Tsunami Information Sources

Total Page:16

File Type:pdf, Size:1020Kb

Tsunami Information Sources University of California, Berkeley, California 94720 Department of Civil & Environmental Engineering Hydraulic Engineering Laboratory Technical Report UCB/HEL 2005-1 TSUNAMI INFORMATION SOURCES By Robert L. Wiegel, Professor Emeritus Dept. Civil & Environmental Engineering 410 O'Brien Hall, MC 1718 University of California Berkeley, California 94720-1718 14 December 2005 University of California, Berkeley, California 94720 Department of Civil & Environmental Engineering Hydraulic Engineering Laboratory, Report UCB/HEL 2005-1 14 December 2005 TSUNAMI INFORMATION SOURCES By Robert L. Wiegel, Professor Emeritus Dept. Civil & Environmental Engineering 410 O'Brien Hall, MC 1718 University of California Berkeley, California 94720-1718 INTRODUCTION I have expanded substantially my list of information sources on: tsunami generation (sources, impulsive mechanisms), propagation, effects of nearshore bathymetry, and wave run-up on shore - including physical (hydraulic) modeling and numerical modeling. This expanded list includes the subjects of field investigations of tsunamis soon after an event; damage effects in harbors on boats, ships, and facilities; tsunami wave-induced forces; damage by tsunami waves to structures on shore; scour/erosion; hazard mitigation; land use planning; zoning; siting, design, construction and maintenance of structures and infrastructure; public awareness and education; distant and local sources; tsunami warning and evacuation programs; tsunami probability and risk criteria. A few references are on "sedimentary signatures" useful in the study of historic and prehistoric tsunamis (paleo- tsunamis). In addition to references specifically on tsunamis, there are references on long water wave and solitary wave theory; wave refraction, diffraction, and reflection; shelf and basin free and forced oscillations (bay and harbor response; seiches); edge waves; Mach-reflection of long water waves ("stem waves"); wave run- up on shore; energy dissipation. All are important in understanding tsunamis, and in hazard mitigation. References are given on subaerial and submarine landslide (and rockfall) generated waves in reservoirs, fjords, bays, and ocean; volcano explosive eruptions/collapse; underwater and surface explosions; asteroid impact. This report is in two parts: 1) Bibliographies, books and pamphlets, catalogs, collections, journals and newsletters, maps, organizations, proceedings, videos and photos; 2) Articles, papers, reports listed alphabetically by author. Many papers on the Indian Ocean (Sumatra) tsunami of 26 December 2004, were given at the 22nd IUGG International Tsunami Symposium, Chania, Crete, 27-29 June 2005, but had not been published at the date of this report. For the program, see http://www.gein.noa.gr/English/tsunamis.htm This list of tsunami information sources (115 pp, about 3,300 entries) is also available on a diskette, at the Water Resources Center Archives, 410 O'Brien Hall, University of California, Berkeley, CA, 94720-1718. Most of the publications are available in the Water Resources Center Archives or the Earth Sciences Library, University of California, Berkeley, CA. I wish to acknowledge my appreciation of the great help of the staff of the Water Resources Center Archives in finding some difficult to obtain publications; in particular Paul S. Atwood for his help for those on websites and other computer sources. I want to thank John M. Wiegel for his continuous help in searching for sources on websites via computer search-engines. 