Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G

Total Page:16

File Type:pdf, Size:1020Kb

Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum Terrestrial Gastropods of the Columbia Basin, British Columbia Robert G. Forsyth, Volunteer, Royal British Columbia Museum Acknowledgements CIP data Introduction Terrestrial Gastropods in British Columbia What are Terrestrial Gastropods? Terrestrial Gastropods in the Columbia Basin Distribution of Terrestrial Gastropods Introduced Species Identification of Species Collecting, Preserving and Dissecting Terrestrial Gastropods Morphology The Shell The Animal: External Features Some Internal Anatomy Format of this Report Systematic Checklist of the Terrestrial Gastropods of the Columbia Basin Key to Terrestrial Gastropods of British Columbia Explanation to the key Species Accounts Family Cionellidae Family Euconulidae Family Vertiginidae Family Zonitidae Family Valloniidae Family Vitrinidae Family Punctidae Family Limacidae Family Discidae Family Agriolimacidae Family Oreohelicidae Family Polygyridae Family Arionidae Family Thysanophoridae Family Succineidae Family Helicidae Glossary Literature Cited Royal British Columbia Museum (250) 356-RBCM (7226) 675 Belleville Street 1-888-447-7977 Victoria, British Columbia http://www.royalbcmuseum.bc.ca CANADA V8W 9W2 1 Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum Acknowledgements Many people helped either directly or indirectly with this report. Barry Roth (Research Associate, Museum of Paleontology, University of California, Berkeley) identified Babine Mountain specimens of Pristiloma chersinella and some other material to which the Kootenay specimens were subsequently compared. He also kindly reviewed this paper. Heike Reise (Staatliches Museum fur Naturkunde Grlitz, Germany) and John M.C. Hutchinson (School of Biological Sciences, University of Bristol, Bristol, England) made many suggestions on the manuscript, provided literature and specimens. H. Reise also arranged the loan of speci- mens from Staatliches Museum fur Naturkunde Grlitz, which she and J. Hutchinson collected in 1998. Frederike Verspoor (RBCM librarian), Richard E. Petit (North Myrtle Beach, South Carolina), Harry G. Lee (Jacksonville, Florida) and Rachel Collin (Field Museum of Natural History, Chicago, Illinois) assisted in locating hard-to-find literature. Suzanne Beauchesne (Victoria, B.C.) and Drew Skinner (Bremerton, Washington) offered advice, information or specimens, and Tammy Forsyth helped collect specimens and search out literature. The key was improved immensely by the suggestions offered by Larry Williams (Burnaby, B.C.). Thanks to Charles Salekin who donated the first Columbia Basin record of Cepaea nemoralis from Nelson, B.C. Thanks to Phil Lambert, who made editorial suggestions to improve the text. Finally, I would like to thank Peter Newroth and Philip Lambert, Royal British Columbia Museum, who gave me the opportunity to take on this project and who, along with Kelly Sendall, provided the facilities, equipment and other support, and collected specimens. Royal British Columbia Museum (250) 356-RBCM (7226) 675 Belleville Street 1-888-447-7977 Victoria, British Columbia http://www.royalbcmuseum.bc.ca CANADA V8W 9W2 2 Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum Royal British Columbia Museum (250) 356-RBCM (7226) 675 Belleville Street 1-888-447-7977 Victoria, British Columbia http://www.royalbcmuseum.bc.ca CANADA V8W 9W2 3 Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum Terrestrial Gastropods in British Columbia Terrestrial, or land, gastropods -- hereafter referred to as snails and slugs -- occur almost everywhere in British Columbia, from alpine meadows, screes, coniferous mountain forests and valley lowlands to urban gardens and parks. We notice larger species during wet weather in particular, but as a rule, slugs and snails are small, shun light and seek cool, moist places under logs, rocks and vegetation, making them difficult to find. The hard, spiral, calcareous shell of snails capture the interest of naturalists, and gardeners are likely to be very familiar with those species regarded as pests because of their insatiable appetites. Several species of terrestrial molluscs also serve as intermediate hosts for nematode parasites of ungulates (Blood 1963; Boag & Wishart 1982). The snails and slugs of British Columbia have never been adequately documented. The primary source of information for this region is Pilsbry's four-part monograph (1939, 1940, 1946, 1948). This work, how- ever, provides little information pertaining to British Columbia and the information is dated and often difficult to use. Publications since Pilsbry are scattered in various scientific journals and deal only with a few taxa or other geographic areas. Popular