The Phylogenetic Relationships of Tachinidae

Total Page:16

File Type:pdf, Size:1020Kb

The Phylogenetic Relationships of Tachinidae THE PHYLOGENETIC RELATIONSHIPS OF TACHINIDAE (INSECTA: DIPTERA) WITH A FOCUS ON SUBFAMILY STRUCTURE A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By DANIEL J DAVIS B.S., Wright State University, 2010 2012 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 13, 2012 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Daniel J Davis ENTITLED The phylogenetic relationships of Tachinidae (Insecta: Diptera) with a focus on subfamily structure BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science _____________________________ John O. Stireman III, Ph.D. Thesis Director _____________________________ David Goldstein, Ph.D., Chair Department of Biological Sciences College of Science and Mathematics Committee on Final Examination ____________________________ John O. Stireman III, Ph.D. ____________________________ Jeffrey L. Peters, Ph.D. ____________________________ Donald F. Cipollini, Ph.D. ____________________________ Andrew Hsu, Ph.D. Dean, Graduate School ABSTRACT Davis, Daniel J. M.S., Department of Biological Sciences, Wright State University, 2012. Phylogenetic relationships of Tachinidae (Insecta: Diptera) with a focus on subfamily structure. The parasitoid flies of the Tachinidae family are an important and diverse (>10,000 species) lineage of insects. However, tachinids are not well studied partially due to their confusing classification and taxonomy. DNA sequences were obtained from twenty tribal representatives of Tachinidae, along with eight outgroups in order to phylogenetically reconstruct the superfamilial, subfamilial and tribal relationships of Tachinidae. Seven gene regions of six genes (18S, 28S, COI, CAD, Ef1a, and TPI) were sequenced for each taxon (6214 bp total). Both maximum likelihood and Bayesian methods were used to infer phylogenies. The Sarcophagidae and Oestridae were usually reconstructed as monophyletic. Calliphoridae was paraphyletic with Pollenia typically being sister to Tachinidae. The Rhinophoridae were found embedded within an otherwise monophyletic Tachinidae, a unique finding. Subfamilies of Tachinidae were generally related in a (Tachininae + Exoristinae) + (Phasiinae (Dexiinae)) manner. The problematic Tachininae genera Strongygaster (Strongygasterini) and Ceracia (Acemyini) were placed into their original subfamilies with high confidence. These findings led to a new hypothesis about a slow evolution into the parasitoid habit. iii TABLE OF CONTENTS Page INTRODUCTION………………………………………………………………….....1 BACKGROUND…………………………………………………………………...…4 Family Tachinidae……………………………………….……………….…..4 Tachinidae as Biological Control Agents…………………………….........7 Tachinid Family Relationships……………………………………….......…9 Tachinid Systematics…………………………………………………...…..11 Molecular Phylogenetics of Tachinids………………………………........13 New methods of Phylogeny Reconstruction…………………………..….15 Objectives and Hypotheses…………………………………………….…..17 MATERIALS AND METHODS…………………………………………………..…20 Experimental Design………………………………………………..………20 Laboratory Methods…………………………………………………………22 Analytical Methods…………………………………………………………..24 RESULTS…………………………………………………………………………….27 Maximum Likelihood…………………………………………………...……27 MrBayes Analyses…………………………………………………………..28 Species tree analysis in BEAST……………….…………………………..30 DISCUSSION…………………………………………………………………..……32 iv Relationships among Oestroidea………………………………………….34 Rhinophoridae………………………………………………………..……..38 Tachinid subfamily relationships……………………….………………….40 Evolution of the Parasitoid Habit…………………………………….…….44 Future Direction……………………………………………………………..46 FIGURES……………………………………………………………………..……..48 TABLES……………………………………………………………………..……….59 APPENDIX I: Settings for MrBayes…………………………………………….…64 REFERENCES………………………………………………………………..….