Etude De L'effet De Quelques Fongicides Et Nématicides Utilisés

Total Page:16

File Type:pdf, Size:1020Kb

Etude De L'effet De Quelques Fongicides Et Nématicides Utilisés REPUBLIQUE DE CO" TE D'IVOIRE Union-Discipline-Travail Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Année universitaire 2013-2014 UNIVL::HSITE NANGUIABROGOUA UFR Sciences de la Nature Laboratoire de Biologie et d, Amélioration des Productions Végétale MÉMOIRE DE MASTER Biodiversité et Gestion Durable des Écosystèmes Thème: , Etude de l'effet de quelques fongicides et nématicides utilisés en bananeraie sur la croissance et la sporulation de Metarhizium sp agent de lutte biologique contre le charançon noir du bananier, Cosmopolites sordidus Gemar (Coléoptère: Curculiooidae) Présenté par : SÉKA Chapaud Landry Vigile Soutenu publiquement le Vendredi 29 Août 2014, devant le jury composé de M. TRA BI. Maître de Conférences, Université Nangui Abrogoua. Président M. KOUAKOU Tanoh Hilaire, Maître de Conférences, Université Nangui Abrogoua Codirecteur M. KOBENAN Kouman, Directeur de Recherche, CNRA Codirecteur M. SIÉ Raoul. Maître de Conférences, Université Nangui Abrogoua Examinateur M. DOUMBIA Mamadou, Maître de Conférences, Université Nangui Abrogoua Examinateur DÉDICACE À mon Dieu et Seigneur Jésus-Christ pour m'avoir donné la santé, le courage et mis sur mon chemin des personnes disposées à m'aider, me secourir ... À mon père OSSIN Séka Joseph-Désiré et à ma mère DAGOU Opri Anne Marie. Je vous dédie ce mémoire comme le fruit de trente-deux ans d'amour et de sacrifices à mon égard. À ma grande sœur BOSSEY Djoman Antoinette, À mes grands frères SÉKA Alain, SÉKA Pacôme, SÉKA Guy, SÉKA Thierry et SÉKA Hermann, À mes petits frères SÉKA Stéphane et SÉKA Olivier, À mes oncles OSSIN Yapi, Ossin Adjamey, ABÉ Basile, DAGOU Rodrigue, DAGOU Zéphirin, DAGOU Théophile, DAGOU Moïse, DAGOU Alain et DAGOU Guy. À ma bien aimée ABIO Clémentine. Pour votre AMOUR et votre SOUTIEN. REMERCIEMENTS Cette étude a été menée au laboratoire de phytopathologie du Centre National de Recherche Agronomique (CNRA), à la Station de Recherche de Bimbresso. J'aimerais remercier les personnes morales et physiques dont le concours a été fructueux pour accomplir ce travail. Permettez moi de remerciez d'abord le CNRA et particulièrement toute l'équipe de la Station de Recherche de Bimbresso. Je remercie aussi l'Université Nangui Abrogoua et surtout l'UFR des Sciences de la Nature pour la formation académique que j'y ai reçue depuis ma première année universitaire. Mes sincères remerciements vont aussi à l'endroit de: )- Monsieur TIDO Seydou, Doyen de l'UFR des Sciences de la Nature de l'Université Nangui Abrogoua. )- Monsieur KOU A.KOU Tanoh Hilaire, Maître de Conférences à l'UFR des Sciences de la Nature de l'Université Nangui Abrogoua qui a accepté d'être le codirecteur scientifique de ce travail. )- Monsieur GNONHOURI Philippe, Directeur de la station CNRA de Bimbresso. )- Monsieur KOBENAN Kouman, Directeur de Recherche au CNRA pour son encadrement et pour avoir accepté que je fasse mon stage pratique à ladite station. U m'a donné le goût de la recherche et je lui suis reconnaissant pour les suggestions qu'Il a faites dans la conception de ce mémoire. )- Monsieur TRAORÉ Siaka, Chercheur au CNRA, qui a suivi de bout en bout toutes les activités ici présentées. )- Monsieur ABY N'goran, Checheur au CNRA, qui a été au four et au moulin dans l'exécution de toutes les manipulations et la rédaction de ce travail. Oui. ces enseignements et ces conseils m'ont été bénéfiques. Il s'est montré disponible à tout moment bien qu'il ne soit pas mon encadreur. Vraiment, je lui suis reconnaissant. Je remercie particulièrement les membres du jury dont : )- Monsieur TRA BI, Maître de Conférences à l'UFR des Sciences de la Nature de l'Université Nangui Abrogoua, qui a accepté de présider le jury