by the klystron cannot be handled with mirrors and lenses, but can be most advantageously transmitted through hollow metallic conductors of such geometry that the electric and magnetic fields can be utilized to the greatest extent. These are known as wave guides. These are hollow tubes of copper or silver of rectangular cross section inside which the radiation is confined. In order to maintain the direction of beam as well as its focusing, the wave guides may be bent or tapered. The wave guides are generally evacuated because if air is present in them, considerable absorption of the radiation will occur. The wave guides used in the microwave spectrometer is now commonly used in the chemical research facilities. FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy 3. Sample and Sample Space- The sample is placed in a piece of evacuated wave- guide which is closed at both ends by thin mica windows. Round holes are made in the tube for evacuation purposes and for introduction of the gas under test. The pressure of the gas is adjusted to make the absorption line sharp. The sample must be in the gaseous state for studying in the microwave region. The pressure of the order of 0.01 mm mercury is generally required to give absorption spectrum. Many solid or liquid substances can be studied by the microwave techniques provided their vapor pressures are above the value of 0.01 mm of mercury. 4. Detector – A Quartz crystal is generally used as a detector. It is mounted on a cartridge made up of a tungsten whisker held in point contact with the crystal. In place of crystal detector, an ordinary superheterodyne radio receiver can be used provided it may be tuned to the appropriate high frequency. But a simple quartz crystal is more sensitive and easier to use. 5. Spectrum analyzer- It consists of an amplifier of detected energy and an indicator which may be either a cathode ray oscillography or a pen and ink-recorder. The vibrations emitted by the quartz crystal produces an electric signal which is amplified and then displayed as a pattern on an oscilloscope screen or a recording on a chart by the pen-and-ink recorder. FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy A diagrammatic sketch of one of the simplest type of microwave spectrometers is shown in the following figure- Figure 1- Simplified diagram of Microwave spectrometer. 5. Working of microwave spectrometer Monochromatic radiations of various wavelengths in the microwave region emitted by klystron valve are allowed to pass through the sample space containing the gaseous sample of the substance under investigation. Then, the radiations are made to conduct along a rectangular tube called a waveguide. After this the radiations are received by the quartz crystal detector which is situated at the far end of the waveguide. After receiving the radiations from the waveguide it vibrates and produces an electrical signal which is amplified by amplifier and then displayed either as a recording on a chart or as a pattern on an oscilloscope screen. The pattern obtained on the chart or on the screen of the oscillography enables one to determine the frequency or the range of frequencies of the detected microwave radiation. FORENSIC SCIENCE PAPER No.4: Instrumental Methods and Analysis MODULE No.16: Microwave Spectroscopy S.No. Molecules Bond r(A) Bond r(A) 1 HCN C-H 1.06317 C-N 1.15535 2 ClCN C-Cl 1.629 C-N 1.163 3 BrCN C-Br 1.790 C-N 1.159 4 NNO N-N 1.126 N-O 1.191 5 OCS C-O 1.164 C-S 1.559 6 CH3Cl C-H 1.0959 C-Cl 1.178 7 CH3F C-H 1.109 C-F 1.385 8 SiH3Br Si-H 1.570 Si-H 2.209 Table 1: Molecular Data determined by Microwave Spectroscopy The microwave spectrometer described above is usually used for the measurements of the highest accuracy because the absorption lines are narrow and fairly faithful in shape and relative intensities. The use of oscilloscope poses a serious problem that the amplifier bandwidth cannot be narrowed to remove noise and, thus, the sensitivity is not exceptionally high. At the same time the new lines for unknown substances cannot be obtained very easily unless their frequencies are known within the narrow limits.