…65 v LIST OF FIGURES Figure Page 1. Maximum likelihood results of 18S……………………………………….48 2. Maximum likelihood results of 28S……………………………………….49 3. Maximum likelihood results of COI……………………………………….50 4. Maximum likelihood results of CAD………………………………………51 5. Maximum likelihood results of Ef1α………………………………………52 6. Maximum likelihood results of TPI ……………………………………….53 7. Maximum likelihood results using GARLI ……………………………….54 8. Analysis using MrBayes using all genetic data…………………………55 9. Analysis using MrBayes with a monophyletic Tachinidae……………..56 10. Analysis using MrBayes with additional Rhinophoridae……………….57 11. Species tree analysis using BEAST……………………………………..58 vi LIST OF TABLES Table Page 1. Sample coverage of the Tachinidae……………………………………..59 2. Sample coverage of the outgroups………..….…………………..……..60 3. Evolutionary models used during analysis……………………….……..61 4. Primer Sequences………………………….….…….…….……….……..62 5. Touchdown PCR used for most amplifications…………………………63 vii INTRODUCTION Flies of the family Tachinidae (Insecta: Diptera) are ecologically and economically important due to their parasitoid lifestyle on other insects. Like other parasitoids, the larva of a tachinid develops inside of a living insect host and then kills it in order to reach adulthood. Tachinids attack a wide range of arthropod hosts including caterpillars (Lepidoptera), true bugs (Hemiptera), centipedes (Chilopoda), and spiders (Arachnida) (Wood 1987; Stireman et al., 2006). Tachinids also have a wide range of host attack strategies including laying larvae directly on the host, actively seeking out their host in the larval stage, and laying tiny eggs that the host ingests. Tachinids can be voracious parasitoids, accounting for up to 80% mortality of other insects (Boetner et al., 2000). Since the females of some species can lay up to 4,000 eggs over their lifetime (Belshaw, 1994), tachinids can be extremely effective at regulating populations of their hosts. For this reason tachinid flies have been extensively used as biological control agents against agricultural pest insects for over 100 years (Wood, 1987). Tachinids have been widely used in managed biological control programs. For example, several species of tachinids have been introduced to control the gypsy moth (Lymantria dispar). Gypsy moth larvae are serious pests that defoliate hardwood trees and were introduced from Europe to the United States (Leihold et. al, 1992). This species defoliated 26 million acres of hardwood forest in a single major outbreak (1980-1982; McManus et al., 1992). Since the establishment of several tachinid enemy species on the gypsy moth, further 1 control efforts using pesticides have not been needed (Van Driesche et al., 2010). Other examples of successful biological control with tachinids include brown tailed moth, winter moth, sugarcane borers, mole crickets, and corn earworms (Grenier, 1998). These control efforts have reduced the need for pesticides and can be economical once establishment is achieved (Myers et al., 1998). Although some control efforts using tachinids have been successful, many have been limited due to the lack of basic information about tachinids. In particular, the phylogenetic relationships of tachinids are poorly understood. The relationships among the 10,000 species of tachinids are ambiguous due to a high amount of morphological homoplasy throughout the family. This homoplasy creates identification problems and many scientists do not attempt to identify tachinids beyond the family level. This impedes managers of biological control programs when they are attempting to find suitable parasitoids for their project (Cooper et al., 2011). This is compounded by a lack of general knowledge about tachinid biology and their systematics. Systematic knowledge of tachinids is lacking due to a poor fossil record, the relative youth of the clade, morphological homoplasy, cryptic speciation, a high number of species, identification difficulties, and a lack of phylogenetic evidence (Crosskey, 1976; McAlpine, 1989; Stireman et al., 2006). However, we can now use molecular techniques to create a robust phylogeny that could fill in the knowledge gaps. A robust phylogeny also has the added benefits of bringing insight to the evolution of tachinids and their parasitoid lifestyle. 