1) BIBLIOGRAPHIES; BOOKS AND PAMPHLETS; Information Service (NTIS), Springfield, VA, CATALOGS; COLLECTIONS; JOURNALS AND NTIS/PS-77/1165, 190 pp NEWSLETTERS; MAPS; ORGANIZATIONS; Tsunamis: A Selected Bibliography, by Rani J.K. PROCEEDINGS, SYMPOSIA, AND WORKSHOPS; Chawla, Dept. Fisheries and the Environment, VIDEOS AND PHOTOGRAPHS Ottawa,Canada, Manuscript Series No. 51, 1978, 4 pp and microfische in pocket (about 1,900 Bibliographies references) The Annotated Bibliography of Tsunamis (1889- Books and Pamphlets 1962), preface by Ryutaro Takahasi, published by Japanese Organization for Tsunami Investigations Analysis of Structural Damage from the 1960 (JOTI), Tokyo, September 1962, 51 pp (350 Tsunami at Hilo, Hawaii, by Hudson Matlock, Lymon references) D. Reese, and Robert B. Matlock, Structural Mechanics Research Laboratory, The University of Annotated Bibliography on Tsunamis, by M.P. Texas, Austin, TX, prepared for the Defense Atomic Cuellar, U.S. Army Corps of Engineers, Beach Support Agency, March 1962, 95 pp Erosion Board, Washington, D.C., Tech. Memo. No. 30, 1953, 69 pp (195 references) Are You Ready: Tsunamis, by FEMA, Washington, D.C., updated 26 Jan. 2005, 3 page printout from Annotated Bibliography on Tsunamis, Compiled and http://www.fema.gov/areyouready/tsunamis.shtm edited by Mark G. Spaeth (U.S. Coast and Geodetic Survey), in response to a resolution on 21 August The Chilean Tsunami of May 24, 1960, As Observed 1963 during the XIII General Assembly of the Along the Coast of Japan, by Committee for Field International Union of Geodesy and Geophysics Investigation of the Chilean Tsunami of 1960 (IUGG), Paris, France, IUGG Monograph No. 27, July (Ryutaro Takahasi, Chairman), Maruzen Co., Tokyo, 1964, 249 pp, (1778 refs.) December 1961, 397 pp (114 tide gage records; 48 photos in the front, and others in several Annotated Bibliography on Water Waves Caused by sections) Explosions, by R.A. Smith, DASIAC Special Report 58, DASA Information and Analysis Center, April Coastal Construction Manual - Principles and 1967 Practice of Planning, Siting, Designing, Constructing, and Maintaining Residential Annotated Tsunami Bibliography, 1962-1976, by G. Buildings in Coastal Areas, U.S. Federal Emergency Pararas-Carayannis, B. Dong, and R. Farmer, NOAA, Management Agency (FEMA), Washington, D.C., 3rd International Tsunami Information Center for the ed., 3 vol. (FEMA 55), 2000, various pagination Nuclear Regulatory Commission, Paper NUREG/CR- 2840, 1982, 532 pp Coastal Earthquakes and Tsunamis: Reducing the Risks, eds. J.W. Charland and J.W. Good, Oregon Bibliography to the Preliminary Catalog of Sea Grant, Corvallis, OR, 1996 Tsunamis Occurring in the Pacific Ocean, by Kumizi Iida, Doak C. Cox, and George Pararas-Carayannis, Comprehensive Planning for Tsunami Hazard Areas, Univ. Hawaii, Hawaii Institute of Geophysics, by Urban Regional Research, Seattle, WA; for the Honolulu, HI, Rept. HIG-67-25, Dec. 1967, 27 pp National Science Foundation, 1988, 246 pp An Index to Tsunami Literature to 1966, by Wm. Crescent City's Dark Disaster, March 27-28, 1964, Mansfield Adams, Data Report No. 8, Hawaii by Wallace Griffin, Crescent City Printing Co., Institute of Geophysics, Univ. Hawaii, Honolulu, Crescent City, CA, 1964, 66 pp (many photos, and HI, HIG 67-21, 1967, 241 pp quotes from residents) Survey of Research Studies and Technological Design and Construction Manual for Residential Development on the Problem of Tsunami in USSR in Buildings in Coastal High Hazard Areas, prepared 1987-1989, by S.L. Soloviev, Science of Tsunami by Dames & Moore, for Federal Insurance Hazards, Vol. 8, No. 1, 1990, pp 3-33 (268 Administration, Washington D.C., FIA-7, January references of Russian studies) 1981, 189 pp Tsunami Bibliography, 1962-1976, at the Design and Construction Standards for Residential International Tsunami Information Center (ITIC); Construction in Tsunami-prone Areas of Hawaii, by