et aussi pour la formation en biologie végétale que j'ai reçue de lui depuis ma deuxième année universitaire à Daloa. )- Monsieur SIÉ Raoul, Maître de Conférences à J 'UFR des Sciences de la Nature de l'Université Nangui Abrogoua, qui m'a enseigné la génétique formelle. ii )"' Monsieur DOUMBIA Mamadou, Maître de Conférences à l 'UFR des Sciences de la Nature l'Université Nangui Abrogoua, auprès de qui j'ai reçu les bases fondamentales en entomologie. Je dois reconnaissance à Mesdames KRAMON Pierrette et ZAKO Jorgina, les assistantes techniques qui ont été les chevilles ouvrières dans l'exécution de toutes les activités rapportées dans ce document. Mes remerciements vont aussi. à l'endroit de mes aînés KONAN Yao François, ESSI Brice et mes amis KIMOU Serge, KOUADIO Samuel, DIDI Roland, ASTIN Olivier, YA O Alban, SEKA Hervé qui m'ont épaulé à travers leurs conseils et leurs aides matériels. iii SOMMAIRE , DEDICACE I REM:ERCIEMENTS II RÉSUMÉ VI LISTE DES ABRÉVIATIONS ET ACRONYMES IX INTRODUCTION l PREMIÈRE PARTIE: REVUE BIBLIOGRAPHIQUE 4 1.1. Généralités sur les pesticides 5 1.1.1. Définition d'un pesticide 5 1.1.2. Classification des pesticides 5 1.1.3. Mode d'action et cibles biochimiques des fongicides 7 1.2. Généralités sur le bananier 12 1.2.l. Origine et Systématique 12 1.2.2. Description du bananier 12 1.2.3. Ecologie du bananier 12 1.2.4. Productions de la banane en Côte d'Ivoire 14 1.2.5. Principales contraintes biotiques à la culture du bananier 14 1.2.6. Méthodes de lutte contre Cosmopolites sordidus 17 DEUXIÈME PARTIE : MATÉRIEL ET MÉTHODES 26 2.1. Site d'étude 27 2.2. Matériel 27 2.2.1. Matériel de laboratoire 27 2.2.2. Champignon entomopathogène 27 2.2.3. Insecte ravageur 27 2.2.4. Pesticides utilisés 27 2.3. Méthodes 27 2.3 .1. Préparation des milieux de culture 28 2.3.2. Effet des pesticides sur la germination des conidies 28 2.3.3. Effet des pesticides sur la croissance mycélienne 30 2.3.4. Effet des pesticides sur la sporulation 30 iv 2.3.5. Pouvoir germinatif des conidies produites après tratement de fongicide 30 2.3.6. Pouvoir infectieux des conidies produites après traitement de fongicide 30 2.3.7. Evaluation de l'effet des pesticides 32 2.3.8. Analyse statistique 34 TROISIÈME PARTIE: RÉSULTATS 35 3.1. Effet des fongicides sur l'isolat de Metarhizium sp 36 _3. 1. 1. Effet des fongicides sur la germination des conidies 36 3.1.2. Effet des fongicides sur la croissance mycélienne 38 3.1.3. Effet des fongicides sur la sporulation 40 3.1.4. Pouvoir germinatif des conidies produites après traitement de fongicide 42 3.1.5. Pouvoir infectieux des conidies produites après traitement de fongicide 44 3.2. Effets des nématicides sur l'isolat de Metarhizium sp 49 3 .2.1. Effet des nématicides sur la germination des conidies 49 3 .2.2. Effet des nématicides sur la croissance du mycélium 49 3 .2.3. Effet des nématicides sur la sporulation 51 QUATRIEME PARTIE: DISCUSSION 54 CONCLUSION ET PERSPECTIVES 61 RÉFÉRENCES BIBLIOGRAPHIQUES 63 V RÉSUMÉ Pour utiliser Metarhizium sp comme agent de lutte biologique contre Cosmopolites sordidus dans les plantations où sont appliqués des pesticides afin de protéger Je bananier, l'effet de trois fongicides et deux nématicides sur ce champignon a été évalué. La germination conidienne, la croissance mycélienne et la sporulation ont été d'abord évaluées sur des milieux de culture amendés de différentes doses de chaque pesticide ou pas pour le témoin. Ensuite, le taux de germination des conidies produites après traitement de fongicide a été déterminé sur milieu gélosé. Puis ces mêmes conidies produites après traitement de fongicide ont été servi à inoculer des adultes de Cosmopolites sordidus pour évaluer leur pouvoir infectieux. Les taux d'inhibition de la germination conidienne provoqués par les fongicides méthyl-thiophanate, tritloxystrobine et propiconazole ont été