literature on the group is almost nonexistent. This report is part of the Living Landscapes Project (1997 to 1999), sponsored by the Royal BC Mu- seum (RBCM) and the Columbia Basin Trust to study the natural and human history of the Columbia River Basin (also known as the Kootenays). Given the paucity of information on terrestrial gastropods in British Columbia, a study of this kind seemed timely. The RBCM's collections revealed several species of snails and slugs not found elsewhere in the province. This Website provides identification aids to the species in the region and brings together information on their biology, ecology and distribution. What are Terrestrial Gastropods? Snails and slugs belong to the phylum Mollusca, a large and diverse group of non-segmented invertebrate animals living in the ocean, freshwater and on land. The largest subdivision of the Phylum Mollusca, Class Gastropoda (the gastropods), includes several well-known examples: snails, slugs, limpets, conchs and nudibranchs. Gastropods have a distinct head with tentacles and eyes, and a broad, flat foot for locomo- tion. There is a visceral mass dorsally, which is at least partially covered by a mantle. The mantle encloses a mantle cavity that either contains gills for respiration or is modified to form a "lung". The visceral mass is usually protected by a calcareous shell. The three subclasses of gastropods are based on the form and position of the respiratory organs, as well as on other anatomy. Members of the subclass Prosobranchia have gills located in front of the heart. Prosobranchs, such as limpets, abalones and whelks, live in marine, freshwater and terrestrial environments, but the majority are marine. There are relatively few terrestrial prosobranchs and none occur in British Columbia. The subclass Opisthobranchia has gills located behind the heart. All opisthobranchs, including the shell-less sea slugs, and some shelled forms, are marine. The subclass Pulmonata include mostly land snails and slugs, but a few are found in freshwater or in the sea. The mantle cavity of terrestrial pulmonates is modified into an organ capable of breathing air. All the terrestrial molluscs in British Columbia are pulmonates. The three Orders within Pulmonata are defined by the number of pairs of tentacles, the position of the eyes on the head, and other anatomical details. The Basommatophora have one pair of tentacles with an eye at Royal British Columbia Museum (250) 356-RBCM (7226) 675 Belleville Street 1-888-447-7977 Victoria, British Columbia http://www.royalbcmuseum.bc.ca CANADA V8W 9W2 4 Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum the base of each. The group occurs mostly in freshwater but a few are terrestrial. Carychium is the only basommatophoran genus in British Columbia. The largest order, Stylommatophora, has two pairs of tenta- cles with the eyes at the tip of the upper pair. The tips of Stylommatophoran tentacles can be retracted inside the tentacle. Most terrestrial molluscs belong to the Order Stylommatophora. Systellommatophora is a relatively small group of slugs with no representatives in British Columbia. Like stylommatophorans, this group has a second pair of tentacles with eyes at their tips; however, the tentacles can be contracted but not retracted. Terrestrial slugs are gastropods with a reduced shell that in most groups is internal. Slugs belong to several unrelated lineages, since shell reduction and a tendency towards a sluglike form has evolved several times within the gastropods. Royal British Columbia Museum (250) 356-RBCM (7226) 675 Belleville Street 1-888-447-7977 Victoria, British Columbia http://www.royalbcmuseum.bc.ca CANADA V8W 9W2 5 Living Landscapes Terrestrial Gastropods of the Columbia Basin, British Columbia by Robert G. Forsyth Copyright 1999 Royal British Columbia Museum Terrestrial Malacology in the Columbia Basin, British Columbia The snails and slugs in British Columbia have received little stud. Four brief accounts (Whiteaves 1905; Vanatta 1906; Berry 1922; Carl & Hardy 1945) and the monograph of Pilsbry (1939-1948) are the only literature having individual records of terrestrial gastropods of our study region: the Columbia Basin. The remoteness and ruggedness of much of B.C., the lack of knowledgeable individuals, and the difficulty of observing, collecting and studying what are mostly small species, have likely
Recommended publications
  • San Gabriel Chestnut ESA Petition