handwritten index card form, about 3,000 citations Dames and Moore, Washington D.C.; prepared for of tsunami-related papers, in English, or other U.S. Dept. of Housing and Urban Development, and languages with English titles or abstracts. Note Federal Emergency Management Agency (FEMA), 1980, in Tsunami Newsletter, Vol. 13, No. 2, July 1980, various pagination, maps, plans p. 28 Designing for Tsunamis: Background Papers, Tsunami Information Sources, by Robert L. Wiegel, National Tsunami Mitigation Program (NOAA, USGS, Univ. of California, Berkeley, CA, Hyd. FEMA, NSF, Alaska, California, Hawaii, Oregon, and Engineering Laboratory Rept. UCB/HEL 2005-1, 14 Washington); seven background papers developed for December 2005, 115 pp (about 3,300 references and use in preparation of the publication "Designing other sources listed). Also, on a diskette at for Tsunamis: Seven Principles for Planning and Water Resources Center Archives, University of Designing for Tsunami Hazards," March 2001, California, Berkeley, CA 94720-1718 various pagination. Available in print, and online http://www.prh.noaa.gov/itic/library/pubs/online_d Tsunamis: A Bibliography with Abstracts, Search ocs/Designing_for_Tsunamis.pdf Period 1964 - November 1977, Guy E. Habercom, Jr., editor, U.S. Dept. Commerce, National Technical Designing for Tsunamis: Seven Principles for Planning and Designing for Tsunami Hazards, 3 National Tsunami Hazard Mitigation Program (NOAA, http://pubs.usgs.gov/pp/pp1707 USGS, FEMA, NSF, Alaska, California, Hawaii, Oregon, and Washington), March 2001, 60 pp, 8-1/2" Planning Scenario in Humboldt and Del Monte x 11" format, with illustrations Counties, California for a Great Earthquake on the Cascadia Subduction Zone, by Tousson R. Toppozada, Earthquake and Tsunami Hazards in the United Glenn Borchardt, Wayne Haydon, Mark Petersen, States: A Research Assessment, by Robert E. Ayre, Robert Olson, Henry Lagorio, and Theodore Anvik, with Dennis S. Mileti and Patricia B. Trainer, State of California Dept. of Conservation, prepared for the National Science Foundation, by Division of Mines and Geology,
Recommended publications
  • Coastal Water Levels
    Guidance for Flood Risk Analysis and Mapping Coastal Water Levels May 2016 Requirements for the Federal Emergency Management Agency (FEMA) Risk Mapping, Assessment, and Planning (Risk MAP) Program are specified separately by statute, regulation, or FEMA policy (primarily the Standards for Flood Risk Analysis and Mapping). This document provides guidance to support the requirements and recommends approaches for effective and efficient implementation. Alternate approaches that comply with all requirements are acceptable. For more information, please visit the FEMA Guidelines and Standards for Flood Risk Analysis and Mapping webpage (www.fema.gov/guidelines-and-standards-flood-risk-analysis-and- mapping). Copies of the Standards for Flood Risk Analysis and Mapping policy, related guidance, technical references, and other information about the guidelines and standards development process are all available here. You can also search directly by document title at www.fema.gov/library. Water Levels May 2016 Guidance Document 67 Page i Document History Affected Section or Date Description Subsection Initial version of new transformed guidance. The content was derived from the Guidelines and Specifications for Flood Hazard Mapping Partners, Procedure Memoranda, First Publication May 2016 and/or Operating Guidance documents. It has been reorganized and is being published separately from the standards. Water Levels May 2016 Guidance Document 67 Page ii Table of Contents 1.0 Topic Overview .................................................................................................................