relativement faibles, inférieurs à 50 %. Par contre, la croissance mycélienne et la sporulation ont été fortement inhibées par la plupart des doses du trifloxystrobine et du propiconazole, 64 à 99 % de taux d'inhibition. Alors que l'incidence des doses du rnéthyl-thiophanate sur la croissance mycélienne et la sporulation ont été relativement faibles, 13 à 56 % de taux de réduction. Les conidies produites après traitement de fongicide ont présenté des pouvoirs germinatifs variables et inférieurs à celui des conidies produites sur le milieu témoin. Ces mêmes conidies produites après traitement de fongicide ont été effectivement pathogènes des charançons adultes de Cosmopolites sordidus avec des taux de mortalité de 16 à 67 % et inférieurs au taux de mortalité (75 %) provoqué par les conidies produites sur le milieu témoin. Contrairement aux fongicides, les doses utilisées d'oxamyl et d'éthoprophos ont stimulé la germination conidienne, - 20 à - 11 % de taux d'inhibition. La croissance mycélienne a été aussi stimulée par la plupart des doses de ces nématicides. De même, la sporulation a été stimulée par les doses de 3 et 5 ppm de ces nématicides. Alors que les doses de 10 et 15 ppm des deux nématicides ont provoqué des taux de réduction relativement élevés et compris entre 58 et 64 %. Mots clés : charançon, champignon, entornopathogène, fongicide, nématicide, inhibition, germination, conidie, croissance, mycélium, sporulation, pathogène, mortalité. vi LISTE DES FIGURES Figure 1: Schéma d'un bananier en phase de fructification 13 Figure 2: Zones de production des bananes et bananes plantain en Côte d'Ivoire 15 Figure 3: Dessin de l'adulte du charançon noir du bananier Cosmopolites sordidus 18 Figure 4 : Stades de la métamorphose chez Cosmopolites sordidus 18 Figure 5 : Décorticage tangentiel d'une souche de bananier montrant les galeries larvaires 18 Figure 6 : Piège de Vilardebo utilisé pour la collecte des charançons 18 Figure 7: Culture pure de Metarhizium sp sur milieu PDA et Conidies de Metarhizium sp vues au microscope photonique Gx400 23 Figure 8: Charançon noir du bananier présentant la muscardine verte causé par Met arhizium sp 25 Figure 9: Piège à contre plaqué muni d'inoculum de l'isolat de Met arhizium sp.
Recommended publications
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2013/150015 Al 10 October 2013 (10.10.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C07D 209/54 (2006.01) A01N 43/38 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C07D 471/10 (2006.01) A01N 43/90 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (21) International Application Number: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, PCT/EP2013/056915 ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (22) International Filing Date: NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, 2 April 2013 (02.04.2013) RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, (25) Filing Language: English ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 12162982.8 3 April 2012 (03.04.2012) EP GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, (71) Applicant: SYNGENTA PARTICIPATIONS AG TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, [CH/CH]; Schwarzwaldallee 215, CH-4058 Basel (CH).
    [Show full text]
  • Environmental Assessment ID-2020-23-1 May 6, 2020
    Idaho Environmental Assessment Grasshopper/Mormon Cricket Suppression Program United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine Environmental Assessment ID-2020-23-1 May 6, 2020 Grasshopper and Mormon Cricket Suppression Program for Southern Idaho United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine Idaho State Office 9118 West Blackeagle Drive Boise, Idaho 83709-1572 (208) 373-1600 1 Idaho Environmental Assessment Grasshopper/Mormon Cricket Suppression Program Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form.