Recommended publications
  • Few Electron Paramagnetic Resonances Detection On
    FEW ELECTRON PARAMAGNETIC RESONANCES DETECTION TECHNIQUES ON THE RUBY SURFACE By Xiying Li Submitted in partial fulfillment of the requirements For the degree of Doctor of Philosophy Dissertation Adviser: Dr. Massood Tabib-Azar Co-Adviser: Dr. J. Adin Mann, Jr. Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY August, 2005 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the dissertation of ______________________________________________________ candidate for the Ph.D. degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents TABLE OF CONTENTS ................................................................................................................................. II LIST OF FIGURES ...................................................................................................................................... IV ABSTRACT............................................................................................................................................... VII CHAPTER 1 INTRODUCTION .................................................................................................................1
    [Show full text]
  • B1.4 Microwave and Terahertz Spectroscopy
    Microwave and terahertz pectroscopy 1063 B1.4 Microwave and terahertz spectroscopy Geoffrey A Blake 8 1.4.1 Introduction Spectroscopy, or the study of the interaction of light with matter. has become one of the major tools of the natural and physical ciences during this century. As the wavelength of the radiation is varied across the electromagnetic spectrum, characteristic properties of atoms, molecule , liquid and solids are probed. In the optical and ultraviolet regions (A. ""' I J-Lm up to 100 nm) it is the electronic structure of the material that is investigated, while at infrared wavelengths (""' 1-30 J-Lm) the vibrational degrees of freedom dominate. Microwave spectroscopy began in 1934 with the observation of the "-'20 GHz absorption spectrum of ammonia by Cleeton and Williams. Here we will consider the mjcrowave region of the electromagnetic spectrum to cover the l to I 00 x I 09 Hz, or I to I 00 GHz (A. ""' 30 em down to 3 mm). range. While the ammonia mjcrowave spectrum probes the inversion motion of this unique pyramidal molecule, more typically microwave spectroscopy is associated with the pure rotational motion of gas phase species. The section of the electromagnetic spectrum extending roughly from 0.1 to I 0 x 10 12 Hz (0.1-1 0 THz, 3- 300 cm- 1) is commonly known as the far-infrared (FIR), submjllimetre or terahertz (THz) region, and therefore lies between the mjcrowave and infrared windows. Accordingly, THz spectroscopy shares both cientific and technological characteri tic with its longer- and shorter-wavelength neighbours. While rich in cientific information, the FIR or THz region of the spectrum has, until recently, been notoriously lacking in good radiation ources--earning the dubious nickname 'the gap in the electromagnetic spectrum'.
    [Show full text]
  • Perspective: Local Ferromagnetic Resonance Measurement Techniques
    REVIEW OF SCIENTIFIC INSTRUMENTS 79, 040901 ͑2008͒ Perspective: Local ferromagnetic resonance measurement techniques: “Invited Review Article: Microwave spectroscopy based on scanning thermal microscopy: Resolution in the nanometer range” †Rev. Sci. Instrum. 79, 041101 „2008…‡ Nan Mo and Carl E. Patton Department of Physics, Colorado State University, Fort Collins, Colorado 80523, USA ͑Received 17 March 2008; accepted 31 March 2008; published online 24 April 2008͒ According to Vonsovskii,1 ferromagnetic resonance original Frait/Soohoo schemes at different levels of sophisti- ͑FMR͒ was unknowingly discovered by Arkad’yev in 1911.2 cation. These approaches have never been able to achieve The standard citation for the experimental discovery of FMR spatial resolutions below about 10 ␮m or so. is to Griffiths3 for his observation of the rather broad absorp- In 1988, a new approach to local FMR based on thermal tion profile and an “anomalous” electron paramagnetic reso- effects was introduced by Pelzl16 at Ruhr University, Bo- nance ͑EPR͒ field for in-plane magnetized electroplated fer- chum, Germany. This method has led to a highly sensitive 4,5 romagnetic films. One year later, Kittel explained the and very fine scale FMR measurement capability down to anomalous FMR fields by taking the dynamic demagnetizing 10 nm or so. This technique may be termed “scanning ther- fields into account. FMR is distinct from EPR because the mal FMR microscopy” ͑SThM͒. For the conventional near FMR field or frequency is shifted from the usual range of field local FMR methods introduced above, a single probe pure electron spin resonance values by substantial amounts plays a dual role in both the excitation and detection of the because of both static and dynamic demagnetizing field ef- magnetic response.