    [Show full text]
  • Tsunami, Seiches, and Tides Key Ideas Seiches
    Tsunami, Seiches, And Tides Key Ideas l The wavelengths of tsunami, seiches and tides are so great that they always behave as shallow-water waves. l Because wave speed is proportional to wavelength, these waves move rapidly through the water. l A seiche is a pendulum-like rocking of water in a basin. l Tsunami are caused by displacement of water by forces that cause earthquakes, by landslides, by eruptions or by asteroid impacts. l Tides are caused by the gravitational attraction of the sun and the moon, by inertia, and by basin resonance. 1 Seiches What are the characteristics of a seiche? Water rocking back and forth at a specific resonant frequency in a confined area is a seiche. Seiches are also called standing waves. The node is the position in a standing wave where water moves sideways, but does not rise or fall. 2 1 Seiches A seiche in Lake Geneva. The blue line represents the hypothetical whole wave of which the seiche is a part. 3 Tsunami and Seismic Sea Waves Tsunami are long-wavelength, shallow-water, progressive waves caused by the rapid displacement of ocean water. Tsunami generated by the vertical movement of earth along faults are seismic sea waves. What else can generate tsunami? llandslides licebergs falling from glaciers lvolcanic eruptions lother direct displacements of the water surface 4 2 Tsunami and Seismic Sea Waves A tsunami, which occurred in 1946, was generated by a rupture along a submerged fault. The tsunami traveled at speeds of 212 meters per second. 5 Tsunami Speed How can the speed of a tsunami be calculated? Remember, because tsunami have extremely long wavelengths, they always behave as shallow water waves.
    [Show full text]
  • Downloaded 09/24/21 11:26 AM UTC 966 JOURNAL of PHYSICAL OCEANOGRAPHY VOLUME 46
    MARCH 2016 G R I M S H A W E T A L . 965 Modelling of Polarity Change in a Nonlinear Internal Wave Train in Laoshan Bay ROGER GRIMSHAW Department of Mathematical Sciences, Loughborough University, Loughborough, United Kingdom CAIXIA WANG AND LAN LI Physical Oceanography Laboratory, Ocean University of China, Qingdao, China (Manuscript received 23 July 2015, in final form 29 December 2015) ABSTRACT There are now several observations of internal solitary waves passing through a critical point where the coefficient of the quadratic nonlinear term in the variable coefficient Korteweg–de Vries equation changes sign, typically from negative to positive as the wave propagates shoreward. This causes a solitary wave of depression to transform into a train of solitary waves of elevation riding on a negative pedestal. However, recently a polarity change of a different kind was observed in Laoshan Bay, China, where a periodic wave train of elevation waves converted to a periodic wave train of depression waves as the thermocline rose on a rising tide. This paper describes the application of a newly developed theory for this phenomenon. The theory is based on the variable coefficient Korteweg–de Vries equation for the case when the coefficient of the quadratic nonlinear term undergoes a change of sign and predicts that a periodic wave train will pass through this critical point as a linear wave, where a phase change occurs that induces a change in the polarity of the wave, as observed. A two-layer model of the density stratification and background current shear is developed to make the theoretical predictions specific and quantitative.