2 The focus of my research is using phylogenetics to construct a robust skeletal phylogeny for tachinids that will act as a basic framework for future research on this extremely large clade. By using phylogenetics, we can also look into the evolution of tachinids and the parasitoid lifestyle in general. The major goals of my research are: ● Use DNA sequence data to construct a robust phylogenetic framework for the family Tachinidae while emphasizing the subfamily structure. ● Place difficult taxa such as Strongygaster (Strongygasterini) and Ceracia (Acemyini) into appropriate subfamilies. ● Identify the sister-group to Tachinidae and their position within the superfamily Oestroidea. ● Use this framework to gain insight into the evolution of the parasitoid habit. These goals will be achieved by using genetic sequencing and phylogenetic analytical techniques. Through these analyses, I will provide insights into the relationships within the Tachinidae and to advance our knowledge about the evolution of the parasitoid habit. Tachinids represent a hyper-diverse lineage that may provide insight into the evolution of the parasitoid lifestyle. Tachinids are economically important as biological control agents against insect pests but a lack of basic knowledge of Tachinidae has created serious ecological problems. A robust phylogeny will clarify the relationships within tachinids as well as reveal insights into the evolution of
Recommended publications
  • Evolutionary History of Stomach Bot Flies in the Light of Mitogenomics
    Evolutionary history of stomach bot flies in the light of mitogenomics Yan, Liping; Pape, Thomas; Elgar, Mark A.; Gao, Yunyun; Zhang, Dong Published in: Systematic Entomology DOI: 10.1111/syen.12356 Publication date: 2019 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Yan, L., Pape, T., Elgar, M. A., Gao, Y., & Zhang, D. (2019). Evolutionary history of stomach bot flies in the light of mitogenomics. Systematic Entomology, 44(4), 797-809. https://doi.org/10.1111/syen.12356 Download date: 28. Sep. 2021 Systematic Entomology (2019), 44, 797–809 DOI: 10.1111/syen.12356 Evolutionary history of stomach bot flies in the light of mitogenomics LIPING YAN1, THOMAS PAPE2 , MARK A. ELGAR3, YUNYUN GAO1 andDONG ZHANG1 1School of Nature Conservation, Beijing Forestry University, Beijing, China, 2Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark and 3School of BioSciences, University of Melbourne, Melbourne, Australia Abstract. Stomach bot flies (Calyptratae: Oestridae, Gasterophilinae) are obligate endoparasitoids of Proboscidea (i.e. elephants), Rhinocerotidae (i.e. rhinos) and Equidae (i.e. horses and zebras, etc.), with their larvae developing in the digestive tract of hosts with very strong host specificity. They represent an extremely unusual diver- sity among dipteran, or even insect parasites in general, and therefore provide sig- nificant insights into the evolution of parasitism. The phylogeny of stomach botflies was reconstructed
    [Show full text]
  • Tachinid Times Issue 29
    Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing.
    [Show full text]
  • Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(S): Diego J
    Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States Author(s): Diego J. Inclan and John O. Stireman, III Source: Annals of the Entomological Society of America, 104(2):287-296. Published By: Entomological Society of America https://doi.org/10.1603/AN10047 URL: http://www.bioone.org/doi/full/10.1603/AN10047 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. CONSERVATION BIOLOGY AND BIODIVERSITY Tachinid (Diptera: Tachinidae) Parasitoid Diversity and Temporal Abundance at a Single Site in the Northeastern United States 1 DIEGO J. INCLAN AND JOHN O. STIREMAN, III Department of Biological Sciences, 3640 Colonel Glenn Highway, 235A, BH, Wright State University, Dayton, OH 45435 Ann. Entomol. Soc. Am. 104(2): 287Ð296 (2011); DOI: 10.1603/AN10047 ABSTRACT Although tachinids are one of the most diverse families of Diptera and represent the largest group of nonhymenopteran parasitoids, their local diversity and distribution patterns of most species in the family are poorly known.