    [Show full text]
  • Metarhizium Anisopliae Challenges Immunity and Demography of Plutella Xylostella
    insects Article Metarhizium Anisopliae Challenges Immunity and Demography of Plutella xylostella 1, 1, 1 2 1 Junaid Zafar y, Rana Fartab Shoukat y , Yuxin Zhang , Shoaib Freed , Xiaoxia Xu and Fengliang Jin 1,* 1 Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; [email protected] (J.Z.); [email protected] (R.F.S.); [email protected] (Y.Z.); [email protected] (X.X.) 2 Laboratory of Insect Microbiology and Biotechnology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 66000, Pakistan; [email protected] * Correspondence: jfl[email protected]; Tel.: +86-208-528-0203 These authors contributed equally to this work. y Received: 28 July 2020; Accepted: 9 October 2020; Published: 13 October 2020 Simple Summary: The diamondback moth, Plutella xylostella, is a destructive pest of cruciferous crops worldwide. Integrated pest management (IPM) strategies, largely involve the use chemical pesticides which are harmful for the environment and human health. In this study, the virulence of three species of entomopathogenic fungi were tested. Metarhizium anisopliae proved to be the most effective by killing more than 90% of the population. Based on which the fungus was selected to study the host-pathogen immune interactions. More precisely, after infection, superoxide dismutase (SOD) and phenoloxidase (PO), two major enzymes involved in immune response, were studied at different time points. The fungus gradually weakened the enzyme activities as the time progressed, indicating that physiological attributes of host were adversely affected. The expression of immune-related genes (Defensin, Spaetzle, Cecropin, Lysozyme, and Hemolin) varied on different time points.
    [Show full text]
  • Mode of Infection of Metarhizium Spp. Fungus and Their Potential As Biological Control Agents
    Journal of Fungi Review Mode of Infection of Metarhizium spp. Fungus and Their Potential as Biological Control Agents Kimberly Moon San Aw and Seow Mun Hue * School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Malaysia; [email protected] * Correspondence: [email protected]; Tel.: +603-55146116 Academic Editor: David S. Perlin Received: 24 February 2017; Accepted: 1 June 2017; Published: 7 June 2017 Abstract: Chemical insecticides have been commonly used to control agricultural pests, termites, and biological vectors such as mosquitoes and ticks. However, the harmful impacts of toxic chemical insecticides on the environment, the development of resistance in pests and vectors towards chemical insecticides, and public concern have driven extensive research for alternatives, especially biological control agents such as fungus and bacteria. In this review, the mode of infection of Metarhizium fungus on both terrestrial and aquatic insect larvae and how these interactions have been widely employed will be outlined. The potential uses of Metarhizium anisopliae and Metarhizium acridum biological control agents and molecular approaches to increase their virulence will be discussed. Keywords: biopesticide; Metarhizium anisopliae; Metarhizium acridum; biological vectors; agricultural pests; mechanism of infection 1. Introduction Pests such as locusts, grasshoppers, termites, and cattle ticks have caused huge economic and agricultural losses in many parts of the world such as China, Japan, Australia, Malaysia, Africa, Brazil, and Mexico [1–8]. Vectors of malaria, dengue, and Bancroftian filariasis, which are Aedes spp., Anopheles spp., and Culex spp. respectively, have been responsible for hospitalization and death annually [9,10]. To eliminate these pests and vectors, chemical insecticides have been commonly used as the solution.
    [Show full text]
  • I MAPPING CIRCADIAN OUTPUT PATHWAYS in Neurospora Crassa
    MAPPING CIRCADIAN OUTPUT PATHWAYS IN Neurospora crassa A Dissertation by LINDSAY DANIELLE BENNETT Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Deborah Bell-Pedersen Committee Members, Daniel Ebbole Wayne Versaw Terry Thomas Head of Department, Thomas McKnight December 2013 Major Subject: Microbiology Copyright 2013 Lindsay D. Bennett i ABSTRACT Circadian clocks are ubiquitous in eukaryotic organisms, providing the ability to anticipate regularly occurring stressful environmental changes. The molecular clock leads to a change in physiology of the organism such that it is prepared for predictable changes. While the external signals detected by the clock, as well as the molecular mechanism of clock components have been extensively characterized, less is known about how the clock manifests time of day information to the organism as a whole. Our lab has focused on identifying output pathways from the clock, using the model organism Neurospora crassa. We have previously demonstrated the circadian regulation of the conserved Mitogen Activated Protein Kinase (MAPK) OS-2 pathway, a homolog of the mammalian p38 pathway, and necessary for maintaining osmotic homeostasis in Neurospora. I present data indicating the circadian regulation of the 2 other MAPK pathways in Neurospora, the mammalian ERK1 and ERK2 like MAPKs, MAK-1 and MAK-2, and show that they are outputs of the clock. Furthermore, I identified around 500 genes that are mis-regulated when MAK-1 is deleted; greater than 25% of those genes are predicted to be clock- controlled.