    [Show full text]
  • Precision Physics with Low-Energy Antiprotons — from Antiproton Decelerator to Flair∗
    Vol. 41 (2010) ACTA PHYSICA POLONICA B No 2 PRECISION PHYSICS WITH LOW-ENERGY ANTIPROTONS — FROM ANTIPROTON DECELERATOR TO FLAIR∗ Eberhard Widmann Stefan Meyer Institute, Austrian Academy of Sciences Boltzmanngasse 3, 1090 Vienna, Austria (Received January 5, 2010) Experiments with low-energy antiprotons are currently performed at the Antiproton Decelerator of CERN. The main experiments deal with the spectroscopy of antiprotonic helium, an exotic three-body system, and the formation and spectroscopy of antihydrogen. A next generation facility FLAIR (Facility for Low-energy Antiproton Research) is planned at the FAIR facility, generating a factor 100 higher flux of stopped antiprotons and also offering continuous antiprotons beam, which will enable nuclear and particle physics type experiments. DOI:10.5506/APhysPolB.41.249 PACS numbers: 36.10.Gv, 11.30.Er, 14.20.Dh, 39.30.+w 1. Introduction The physics with low-energy antiprotons currently concentrates on pre- cision spectroscopy of antiprotonic atoms and antihydrogen. The reason for that is given by the characteristics of the only low-energy antiproton beam available currently at the Antiproton Decelerator (AD) of CERN. The AD [1,2] produces pulses of 3–5 × 107 antiprotons of 5.3 MeV kinetic energy every 90–120 second, which makes the beam only usable to be trapped in Penning traps or stopped in low-density gas targets. Two collaborations working at the AD, ATRAP [3] and ALPHA [4], have as goal to produce an- tihydrogen, the simplest atom consisting only of antimatter, from its charged constituents by trapping antiprotons and positrons in Pennning traps, to trap the resulting antihydrogen in a neutral-atom trap and to perform 1S–2S laser spectroscopy.
    [Show full text]
  • Nodal Quasiparticle Dynamics in the Heavy Fermion Superconductor Cecoin5 Revealed by Precision Microwave Spectroscopy
    ARTICLE Received 18 Oct 2012 | Accepted 21 Aug 2013 | Published 20 Sep 2013 DOI: 10.1038/ncomms3477 Nodal quasiparticle dynamics in the heavy fermion superconductor CeCoIn5 revealed by precision microwave spectroscopy C.J.S. Truncik1, W.A. Huttema1, P.J. Turner1,S.O¨ zcan2, N.C. Murphy1, P.R. Carrie`re1, E. Thewalt1, K.J. Morse1, A.J. Koenig1, J.L. Sarrao3 & D.M. Broun1 CeCoIn5 is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed com- parisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn5 superconducting state. The similarities to cuprates, in particular to ultra-clean YBa2Cu3Oy, are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below Tc; and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasi- particle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass. 1 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6. 2 Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, UK. 3 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. Correspondence and requests for materials should be addressed to D.M.B.
