Microwave Spectroscopy on Heavyfermion Systems
Phys. Status Solidi B 250, No. 3, 439–449 (2013) / DOI 10.1002/pssb.201200925 b Part of Special Issue on solidi pssstatus Quantum Criticality and Novel Phases www.pss-b.com physica basic solid state physics Microwave spectroscopy on Feature Article heavy-fermion systems: Probing the dynamics of charges and magnetic moments Marc Scheffler*,1, Katrin Schlegel1, Conrad Clauss1, Daniel Hafner1, Christian Fella1, Martin Dressel1, Martin Jourdan2,Jo¨ rg Sichelschmidt3, Cornelius Krellner3,4, Christoph Geibel3, and Frank Steglich3 1 Physikalisches Institut, Universita¨t Stuttgart, 70550 Stuttgart, Germany 2 Institut fu¨r Physik, Johannes Gutenberg Universita¨t, 55099 Mainz, Germany 3 Max-Planck-Institut fu¨r Chemische Physik fester Stoffe, 01187 Dresden, Germany 4 Physikalisches Institut, Goethe-Universita¨t Frankfurt, 60438 Frankfurt/Main, Germany Received 5 November 2012, revised 16 December 2012, accepted 17 December 2012 Published online 25 February 2013 Keywords electron spin resonance, heavy fermions, microwave spectroscopy, optics of metals * Corresponding author: e-mail scheffl@pi1.physik.uni-stuttgart.de, Phone: þ49 711 68564944, Fax: þ49 711 68564886 Investigating solids with light gives direct access to charge heavy fermions. Microwave studies with focus on quantum dynamics, electronic and magnetic excitations. For heavy criticality in heavy fermions concern the charge response, but fermions, one has to adjust the frequency of the probing light to also the magnetic moments can be addressed via electron spin the small characteristic energy scales, leading to spectroscopy resonance (ESR). We discuss the case of YbRh2Si2, the open with microwaves. We review general concepts of the questions concerning ESR of heavy fermions, and how these frequency-dependent conductivity of heavy fermions, includ- might be addressed in the future.
[Show full text]