    [Show full text]
  • Fault Model of the 12Th Century Southwestern Hokkaido Earthquake
    Ioki et al. Earth, Planets and Space (2019) 71:54 https://doi.org/10.1186/s40623-019-1034-6 FULL PAPER Open Access Fault model of the 12th century southwestern Hokkaido earthquake estimated from tsunami deposit distributions Kei Ioki1* , Yuichiro Tanioka2, Gentaro Kawakami3, Yoshihiro Kase3, Kenji Nishina3, Wataru Hirose3, Kei’ichi Hayashi3 and Ryo Takahashi3 Abstract Tsunami deposits were collected along the coast of southwestern Hokkaido and Okushiri Island, northern Japan. The distribution of these deposits suggested that large earthquakes and tsunamis have repeatedly occurred of south- western Hokkaido. Along the southern coast of Okushiri Island, fve tsunami sand/gravel layers have been deposited during the last 3000 years. The latest was deposited by the 1741 Oshima–Oshima landslide tsunami and the second by the 12th century tsunami. The later tsunami was probably generated by a large earthquake because submarine seismo-turbidites with similar age exist in the region and a large inland landslide had occurred in Okushiri Island in approximately the 12th century. The ages of paleo-tsunami events prior to the 12th century are 1.5–1.6, 2.4–2.6, 2.8–3.1 ka. In this study, a fault model of the 12th century earthquake was estimated by comparing tsunami deposit distributions and calculated tsunami inundation areas at fve sites in Okushiri Island and Hiyama region. Fault model F17, a submarine active fault in the Japan Sea near Oshima–Oshima, is a probable source for this tsunami. Numerical simulation of the tsunami was performed based on fault model F17; we modifed the fault parameters (length and slip amount) from the original model to explain tsunami deposit distributions.
    [Show full text]
  • Part II-1 Water Wave Mechanics
    Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32
    [Show full text]
  • New Constraints on Coseismic Slip During Southern Cascadia Subduction Zone Earthquakes Over the Past 4600 Years Implied by Tsunami Deposits and Marine Turbidites
    W&M ScholarWorks VIMS Articles Virginia Institute of Marine Science 2018 New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites GR Priest RC Witter Yinglong J. Zhang Virginia Institute of Marine Science C Goldfinger KL Wang See next page for additional authors Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Priest, GR; Witter, RC; Zhang, Yinglong J.; Goldfinger, C; Wang, KL; and Allen, JC, "New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites" (2018). VIMS Articles. 734. https://scholarworks.wm.edu/vimsarticles/734 This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Authors GR Priest, RC Witter, Yinglong J. Zhang, C Goldfinger, KL Wang, and JC Allen This article is available at W&M ScholarWorks: https://scholarworks.wm.edu/vimsarticles/734 Nat Hazards (2017) 88:285–313 DOI 10.1007/s11069-017-2864-9 ORIGINAL PAPER New constraints on coseismic slip during southern Cascadia subduction zone earthquakes over the past 4600 years implied by tsunami deposits and marine turbidites 1 2 3 George R. Priest • Robert C. Witter • Yinglong J. Zhang • 4 5 1 Chris Goldfinger • Kelin Wang • Jonathan C. Allan Received: 24 August 2016 / Accepted: 8 April 2017 / Published online: 29 April 2017 Ó Springer Science+Business Media Dordrecht (outside the USA) 2017 Abstract Forecasting earthquake and tsunami hazards along the southern Cascadia sub- duction zone is complicated by uncertainties in the amount of megathrust fault slip during past ruptures.
    [Show full text]
  • A Review of Geological Records of Large Tsunamis at Vancouver Island, British Columbia, and Implications for Hazard John J
    Quaternary Science Reviews 19 (2000) 849}863 A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard John J. Clague! " *, Peter T. Bobrowsky#, Ian Hutchinson$ !Depatment of Earth Sciences and Institute for Quaternary Research, Simon Fraser University, Burnaby, BC, Canada V5A 1S6 "Geological Survey of Canada, 101 - 605 Robson St., Vancouver, BC, Canada V6B 5J3 #Geological Survey Branch, P.O. Box 9320, Stn Prov Govt, Victoria, BC, Canada V8W 9N3 $Department of Geography and Institute for Quaternary Research, Simon Fraser University, Burnaby, Canada BC V5A 1S6 Abstract Large tsunamis strike the British Columbia coast an average of once every several hundred years. Some of the tsunamis, including one from Alaska in 1964, are the result of distant great earthquakes. Most, however, are triggered by earthquakes at the Cascadia subduction zone, which extends along the Paci"c coast from Vancouver Island to northern California. Evidence of these tsunamis has been found in tidal marshes and low-elevation coastal lakes on western Vancouver Island. The tsunamis deposited sheets of sand and gravel now preserved in sequences of peat and mud. These sheets commonly contain marine fossils, and they thin and "ne landward, consistent with deposition by landward surges of water. They occur in low-energy settings where other possible depositional processes, such as stream #ooding and storm surges, can be ruled out. The most recent large tsunami generated by an earthquake at the Cascadia subduction zone has been dated in Washington and Japan to AD 1700. The spatial distribution of the deposits of the 1700 tsunami, together with theoretical numerical modelling, indicate wave run-ups of up to 5 m asl along the outer coast of Vancouver Island and up to 15}20 m asl at the heads of some inlets.