    [Show full text]
  • Biological Control of Desert Locust (Schistocerca Gregaria Forskål)
    CAB Reviews 2021 16, No. 013 Biological control of desert locust (Schistocerca gregaria Forskål) Eunice W. Githae* and Erick K. Kuria Address: Department of Biological Sciences, Chuka University, P.O. Box 109-60400, Chuka, Kenya. *Correspondence: Eunice W. Githae. Email: [email protected], [email protected] Received: 03 September 2020 Accepted: 05 January 2021 doi: 10.1079/PAVSNNR202116013 The electronic version of this article is the definitive one. It is located here: http://www.cabi.org/cabreviews © CAB International 2021 (Online ISSN 1749-8848) Abstract Desert locust (Schistocerca gregaria Forskål) is one of the most serious agricultural pests in the world due to its voracity, speed of reproduction, and range of flight. We discuss the current state of knowledge on its biological control using microorganisms and botanical extracts. Metarhizium flavoviride was among the first fungus to be recognized as a bio-control agent against desert locust in the laboratory and field conditions. Nevertheless, its oil formulation adversely affected non- target organisms, hence led to further research on other microorganisms. Metarhizium anisopliae var. acridum (syn. Metarhizium acridum) is an environmentally safer bio-pesticide that has no measurable impact on non-target organisms. However, there are various shortcomings associated with its use in desert locust control as highlighted in this review. Bacterial pathogens studied were from species of Bacillus, Pseudomonas, and Serratia. Botanical extracts of 27 plant species were tested against the locust but showed varied results. Azadirachta indica and Melia volkensii were the most studied plant species, both belonging to family Meliaceae, which is known to have biologically active limonoids.
    [Show full text]
  • Evaluation of Field Trials Data on the Efficacy and Selectivity of Insecticides on Locusts and Grasshoppers
    Evaluation of Field Trials Data on the Efficacy and Selectivity of Insecticides on Locusts and Grasshoppers Report to FAO by the Pesticide Referee Group Tenth meeting Gammarth (Tunisia) 10 - 12 December 2014 TABLE OF CONTENTS ABBREVIATIONS....................................................................................................................................... 3 INTRODUCTION ....................................................................................................................................... 4 IMPLEMENTATION OF PREVIOUS RECOMMENDATIONS ........................................................................ 5 EFFICACY OF INSECTICIDES AGAINST LOCUSTS ....................................................................................... 6 APPLICATION CRITERIA .......................................................................................................................... 13 HUMAN HEALTH RISKS .......................................................................................................................... 14 ENVIRONMENTAL EVALUATION ............................................................................................................ 17 INSECTICIDE SELECTION ........................................................................................................................ 19 INSECTICIDE PROCUREMENT AND STOCK MANAGEMENT ................................................................... 23 INSECTICIDE FORMULATION QUALITY .................................................................................................
    [Show full text]
  • Differential Expression of the Pr1a Gene in Metarhizium Anisopliae and Metarhizium Acridum Across Different Culture Conditions and During Pathogenesis
    Genetics and Molecular Biology, 38, 1, 86-92 (2015) Copyright © 2015, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/S1415-475738138120140236 Research Article Differential expression of the pr1A gene in Metarhizium anisopliae and Metarhizium acridum across different culture conditions and during pathogenesis Mariele Porto Carneiro Leão1, Patricia Vieira Tiago1, Fernando Dini Andreote2, Welington Luiz de Araújo3 and Neiva Tinti de Oliveira1 1Departamento de Micologia, Universidade Federal de Pernambuco, Recife, PE, Brazil. 2Departamento de Ciência do Solo, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP, Brazil. 3Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. Abstract The entomopathogenic fungi of the genus Metarhizium have several subtilisin-like proteases that are involved in pathogenesis and these have been used to investigate genes that are differentially expressed in response to differ- ent growth conditions. The identification and characterization of these proteases can provide insight into how the fun- gus is capable of infecting a wide variety of insects and adapt to different substrates. In addition, the pr1A gene has been used for the genetic improvement of strains used in pest control. In this study we used quantitative RT-PCR to assess the relative expression levels of the pr1A gene in M. anisopliae and M. acridum during growth in different cul- ture conditions and during infection of the sugar cane borer, Diatraea saccharalis Fabricius. We also carried out a pathogenicity test to assess the virulence of both species against D. saccharalis and correlated the results with the pattern of pr1A gene expression.