    [Show full text]
  • Scientific Notes 365
    Scientific Notes 365 FENNAH, R. G. 1942. The citrus pests investigation in the Windward and Leeward Is- lands, British West Indies 1937-1942. Agr. Advisory Dept., Imp. Coll. Tropical Agr. Trinidad, British West Indies. pp. 1-67. JONES, T. H. 1915. The sugar-cane weevil root-borer (Diaprepes sprengleri Linn.) In- sular Exp. Stn. (Rio Piedras, P. R.) Bull. 14: 1-9, 11. SCHROEDER, W. J. 1981. Attraction, mating, and oviposition behavior in field popula- tions of Diaprepes abbreviatus on citrus. Environ. Entomol. 10: 898-900. WOLCOTT, G. N. 1933. Otiorhynchids oviposit between paper. J. Econ. Entomol. 26: 1172. WOLCOTT, G. N. 1936. The life history of Diaprepes abbreviatus at Rio Piedras, Puerto Rico. J. Agr. Univ. Puerto Rico 20: 883-914. WOODRUFF, R. E. 1964. A Puerto Rican weevil new to the United States (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 30: 1-2. WOODRUFF, R. E. 1968. The present status of a West Indian weevil Diaprepes abbre- viatus (L.) in Florida (Coleoptera: Curculionidae). Fla. Dept. Agr., Div. Plant Ind., Entomol. Circ. 77: 1-4. ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦ PARASITISM OF EASTERN LUBBER GRASSHOPPER BY ANISIA SEROTINA (DIPTERA: TACHINIDAE) IN FLORIDA MAGGIE A. LAMB, DANIEL J. OTTO AND DOUGLAS W. WHITMAN* Behavior, Ecology, Evolution, and Systematics Section Department of Biological Sciences, Illinois State University Normal, IL 61790-4120 The eastern lubber grasshopper, Romalea microptera Beauvois (= guttata; see Otte 1995) is a large romaleid grasshopper (adults = 2-12 g) that occurs sporadically throughout the southeastern USA, but in relatively high densities in the Everglades- Big Cypress area of south Florida (Rehn & Grant 1959, 1961).
    [Show full text]
  • The State of Lagomorphs Today
    HOUSE RABBIT JOURNAL The publication for members of the international House Rabbit Society Winter 2016 The State of Lagomorphs Today by Margo DeMello, PhD Make Mine Chocolate™ Turns 15 by Susan Mangold and Terri Cook Advocating For Rabbits by Iris Klimczuk Fly Strike (Myiasis) in Rabbits by Stacie Grannum, DVM $4.99 CONTENTS HOUSE RABBIT JOURNAL Winter 2016 Contributing Editors Amy Bremers Shana Abé Maureen O’Neill Nancy Montgomery Linda Cook The State of Lagomorphs Today p. 4 Sandi Martin by Margo DeMello, PhD Rebecca Clawson Designer/Editor Sandy Parshall Veterinary Review Linda Siperstein, DVM Executive Director Anne Martin, PhD Board of Directors Marinell Harriman, Founder and Chair Margo DeMello, President Mary Cotter, Vice President Joy Gioia, Treasurer Beth Woolbright, Secretary Dana Krempels Laurie Gigous Kathleen Wilsbach Dawn Sailer Bill Velasquez Judith Pierce Edie Sayeg Nancy Ainsworth House Rabbit Society is a 501c3 and its publication, House Rabbit Journal, is published at 148 Broadway, Richmond, CA 94804. Photograph by Tom Young HRJ is copyright protected and its contents may not be republished without written permission. The Bunny Who Started It All p. 7 by Nareeya Nalivka Goldie is adoptable at House Rabbit Society International Headquarters in Richmond, CA. rabbitcenter.org/adopt Make Mine Chocolate™ Turns 15 p. 8 by Susan Mangold and Terri Cook Cover photo by Sandy Parshall, HRS Program Manager Bella’s Wish p. 9 by Maurice Liang Advocating For Rabbits p. 10 by Iris Klimczuk From Grief to Grace: Maurice, Miss Bean, and Bella p. 12 by Chelsea Eng Fly Strike (Myiasis) in Rabbits p. 13 by Stacie Grannum, DVM The Transpacifi c Bunny p.