    BEFORE THE SECRETARY OF THE INTERIOR PETITION TO THE U.S. FISH AND WILDLIFE SERVICE TO PROTECT THE SAN GABRIEL CHESTNUT SNAIL UNDER THE ENDANGERED SPECIES ACT © James Bailey CENTER FOR BIOLOGICAL DIVERSITY Notice of Petition Ryan Zinke, Secretary U.S. Department of the Interior 1849 C Street NW Washington, D.C. 20240 [email protected] Greg Sheehan, Acting Director U.S. Fish and Wildlife Service 1849 C Street NW Washington, D.C. 20240 [email protected] Paul Souza, Director Region 8 U.S. Fish and Wildlife Service Pacific Southwest Region 2800 Cottage Way Sacramento, CA 95825 [email protected] Petitioner The Center for Biological Diversity is a national, nonprofit conservation organization with more than 1.3 million members and supporters dedicated to the protection of endangered species and wild places. http://www.biologicaldiversity.org Failure to grant the requested petition will adversely affect the aesthetic, recreational, commercial, research, and scientific interests of the petitioning organization’s members and the people of the United States. Morally, aesthetically, recreationally, and commercially, the public shows increasing concern for wild ecosystems and for biodiversity in general. 1 November 13, 2017 Dear Mr. Zinke: Pursuant to Section 4(b) of the Endangered Species Act (“ESA”), 16 U.S.C. §1533(b), Section 553(3) of the Administrative Procedures Act, 5 U.S.C. § 553(e), and 50 C.F.R. §424.14(a), the Center for Biological Diversity and Tierra Curry hereby formally petition the Secretary of the Interior, through the United States Fish and Wildlife Service (“FWS”, “the Service”) to list the San Gabriel chestnut snail (Glyptostoma gabrielense) as a threatened or endangered species under the Endangered Species Act and to designate critical habitat concurrently with listing.
    [Show full text]
  • Factors Affecting the Structure and Distribution of Terrestrial Pulmonata
    Proceedings of the Iowa Academy of Science Volume 73 Annual Issue Article 60 1966 Factors Affecting the Structure and Distribution of Terrestrial Pulmonata Charles G. Atkins Let us know how access to this document benefits ouy Copyright ©1966 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Atkins, Charles G. (1966) "Factors Affecting the Structure and Distribution of Terrestrial Pulmonata," Proceedings of the Iowa Academy of Science, 73(1), 408-416. Available at: https://scholarworks.uni.edu/pias/vol73/iss1/60 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Atkins: Factors Affecting the Structure and Distribution of Terrestrial P Factors Affecting the Structure and Distribution of Terrestrial Pulmonata CHARLES G. ATKINS Abstracts Soil CaCO. levels were determined for six ecosystems in Washtenaw and Wayne Counties, Michigan and in Linn County, Iowa; and correlation between these results and the shell thickness of certain terrestrial snails was made. Species used were Anguispira alternata ( Say), Triodopsis multilineata (Say), and T. albolabris (Say). Two ecosystems had high caco. levels ( 120-144 ppm), three had intermedi­ ate levels ( 93-99ppm) and one had a low level ( 40 ppm). 'Width/thickness ratios of live and cast shells showed that those in high calcium ecosystems had thicker shells than those in low calcium ecosystems, though there were large de­ viations in the thickness values.
    [Show full text]
  • Conservation Assessment for Cryptomastix Hendersoni
    Conservation Assessment for Cryptomastix hendersoni, Columbia Oregonian Cryptomastix hendersoni, photograph by Bill Leonard, used with permission. Originally issued as Management Recommendations February 1999 by John S. Applegarth Revised Sept 2005 by Nancy Duncan Updated April 2015 By: Sarah Foltz Jordan & Scott Hoffman Black (Xerces Society) Reviewed by: Tom Burke USDA Forest Service Region 6 and USDI Bureau of Land Management, Oregon and Washington Interagency Special Status and Sensitive Species Program Cryptomastix hendersoni - Page 1 Preface Summary of 2015 update: The framework of the original document was reformatted to more closely conform to the standards for the Forest Service and BLM for Conservation Assessment development in Oregon and Washington. Additions to this version of the Assessment include NatureServe ranks, photographs of the species, and Oregon/Washington distribution maps based on the record database that was compiled/updated in 2014. Distribution, habitat, life history, taxonomic information, and other sections in the Assessment have been updated to reflect new data and information that has become available since earlier versions of this document were produced. A textual summary of records that have been gathered between 2005 and 2014 is provided, including number and location of new records, any noteworthy range extensions, and any new documentations on FS/BLM land units. A complete assessment of the species’ occurrence on Forest Service and BLM lands in Oregon and Washington is also provided, including relative abundance on each unit. Cryptomastix hendersoni - Page 2 Table of Contents Preface 1 Executive Summary 4 I. Introduction 6 A. Goal 6 B. Scope 6 C. Management Status 6 II. Classification and Description 7 A.