    [Show full text]
  • The Kingdom of Tonga Devastated by a Megatsunami in the Mid-15Th Century
    EGU21-5317, updated on 25 Sep 2021 https://doi.org/10.5194/egusphere-egu21-5317 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The kingdom of Tonga devastated by a megatsunami in the mid-15th century Franck Lavigne1,2,3, Julie Morin4, Wassmer Patrick2, Weller Olivier5, Kula Taaniela6, Ana V. Maea6, Karim Kelfoun7, Fatima Mokadem2, Raphael Paris7, Mukhamad N. Malawani1,2,8, Faral Audrey1,2, Mhammed Benbakkar7, Ségolène Saulnier-Copard2, Céline M. Vidal4, Tu’I’ahai Tu’I’afitu6, Gomez Christopher9, and Fuka Kitekei’aho10 1Paris 1 Pantheon-Sorbonne University, ([email protected]) 2Laboratory of Physical Geography, UMR 8591 CNRS, Meudon, France 3Institut Universitaire de France, Paris, France 4Department of Geography, University of Cambridge, Cambridge, UK 5Trajectoires, UMR 8215 CNRS, Paris, France 6Ministry of Land and Natural Resources, Natural Resources Division, Nuku'alofa, Kingdom of Tonga 7Laboratoire Magmas et Volcans, Université Clermont Auvergne, CNRS, IRD, OPGC, France 8Faculty of Geography, Universitas Gadjah Mada, Yogyakarta, Indonesia 9Laboratory of Sediment Hazards and Disaster Risk, Kobe University, Japan 10Geocare & Petroleum Consult Ltd, Nuku'alofa, Kingdom of Tonga The pre-colonial history of Tonga and West Polynesia still suffers from major gaps because its reconstruction is essentially based on legends left by oral tradition, and by archaeological evidence somehow difficult to interpret. By the fourteenth century, the powerful Tu'i Tonga kingdom united the islands of the Tongan archipelago under a centralised authority and, according to tradition, extended its influence to neighbouring island groups in the Central Pacific. However, some periods of deep crisis were identified, e.g.
    [Show full text]
  • Historical and Paleo-Tsunami Deposits During the Last 4000 Years and Their
    Ishimura and Miyauchi Progress in Earth and Planetary Science (2015) 2:16 DOI 10.1186/s40645-015-0047-4 RESEARCH ARTICLE Open Access Historical and paleo-tsunami deposits during the last 4000 years and their correlations with historical tsunami events in Koyadori on the Sanriku Coast, northeastern Japan Daisuke Ishimura1* and Takahiro Miyauchi2 Abstract Large tsunamis occurring throughout the past several hundred years along the Sanriku Coast on the Pacific coast of northeastern Japan have been documented and observed. However, the risk of large tsunamis like the tsunami generated by the 2011 off the Pacific coast of Tohoku earthquake could not be evaluated from previous studies, because these studies lacked evidence of historical and paleo-tsunami deposits on the coastline. Thus, we first identified event deposits, which are candidates for tsunami deposits, from excavating surveys conducted on the coastal marsh in Koyadori on the Sanriku Coast, northeastern Japan. Second, we determined the physicochemical sediment properties of the deposits (roundness of grains, color, wet and dry densities, and loss on ignition) and established their geochronology by radiocarbon dating and tephra analysis. Third, we identified event deposits as tsunami deposits, based on their sedimentary features and origin, sedimentary environment, paleo-shoreline, and landowner interviews. In this study, we report 11 tsunami deposits (E1–E11) during the past 4000 years, of which E1, E2, E3, and E4 were correlated with the 2011 Tohoku-oki tsunami, the 1896 Meiji Sanriku tsunami, the 1611 Keicho Sanriku tsunami, and the 869 Jogan tsunami, respectively. From age data and the number of tsunami deposits in the trench, we estimated that tsunamis larger than the 1896 Meiji Sanriku tsunami occur and hit the study area on average every 290–390 years.