    [Show full text]
  • Phylogenetic Relationships of Tachinid Flies in Subfamily Exoristinae Tachinidae: Diptera) Based on 28S Rdna and Elongation Factor-1A
    Systematic Entomology *2002) 27,409±435 Phylogenetic relationships of tachinid flies in subfamily Exoristinae Tachinidae: Diptera) based on 28S rDNA and elongation factor-1a JOHN O. STIREMAN III Department of Ecology and Evolutionary Biology,University of Arizona,Tucson,U.S.A. Abstract. The phylogenetic relationships within the largest subfamily of Tachi- nidae,Exoristinae,were explored using nucleotide sequences of two genes *EF-1 a and 28S rDNA). A total of fifty-five and forty-three taxa were represented in the analyses for each gene,respectively,representing forty-three genera. Neighbour joining,parsimony and maximum likelihood inference methods were employed to reconstruct phylogenetic relationships in separate analyses of each gene,and parsimony was used to analyse the combined dataset. Although certain taxa were highly mobile,phylogenetic reconstructions generally supported recent clas- sification schemes based on reproductive habits and genitalia. Generally,the monophyly of Tachinidae and Exoristinae was supported. Tribes Winthemiini, Exoristini and Blondeliini were repeatedly constructed as monophyletic groups, with the former two clades often occupying a basal position among Exoristinae. Goniini and Eryciini generally clustered together as a derived clade within Exoristinae; however,they were never reconstructed as two distinct clades. These results suggest that the possession of unembryonated eggs is plesiomorphic within the subfamily and that there may have been multiple transitions between micro- type and macrotype egg forms. Introduction 1987; Williams et al.,1990; Eggleton & Belshaw,1993), and the wide variety of mechanisms by which they attack Tachinidae is generally regarded as a relatively recent, them *O'Hara,1985). These oviposition strategies include actively radiating clade of parasitic flies *Crosskey,1976).
    [Show full text]
  • Internal Parasites of the Horse
    Journal of the Department of Agriculture, Western Australia, Series 3 Volume 5 Number 4 July-August, 1956 Article 3 1-7-1956 Internal parasites of the horse J. Shilkin Follow this and additional works at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3 Recommended Citation Shilkin, J. (1956) "Internal parasites of the horse," Journal of the Department of Agriculture, Western Australia, Series 3: Vol. 5 : No. 4 , Article 3. Available at: https://researchlibrary.agric.wa.gov.au/journal_agriculture3/vol5/iss4/3 This article is brought to you for free and open access by Research Library. It has been accepted for inclusion in Journal of the Department of Agriculture, Western Australia, Series 3 by an authorized administrator of Research Library. For more information, please contact [email protected]. INTERNAL PARASITES OF THE By J. SHILKIN, B.V. Sc, Senior Veterinary Surgeon WfHILE actual losses from internal parasites are not of common occurrence in TT horses, much unthriftiness, debility and colic can be attributed to their presence in the intestines, particularly in young animals. Infection occurs through the horse ing for long periods on the grass, although swallowing the eggs or larvae which are the majority will die in about three present in the soil, water or grass. The months. When the pasture is wet with dew different species then progress through or rain they are able to climb up the blades their various life cycles ending with of grass and are swallowed by the horse female worms laying eggs which are as it grazes. eventually passed out in the dung.