    [Show full text]
  • Interior Columbia Basin Mollusk Species of Special Concern
    Deixis l-4 consultants INTERIOR COLUMl3lA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN cryptomasfix magnidenfata (Pilsbly, 1940), x7.5 FINAL REPORT Contract #43-OEOO-4-9112 Prepared for: INTERIOR COLUMBIA BASIN ECOSYSTEM MANAGEMENT PROJECT 112 East Poplar Street Walla Walla, WA 99362 TERRENCE J. FREST EDWARD J. JOHANNES January 15, 1995 2517 NE 65th Street Seattle, WA 98115-7125 ‘(206) 527-6764 INTERIOR COLUMBIA BASIN MOLLUSK SPECIES OF SPECIAL CONCERN Terrence J. Frest & Edward J. Johannes Deixis Consultants 2517 NE 65th Street Seattle, WA 98115-7125 (206) 527-6764 January 15,1995 i Each shell, each crawling insect holds a rank important in the plan of Him who framed This scale of beings; holds a rank, which lost Would break the chain and leave behind a gap Which Nature’s self wcuid rue. -Stiiiingfieet, quoted in Tryon (1882) The fast word in ignorance is the man who says of an animal or plant: “what good is it?” If the land mechanism as a whole is good, then every part is good, whether we understand it or not. if the biota in the course of eons has built something we like but do not understand, then who but a fool would discard seemingly useless parts? To keep every cog and wheel is the first rule of intelligent tinkering. -Aido Leopold Put the information you have uncovered to beneficial use. -Anonymous: fortune cookie from China Garden restaurant, Seattle, WA in this “business first” society that we have developed (and that we maintain), the promulgators and pragmatic apologists who favor a “single crop” approach, to enable a continuous “harvest” from the natural system that we have decimated in the name of profits, jobs, etc., are fairfy easy to find.
    [Show full text]
  • 86 Animal Miraculum Discovery of Living Anguispira Alternata (Say
    Discovery of Living Anguispira alternata (Say, 1816) (Discidae: Gastropoda) in Louisiana, USA Russell L. Minton*, Erin L. Basiger, and Casey B. Nolan Department of Biology, University of Louisiana at Monroe, 700 University Avenue, Monroe, LA 71209-0520, USA (Accepted January 29, 2010) Of the 13 recognized species of Anguispira in the US, 2 are listed as occurring in Louisiana (NatureServe 2009). (A) Anguispira alternata (Say, 1819) is a pulmonate land snail found throughout the eastern US, including states bordering the Mississippi River to the west (Hubricht 1985). The other species, A. strongylodes (Pfeiffer, 1854), is found across the southern US, with a range that narrowly overlaps A. alternata at its northern boundary. The shell of A. strongylodes differs from that of A. alternata by lacking streaks along the base and the umbilicus and by having smaller spots along the shell periphery (Pilsbry 1948). Hubricht (1985) listed only fossil A. alternata as occurring in Louisiana and Mississippi, while NatureServe (2009) lists it as extirpated in both states. Pilsbry viewed strongylodes as a weakly differentiated subspecies of A. alternata endemic to east-central Texas, although Hubricht (1960) later elevated strongylodes to species status and established its currently recognized range (Hubricht 1985). During a recent survey of Black Bayou Lake National Wildlife Refuge (32.6°N, 92.04°W) in Monroe, LA, we collected (B) a number of living and dead specimens that matched the original description and other published images of A. alternata and not A. strongylodes. These specimens possessed the color patterns described by Pilsbry (1948), most notably prominent spots on the periphery and streaks on the underside that separate A.