    [Show full text]
  • Literature Review of Tsunami Sources Affecting Tsunami Hazard Along the US East Coast
    Literature review of tsunami sources affecting tsunami hazard along the US East Coast Department of Ocean Engineering, University of Rhode Island Narragansett, USA Feb. 21, 2011 1 TABLE OF CONTENTS 1. BACKGROUND ...................................................................................................................... 3 2. LITERATURE REVIEW OF RELEVANT TSUNAMI SOURCES .................................... 5 2.1 Submarine Mass Failures ........................................................................................................ 5 2.2 Co-seismic tsunamis .................................................................................................................. 8 2.2.1 Review of literature on Caribbean subduction zone ............................................................. 8 2.2.2 NOAA Forecast Source Database for Caribbean subduction zone ............................... 16 2.2.3 Azores-Gibraltar convergence zone .......................................................................................... 17 2.3 Cumbre Vieja Volcano flanK collapse ............................................................................... 21 3. INITIAL SOURCE DEFINITIONS AND TSUNAMI SIMULATIONS .......................... 24 3.1 Modeling methodology .......................................................................................................... 24 3.1.1 Initial conditions for model .......................................................................................................... 24 3.1.2 Co-seismic sources
    [Show full text]
  • Engineering Geology and Seismology for Public Schools and Hospitals in California
    The Resources Agency California Geological Survey Michael Chrisman, Secretary for Resources Dr. John G. Parrish, State Geologist Engineering Geology and Seismology for Public Schools and Hospitals in California to accompany California Geological Survey Note 48 Checklist by Robert H. Sydnor, Senior Engineering Geologist California Geological Survey www.conservation.ca.gov/cgs July 1, 2005 316 pages Engineering Geology and Seismology performance–based analysis, diligent subsurface for Public Schools and Hospitals sampling, careful reading of the extensive geologic in California literature, thorough knowledge of the California Building Code, combined with competent professional geological work. by Robert H. Sydnor Engineering geology aspects of hospital and public California Geological Survey school sites include: regional geology, regional fault July 1, 2005 316 pages maps, site-specific geologic mapping, geologic cross- sections, active faulting, official zones of investigation Abstract for liquefaction and landslides, geotechnical laboratory The 446+ hospitals, 1,400+ skilled nursing facilities testing of samples, expansive soils, soluble sulfate ±9,221 public schools, and 109 community college evaluation for Type II or V Portland-cement selection, campuses in California are regulated under California and flooding. Code of Regulations, Title 24, California Building Code. Seismology aspects include: evaluation of historic These facilities are plan–checked by senior–level seismicity, probabilistic seismic hazard analysis of Registered Structural Engineers within the Office of earthquake ground–motion, use of proper code terms Statewide Health Planning and Development (OSHPD) (Upper–Bound Earthquake ground–motion and Design– for hospitals and skilled nursing facilities, and the Basis ground–motion), classification of the geologic Division of the State Architect (DSA) for public schools, subgrade by shear–wave velocity to select the correct community colleges, and essential services buildings.
    [Show full text]
  • Shallow Water Waves and Solitary Waves Article Outline Glossary
    Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other.
    [Show full text]