    [Show full text]
  • Neem Oil Increases the Persistence of the Entomopathogenic Fungus Metarhizium Anisopliae for the Control of Aedes Aegypti (Diptera: Culicidae) Larvae Adriano R
    Paula et al. Parasites Vectors (2019) 12:163 https://doi.org/10.1186/s13071-019-3415-x Parasites & Vectors RESEARCH Open Access Neem oil increases the persistence of the entomopathogenic fungus Metarhizium anisopliae for the control of Aedes aegypti (Diptera: Culicidae) larvae Adriano R. Paula1, Anderson Ribeiro1, Francisco José Alves Lemos2, Carlos P. Silva3 and Richard I. Samuels1* Abstract Background: The entomopathogenic fungus Metarhizium anisopliae is a candidate for the integrated management of the disease vector mosquito Aedes aegypti. Metarhizium anisopliae is pathogenic and virulent against Ae. aegypti lar- vae; however, its half-life is short without employing adjuvants. Here, we investigated the use of neem oil to increase virulence and persistence of the fungus under laboratory and simulated feld conditions. Methods: Neem was mixed with M. anisopliae and added to recipients. Larvae were then placed in recipients at 5-day intervals for up to 50 days. Survival rates were evaluated 7 days after exposing larvae to each treatment. The efect of neem on conidial germination following exposure to ultraviolet radiation was evaluated under laboratory conditions. Statistical tests were carried out using ANOVA and regression analysis. Results: Laboratory bioassays showed that the fungus alone reduced survival to 30% when larvae were exposed to the treatment as soon as the suspension had been prepared (time zero). A mixture of fungus neem resulted in 11% survival at time zero. The combination of fungus neem signifcantly reduced larval survival rates+ even when suspen- sions had been maintained for up to 45 days before+ adding larvae. For simulated-feld experiments 1% neem was used, even though this concentration is insecticidal, resulting in 20% survival at time zero.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/015674.0 A1 Leland (43) Pub
    US 2013 O156740A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/015674.0 A1 Leland (43) Pub. Date: Jun. 20, 2013 (54) BIO-PESTCIDE METHODS AND (52) U.S. Cl. COMPOSITIONS CPC ................ A0IN 63/04 (2013.01); A0IN 63/02 (71) Applicant: Novozymes Biologicals Holdings A/S, (2013.01) Bagsvaerd (DK) USPC ......................................................... 424/93.5 (72) Inventor: Jarrod E. Leland, Blacksburg, VA (US) (57) ABSTRACT (73) Assignee: NOVOZYMES BIOLOGICALS - 0 HOLDINGS A/S, Bagsvaerd (DK) The present invention is directed to the combination of bio pesticide and at least one exogenous cuticle degrading (21) Appl. No.: 13/719,624 enzymes (e.g., a protease, chitinase, lipase and/or cutinase) (22) Filed: Dec. 19, 2012 for controlling (preventing or eliminating) pests. The use of an exogenous cuticle degrading enzyme increases the effi Related U.S. Application Data cacy of the biopesticide by increasing the speed and/or effi (60) Provisional application No. 61/577,224, filed on Dec. ciency of infestation of the pest resulting in faster or more 19, 2011. effective killing or disabling of the pest by the biopesticide. The present invention accordingly provides methods for con Publication Classification trolling a pest comprising treating a pest habitat with a com (51) Int. Cl. bination of pesticidally effective amounts of at least one bio AOIN 63/04 (2006.01) pesticide and at least one exogenous cuticle degrading AOIN 63/02 (2006.01) enzyme. Pest control compositions are also described. Patent Application Publication Jun. 20, 2013 US 2013/015674.0 A1 Effect of Protease and Metarhizium on Mortality at Varying Concentrations O 1.
    [Show full text]