    [Show full text]
  • THE GEOMETRY of COILING in GASTROPODS Thompson.6
    602 ZO6LOGY: D. M. RA UP PROC. N. A. S. 3 Cole, L. J., W. E. Davis, R. M. Garver, and V. J. Rosen, Jr., Transpl. Bull., 26, 142 (1960). 4 Santos, G. W., R. M. Garver, and L. J. Cole, J. Nat. Cancer Inst., 24, 1367 (1960). I Barnes, D. W. H., and J. F. Loutit, Proc. Roy. Soc. B., 150, 131 (1959). 6 Koller, P. C., and S. M. A. Doak, in "Immediate and Low Level Effects of Ionizing Radia- tions," Conference held in Venice, June, 1959, Special Supplement, Int. J. Rad. Biol. (1960). 7 Congdon, C. C., and I. S. Urso, Amer. J. Pathol., 33, 749 (1957). 8 Biological Problems of Grafting, ed. F. Albert and P. B. Medawar (Oxford University Press, 1959). 9 Lederberg, J., Science, 129, 1649 (1959). 10Burnet, F. M., The Clonal Selection Theory of Acquired Immunity (Cambridge University Press, 1959). 11 Billingham, R. E., L. Brent, and P. B. Medawar, Phil. Trans. Roy. Soc. (London), B239, 357 (1956). 12 Rubin, B., Natyre, 184, 205 (1959). 13 Martinez, C., F. Shapiro, and R. A. Good, Proc. Soc. Exper. Biol. Med., 104, 256 (1960). 14 Cole, L. J., Amer. J. Physiol., 196, 441 (1959). 18 Cole, L. J., in Proceedings of the IXth International Congress of Radiology, Munich 1959 (Georg Thieme Verlag, in press). 16 Cole, L. J., R. M. Garver, and M. E. Ellis, Amer. J. Physiol., 196, 100 (1959). 17 Cole, L. J., and R. M. Garver, Nature, 184, 1815 (1959). 18 Cole, L. J., and W. E. Davis, Radiation Res., 12, 429 (1960).
    [Show full text]
  • The Slugs of Bulgaria (Arionidae, Milacidae, Agriolimacidae
    POLSKA AKADEMIA NAUK INSTYTUT ZOOLOGII ANNALES ZOOLOGICI Tom 37 Warszawa, 20 X 1983 Nr 3 A n d rzej W ik t o r The slugs of Bulgaria (A rionidae , M ilacidae, Limacidae, Agriolimacidae — G astropoda , Stylommatophora) [With 118 text-figures and 31 maps] Abstract. All previously known Bulgarian slugs from the Arionidae, Milacidae, Limacidae and Agriolimacidae families have been discussed in this paper. It is based on many years of individual field research, examination of all accessible private and museum collections as well as on critical analysis of the published data. The taxa from families to species are sup­ plied with synonymy, descriptions of external morphology, anatomy, bionomics, distribution and all records from Bulgaria. It also includes the original key to all species. The illustrative material comprises 118 drawings, including 116 made by the author, and maps of localities on UTM grid. The occurrence of 37 slug species was ascertained, including 1 species (Tandonia pirinia- na) which is quite new for scientists. The occurrence of other 4 species known from publications could not bo established. Basing on the variety of slug fauna two zoogeographical limits were indicated. One separating the Stara Pianina Mountains from south-western massifs (Pirin, Rila, Rodopi, Vitosha. Mountains), the other running across the range of Stara Pianina in the^area of Shipka pass. INTRODUCTION Like other Balkan countries, Bulgaria is an area of Palearctic especially interesting in respect to malacofauna. So far little investigation has been carried out on molluscs of that country and very few papers on slugs (mostly contributions) were published. The papers by B a b o r (1898) and J u r in ić (1906) are the oldest ones.
    [Show full text]
  • Predatory Poiretia (Stylommatophora, Oleacinidae) Snails: Histology and Observations
    Vita Malacologica 13: 35-48 20 December 2015 Predatory Poiretia (Stylommatophora, Oleacinidae) snails: histology and observations Renate A. HELWERDA Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands email: [email protected] Key words: Predation, predatory snails, drilling holes, radula, pedal gland, sole gland, acidic mucus ABSTRACT The Mediterranean species occur in rather dry, often rocky habitats, which are openly to sparsely vegetated. The predatory behaviour of Poiretia snails is studied. One However, they also occur in anthropogenically affected areas aspect of this behaviour is the ability to make holes in the such as gardens and parks (Kittel, 1997). The snails are main - shells of prey snails. The radula and the histology of the ly active at night and are hidden away under rocks and leaf mucous glands support the assumption that Poiretia secretes litter during the day, although they can also be found crawling acidic mucus to produce these holes. Observation of a around during daytime if the weather is rainy or cloudy and Poiretia compressa (Mousson, 1859) specimen yielded the moist (Wagner, 1952; Maassen, 1977; Kittel, 1997). During insight that its activities relied on the availability of moisture the hot summer months, Poiretia snails aestivate by burying and not on light conditions. It preyed on a wide range of snail themselves in soil or under rocks and sealing their apertures species, but only produced holes in shells when the aperture with an epiphragm (Kittel, 1997). was blocked. It usually stabbed its prey with a quick motion Poiretia snails prey on a wide variety of pulmonate snails.