    [Show full text]
  • (BRP) COURSE SPECTROSCOPY a by Prof. Dr. Rosari Saleh
    TEACHING INSTRUCTIONAL DESIGN (BRP) COURSE SPECTROSCOPY A by Prof. Dr. Rosari Saleh Undergraduate Program in Physics Faculty of Mathematics and Natural Sciences Universitas Indonesia Depok 2020 PREFACE The Learning Design Book (BRP) for the Spectroscopy A course contains a lesson plan for one semester and is compiled as a learning reference for the Spectroscopy A course in the Undergraduate Program at the Department of Physics, Faculty of Mathematics and Natural Sciences UI. The Spectroscopy A course is a compulsory subject for students of the Bachelor of Physics program who major in Condensed Matter Physics. The requirements needed by students to be able to take this course are already taking Basic Physics 3 and Modern Physics courses. The Spectroscopy A lecture which is held in one semester is designed to provide students with a deeper description of the theory of several spectroscopic techniques and their applications. The first unit is an introduction to the characteristics of electromagnetic radiation and the types of interactions that occur between matter and electromagnetic radiation as well as techniques and instrumentation in spectroscopy. The microwave spectroscopy used to identify the rotational characteristics of the molecules is contained in the second unit. The third and fourth units contain techniques and instrumentation in infrared spectroscopy and Raman spectroscopy to identify the structure of matter through the characteristics of vibrations and rotational vibrations of the molecules that make up the material as well as the harmonic oscillator approach. The basic theory, techniques and instrumentation for luminescence spectroscopy are contained in the fifth unit. The sixth unit contains the basic theory, techniques and instrumentation of electron spectroscopy for atoms and molecules.
    [Show full text]
  • QPR No. 71 (II
    II. MICROWAVE SPECTROSCOPY Prof. M. W. P. Strandberg J. G. Ingersoll J. W. Mayo Prof. R. L. Kyhl P. F. Kellen H. Pauwels Dr. B. D. Nageswara Rao J. D. Kierstead W. J. Schwabe J. M. Andrews, Jr. S. H. Lerman A. Fukumoto R. Huibonhoa J. Shah A. AN APPLICATION OF MICROWAVE FREQUENCY ULTRASONICS TO THE MEASUREMENT OF THE FERMI SURFACE OF GALLIUM This report is a summary of a Ph.D. thesis submitted to the Department of Physics, M.I.T., August 19, 1963. What is believed to be the first application of microwave ultrasonics to the obser- vation of magnetoacoustic oscillations in metals is described in the author's thesis. Difficulties in making single-crystal metal samples suitably thin and flat for this pur- pose and in bonding them to ultrasonic transducers have been overcome, to make what had hitherto been considered an impractical use of microwave ultrasonics into a very powerful one. The large values of qf andWTr easily achieved at such frequencies pro- vide the principal advantage over radio -frequency techniques. The theory of ultrasonic attenuation in metals has been reviewed and a general expression for the electronic contribution to the attenuation in a metal with an arbitrary Fermi surface at an arbitrary frequency (but below the plasma frequency) derived. For the free-electron gas this expression reduces to the familiar results of Pippard. The results of experiments on gallium for 6 different combinations of magnetic field and ultrasonic propagation directions are reported. Sixty-one series of magnetoacoustic oscillations are presented, of which 55 are tentatively identified as geometric reso- nances, and 6 as ultrasonic cyclotron resonances.
    [Show full text]
  • Microwave Spectroscopy on Heavyfermion Systems
    Phys. Status Solidi B 250, No. 3, 439–449 (2013) / DOI 10.1002/pssb.201200925 b Part of Special Issue on solidi pssstatus Quantum Criticality and Novel Phases www.pss-b.com physica basic solid state physics Microwave spectroscopy on Feature Article heavy-fermion systems: Probing the dynamics of charges and magnetic moments Marc Scheffler*,1, Katrin Schlegel1, Conrad Clauss1, Daniel Hafner1, Christian Fella1, Martin Dressel1, Martin Jourdan2,Jo¨ rg Sichelschmidt3, Cornelius Krellner3,4, Christoph Geibel3, and Frank Steglich3 1 Physikalisches Institut, Universita¨t Stuttgart, 70550 Stuttgart, Germany 2 Institut fu¨r Physik, Johannes Gutenberg Universita¨t, 55099 Mainz, Germany 3 Max-Planck-Institut fu¨r Chemische Physik fester Stoffe, 01187 Dresden, Germany 4 Physikalisches Institut, Goethe-Universita¨t Frankfurt, 60438 Frankfurt/Main, Germany Received 5 November 2012, revised 16 December 2012, accepted 17 December 2012 Published online 25 February 2013 Keywords electron spin resonance, heavy fermions, microwave spectroscopy, optics of metals * Corresponding author: e-mail scheffl@pi1.physik.uni-stuttgart.de, Phone: þ49 711 68564944, Fax: þ49 711 68564886 Investigating solids with light gives direct access to charge heavy fermions. Microwave studies with focus on quantum dynamics, electronic and magnetic excitations. For heavy criticality in heavy fermions concern the charge response, but fermions, one has to adjust the frequency of the probing light to also the magnetic moments can be addressed via electron spin the small characteristic energy scales, leading to spectroscopy resonance (ESR). We discuss the case of YbRh2Si2, the open with microwaves. We review general concepts of the questions concerning ESR of heavy fermions, and how these frequency-dependent conductivity of heavy fermions, includ- might be addressed in the future.