    [Show full text]
  • No Slide Title
    Tachinidae: The “other” parasitoids Diego Inclán University of Padova Outline • Briefly (re-) introduce parasitoids & the parasitoid lifestyle • Quick survey of dipteran parasitoids • Introduce you to tachinid flies • major groups • oviposition strategies • host associations • host range… • Discuss role of tachinids in biological control Parasite vs. parasitoid Parasite Life cycle of a parasitoid Alien (1979) Life cycle of a parasitoid Parasite vs. parasitoid Parasite Parasitoid does not kill the host kill its host Insects life cycles Life cycle of a parasitoid Some facts about parasitoids • Parasitoids are diverse (15-25% of all insect species) • Hosts of parasitoids = virtually all terrestrial insects • Parasitoids are among the dominant natural enemies of phytophagous insects (e.g., crop pests) • Offer model systems for understanding community structure, coevolution & evolutionary diversification Distribution/frequency of parasitoids among insect orders Primary groups of parasitoids Diptera (flies) ca. 20% of parasitoids Hymenoptera (wasps) ca. 70% of parasitoids Described Family Primary hosts Diptera parasitoid sp Sciomyzidae 200? Gastropods: (snails/slugs) Nemestrinidae 300 Orth.: Acrididae Bombyliidae 5000 primarily Hym., Col., Dip. Pipunculidae 1000 Hom.:Auchenorrycha Conopidae 800 Hym:Aculeata Lep., Orth., Hom., Col., Sarcophagidae 1250? Gastropoda + others Lep., Hym., Col., Hem., Tachinidae > 8500 Dip., + many others Pyrgotidae 350 Col:Scarabaeidae Acroceridae 500 Arach.:Aranea Hym., Dip., Col., Lep., Phoridae 400?? Isop.,Diplopoda
    [Show full text]
  • Information on Tachinid Fauna (Diptera, Tachinidae) of the Phasiinae Subfamily in the Far East of Russia
    International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-2, December, 2019 Information on Tachinid Fauna (Diptera, Tachinidae) Of the Phasiinae Subfamily in the Far East of Russia Markova T.O., Repsh N.V., Belov A.N., Koltun G.G., Terebova S.V. Abstract: For the first time, a comparative analysis of the For example, for the Hemyda hertingi Ziegler et Shima tachinid fauna of the Phasiinae subfamily of the Russian Far species described in the Primorsky Krai in 1996 for the first East with the fauna of neighboring regions has been presented. time the data on findings in Western, Southern Siberia and The Phasiinae fauna of the Primorsky Krai (Far East of Russia) is characterized as peculiar but closest to the fauna of the Khabarovsk Krai were given. For the first time, southern part of Khabarovsk Krai, Amur Oblast and Eastern Redtenbacheria insignis Egg. for Eastern Siberia and the Siberia. The following groups of regions have been identified: Kuril Islands, Phasia barbifrons (Girschn.) for Western Southern, Western and Eastern Siberia; Amur Oblast and Siberia, and Elomya lateralis (Mg.) and Phasia hemiptera Primorsky Krai, which share many common Holarctic and (F.) were indicated.At the same time, the following species Transpalaearctic species.Special mention should be made of the have been found in the Primorsky Krai, previously known in fauna of the Khabarovsk Krai, Sakhalin Oblast, which are characterized by poor species composition and Japan (having a Russia only in the south of Khabarovsk Krai and in the subtropical appearance). Amur Oblast (Markova, 1999): Phasia aurigera (Egg.), Key words: Diptera, Tachinidae, Phasiinae, tachinid, Phasia zimini (D.-M.), Leucostoma meridianum (Rond.), Russian Far East, fauna.
    [Show full text]
  • Lateinischer Tiernamen. Anonymus
    A Index lateinischer Tiernamen Die AutorennameaSubgenus- und Subspeziesbezeichnungen sind dem Textteil zu entnehmen! Abdera 71 Alburnus alburnus 54, 56 Aporia crataegi 102 Abramis brama 53 - bipunctatus 56 Aporophila lutulenta 108 Abraxas grossulariata 111 Alcedo atthis 44 Aquila chrysaetos 44 Acanthocinus griseus 84 Alcis jubata 112 - clanga 46 - reticulatus 84 Alectoris graeca 43 - heliaca 46 Acasis appensata 123 Allophyes oxyacanthae 109 - pomarina 46 - viretata 112 Aiosa aiosa 53 Araschnia levana 104 Accipiter gentilis 44 Alsophila quadripunctaria 112 Archanara geminipuncta 119 - nisus 44 Amata phegea 107 - neurica 108 Acipenser ruthenus 51, 53, 56 Amathes castanea 108 - sparganii 109 - güldenstädti51,53 - collina 110 Arctaphaenops nihilumalbi 77 Acmaeodera degener 86 Ampedus 68 - styriacus 63, 77 Acmaeoderella ftavofasciata 85 Amphibia 49-50 Arctinia caesarea 117 Acmaeops marginata 79 Amphipoea fucosa 109 Ardea cinerea 44 - pratensis 84 Amphipyra livida 109 - purpurea 43, 46 - septentrionis 84 - tetra 109 Ardeola ralloides 46 Acontia luctuosa 109 Anaesthetis testacea 82 Argante herbsti 86 Acrocephalus schoenobaenus 45 Anaitis efformata 111 Argiope bruenichi 16 Acroloxus lacustris 144 Anarta cordigera 110 Argna biplicata 141,145 Actia infantula 131 - myrtilli 108 Aricia artaxerxes 104 - pilipennis 131 Anas crecca 44 Arion alpinus 141 Actinotia hyperici 108 - querquedula 44 - lusitanicus 141 Actitis hypoleucos 44 Anax parthenope 60 - ruf us 141 Adelocera 68 Ancylus fluviatilis 139, 144 Aromia moschata 82 Admontia blanda 131 Anemadus
    [Show full text]
  • To View Article
    Wyre Forest Study Group NOTES ON MALAISE TRAPPING IN WYRE FOREST DURING 2005: SOME PROBLEMS WITH FLIES ! Mike Bloxham 2005 saw use of the malaise trap in two projects, Syrphidae (‘Hoverflies’) the main one being the Orchard Project and the Cheilosia griseiventris (Loew). A single male. other the Roxel Site Investigation. Those who are This black hoverfly keys out to the Stubbs unfamiliar with this trap will see a picture of it in ‘variabilis’ group and controversy still surrounds action on page 42 of the Wyre Forest Study Group its taxonomy. Unfortunately a closely similar Review for 2004. The final report on the Orchard species pair is again the problem, with Cheilosia Project is almost completed as I write and has latifrons and C. griseiventris being often so alike involved much intensive work from all parties that genitalic differences are too slight to provide involved. As a consequence, the Roxel samples reliable characters for separation. In the eyes of have not yet received the same amount of attention. some workers this indicates that they are the same The traps concerned here were situated in species. There are, however, certain physical Postensplain (Grid Reference SO 74387908. V.C. differences and large specimens with longer ocellar 40). Mick Blythe gave me some tubes of assorted triangles in the male can be fairly readily separated. flies from the catch, the specimens having been The Roxel specimen satisfies this condition (it is collected between 12/8/05 to 1/9/05. I immediately 1cm in body length with appropriate ocellar subjected the contents to a quick search to see if triangle ratios) and I am therefore following Stubbs any material could be readily identified as having & Falk (2002) in naming it as C.
    [Show full text]
  • Pinery Provincial Park
    PINERY PROVINCIAL PARK One Malaise trap was deployed at Pinery Provincial Park in 2014 (43.26987, -81.82706, 178m ASL; Figure 1). This trap collected arthropods for twenty weeks from April 30 – September 17, 2014. All 10 Malaise trap samples were processed; every other sample was analyzed using the individual specimen protocol while the second half was analyzed via bulk analysis. A total of 1894 BINs were obtained. Half of the BINs captured were flies (Diptera), followed by bees, ants and wasps (Hymenoptera), moths and butterflies (Lepidoptera), and beetles (Coleoptera; Figure 2). In total, 956 arthropod species were named, representing 29.3% of the BINs from the Figure 1. Malaise trap deployed at Pinery Provincial site (Appendix 1). All but 3 of the BINs were assigned Park in 2014. at least to family, and 63.6% were assigned to a genus (Appendix 2). Specimens collected from Pinery represent 215 different families and 743 genera. Diptera Hymenoptera Lepidoptera Coleoptera Hemiptera Trombidiformes Sarcoptiformes Psocodea Entomobryomorpha Araneae Mesostigmata Thysanoptera Blattodea Neuroptera Orthoptera Poduromorpha Julida Mecoptera Opiliones Symphypleona Trichoptera Figure 2. Taxonomy breakdown of BINs captured in the Malaise trap at Pinery. APPENDIX 1. TAXONOMY REPORT Class Order Family Genus Species Arachnida Araneae Araneidae Eustala Eustala rosae Neoscona Neoscona arabesca Clubionidae Clubiona Clubiona pygmaea Elaver Elaver excepta Dictynidae Lathys Lathys pallida Linyphiidae Ceratinops Ceratinops latus Grammonota Grammonota gigas
    [Show full text]