    [Show full text]
  • December 2011
    Ellipsaria Vol. 13 - No. 4 December 2011 Newsletter of the Freshwater Mollusk Conservation Society Volume 13 – Number 4 December 2011 FMCS 2012 WORKSHOP: Incorporating Environmental Flows, 2012 Workshop 1 Climate Change, and Ecosystem Services into Freshwater Mussel Society News 2 Conservation and Management April 19 & 20, 2012 Holiday Inn- Athens, Georgia Announcements 5 The FMCS 2012 Workshop will be held on April 19 and 20, 2012, at the Holiday Inn, 197 E. Broad Street, in Athens, Georgia, USA. The topic of the workshop is Recent “Incorporating Environmental Flows, Climate Change, and Publications 8 Ecosystem Services into Freshwater Mussel Conservation and Management”. Morning and afternoon sessions on Thursday will address science, policy, and legal issues Upcoming related to establishing and maintaining environmental flow recommendations for mussels. The session on Friday Meetings 8 morning will consider how to incorporate climate change into freshwater mussel conservation; talks will range from an overview of national and regional activities to local case Contributed studies. The Friday afternoon session will cover the Articles 9 emerging science of “Ecosystem Services” and how this can be used in estimating the value of mussel conservation. There will be a combined student poster FMCS Officers 47 session and social on Thursday evening. A block of rooms will be available at the Holiday Inn, Athens at the government rate of $91 per night. In FMCS Committees 48 addition, there are numerous other hotels in the vicinity. More information on Athens can be found at: http://www.visitathensga.com/ Parting Shot 49 Registration and more details about the workshop will be available by mid-December on the FMCS website (http://molluskconservation.org/index.html).
    [Show full text]
  • Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • Striped Whitelip Webbhelix Multilineata
    COSEWIC Assessment and Status Report on the Striped Whitelip Webbhelix multilineata in Canada ENDANGERED 2018 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2018. COSEWIC assessment and status report on the Striped Whitelip Webbhelix multilineata in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 62 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Annegret Nicolai for writing the status report on the Striped Whitelip. This report was prepared under contract with Environment and Climate Change Canada and was overseen by Dwayne Lepitzki, Co-chair of the COSEWIC Molluscs Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Polyspire rayé (Webbhelix multilineata) au Canada. Cover illustration/photo: Striped Whitelip — Robert Forsyth, August 2016, Pelee Island, Ontario. Her Majesty the Queen in Right of Canada, 2018. Catalogue No. CW69-14/767-2018E-PDF ISBN 978-0-660-27878-0 COSEWIC Assessment Summary Assessment Summary – April 2018 Common name Striped Whitelip Scientific name Webbhelix multilineata Status Endangered Reason for designation This large terrestrial snail is present on Pelee Island in Lake Erie and at three sites on the mainland of southwestern Ontario: Point Pelee National Park, Walpole Island, and Bickford Oak Woods Conservation Reserve.
    [Show full text]
  • Impact of Dietary Diversification on Invasive Slugs and Biological Control with Notes on Slug Species of Kentucky
    University of Kentucky UKnowledge University of Kentucky Master's Theses Graduate School 2010 IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY Anna K. Thomas University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Thomas, Anna K., "IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY" (2010). University of Kentucky Master's Theses. 35. https://uknowledge.uky.edu/gradschool_theses/35 This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF THESIS IMPACT OF DIETARY DIVERSIFICATION ON INVASIVE SLUGS AND BIOLOGICAL CONTROL WITH NOTES ON SLUG SPECIES OF KENTUCKY Increasing introductions of non-native terrestrial slugs (Mollusca: Gastropoda) are a concern to North American regulatory agencies as these generalists impact the yield and reduce the aesthetic value of crop plants. Understanding how the increase in diversification in North American cropping systems affects non-native gastropods and finding effective biological control options are imperative for pest management; however, little research has been done in this area. This study tested the hypothesis that dietary diversification affects the biological control capacity of a generalist predator and allows the slug pest Deroceras reticulatum (Müller) (Stylommatophora: Agriolimacidae) to more effectively fulfill its nutritional requirements.
    [Show full text]