    [Show full text]
  • Microwave Frequency Vortex Dynamics of the Heavy Fermion
    MICROWAVE FREQUENCY VORTEX DYNAMICS OF THE HEAVY FERMION SUPERCONDUCTOR CeCoIn5 by Natalie Murphy B.Sc., Trent University, 2010 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN THE DEPARTMENT OF PHYSICS FACULTY OF SCIENCE c Natalie Murphy 2012 SIMON FRASER UNIVERSITY Fall 2012 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing." Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review, and news reporting is likely to be in accordance with the law, particularly if cited appropriately. APPROVAL Name: Natalie Murphy Degree: Master of Science Title of Thesis: Microwave Frequency Vortex Dynamics of the Heavy Fermion Superconductor CeCoIn5 Examining Committee: Dr. Patricia Mooney, Professor (Chair) Dr. David M. Broun, Senior Supervisor Associate Professor Dr. J. Steven Dodge, Supervisor Associate Professor Dr. Erol Girt, Supervisor Associate Professor Dr. George Kirczenow, Internal Examiner Professor Date Approved: August 29th 2012 ii Partial Copyright Licence Abstract Magnetic fields penetrate superconductors as quantized tubes of magnetic flux, or vortices. A transport current passed through such a superconductor exerts a transverse force on the vortices. The dissipation resulting from vortex motion is characterized by a vortex viscos- ity, and microwave techniques provide a powerful means of accessing this in the presence of pinning. A novel microwave spectroscopy apparatus has been set up that allows sensitive mea- surements of the dynamical properties of vortices to be made at temperatures down to 80 mK, in magnetic fields up to 9 T, and at frequencies from 2.25 to 25 GHz.
    [Show full text]
  • A Spin-Flip Cavity for Microwave Spectroscopy of Antihydrogen”
    DISSERTATION Titel der Dissertation “A Spin-Flip Cavity for Microwave Spectroscopy of Antihydrogen” Verfasserin Mag. rer. nat. Silke Federmann angestrebter akademischer Grad Doktorin der Naturwissenschaften (Dr. rer. nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 791 411 Dissertationsgebiet lt. Studienblatt: Physik Betreuerin/Betreuer: Prof.Dr.EberhardWidmann Abstract The present thesis is a contribution to the Asacusa (Atomic Spectroscopy And Collisions Using Slow Antiprotons) experiment. The aim of this exper- iment is to measure the ground-state hyperfine structure of antihydrogen. This is done using a Rabi-like spectrometer line consisting of an antihydro- gen source, a microwave cavity, a sextupole magnet and a detector. The cavity induces spin-flip transitions in the ground-state hyperfine levels of antihydrogen whereas the sextupole magnet selects the antihydrogen atoms according to their spin state. Such a configuration allows the measurements of the hyperfine transition in antihydrogen with very high precision. A com- parison with the corresponding transitions in hydrogen would thus provide a very sensitive test of the charge-parity-time (Cpt) symmetry. In the context of this thesis, the central piece of this spectrometer line, the spin flip cavity, was designed and implemented. The delicacy of this task was achieving the required field homogeneity: It needs to be better than 90% over a volume of 1000 cm3 (wavelength 21cm) to yield reasonable ≈ experimental resolution. Furthermore, to avoid uncontrolled spin-flip transitions (Majorana spin- flips), a static magnetic field superimposed to the microwave field is neces- sary. This static field has to fulfill similar requirements on field homogeneity as the microwave field. A suitable static field including an efficient shielding solution was implemented in the context of this thesis as well.
    [Show full text]
  • Broadband Corbino and Resonant Stripline Techniques
    20th IMEKO TC4 International Symposium and 18th International Workshop on ADC Modelling and Testing Research on Electric and Electronic Measurement for the Economic Upturn Benevento, Italy, September 15-17, 2014 Measuring the microwave response of superconductors: broadband Corbino and resonant stripline techniques Marc Scheffler1, M. Maximilian Felger1, Markus Thiemann1, Daniel Hafner1, Katrin Schlegel1, Martin Dressel1, Konstantin S. Ilin2, Michael Siegel2, Silvia Seiro3, Christoph Geibel3, Frank Steglich3 1 1. Physikalisches Institut, Universität Stuttgart, Germany, [email protected] 2 Institut für Mikro- und Nanoelektronische Systeme (IMS), KIT, Karlsruhe, Germany 3 Max Planck Institute for Chemical Physics of Solids, Dresden, Germany Abstract – Superconducting materials are of great types of superconductors using microwaves. interest both for the fundamental understanding of electrons in solids as well as for a range of different A. Optical response of superconductors applications. Studying superconductors with Though microwave experiments are technically per- microwaves offers a direct experimental access to the formed in a very different manner compared to electrodynamic response of these materials, which in conventional optics, the actual outcome is rather similar: turn can reveal fundamental material properties such one probes the electrodynamics of the sample under as the superconducting penetration depth. Here we study. Therefore, we briefly review the optical response describe two different techniques to
    [Show full text]
  • Physics at CERN's Antiproton Decelerator Arxiv:1304.3721V1
    Physics at CERN's Antiproton Decelerator M. Hori,1;2 J. Walz3;4 1Max-Planck-Institut f¨urQuantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany 2Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan 3Institut f¨urPhysik, Johannes Gutenberg-Universit¨at, D-55099 Mainz, Germany 4Helmholtz Institut Mainz D-55099 Mainz, Germany April 16, 2013 Abstract The Antiproton Decelerator (AD) facility of CERN began operation in 1999 to serve experi- ments for studies of CPT invariance by precision laser and microwave spectroscopy of antihydrogen (H) and antiprotonic helium (pHe+) atoms. The first 12 years of AD operation saw cold H syn- thesized by overlapping clouds of positrons (e+) and antiprotons (p) confined in magnetic Penning traps. Cold H was also produced in collisions between Rydberg positronium (P s) atoms and p. Ground-state H was later trapped for up to ∼ 1000 s in a magnetic bottle trap, and microwave transitions excited between its hyperfine levels. In the pHe+ atom, deep ultraviolet transitions were measured to a fractional precision of (2.3{5) × 10−9 by sub-Doppler two-photon laser spectroscopy. From this the antiproton-to-electron mass ratio was determined as Mp=me =1836.1526736(23), which agrees with the p value known to a similar precision. Microwave spectroscopy of pHe+ yielded a measurement of the p magnetic moment with a precision of 0:3%. More recently, the arXiv:1304.3721v1 [physics.atom-ph] 12 Apr 2013 magnetic moment of a single p confined in a Penning trap was measured with a higher precision, as µp = −2:792845(12)µnucl in nuclear magnetons.
    [Show full text]