Antisense-Mediated Lowering of Plasma Apolipoprotein C-III By

Total Page:16

File Type:pdf, Size:1020Kb

Antisense-Mediated Lowering of Plasma Apolipoprotein C-III By 1408 Diabetes Care Volume 39, August 2016 Andres Digenio,1 Richard L. Dunbar,2 Antisense-Mediated Lowering Veronica J. Alexander,3 Marcus Hompesch,4 Linda Morrow,4 of Plasma Apolipoprotein C-III Richard G. Lee,3 Mark J. Graham,3 Steven G. Hughes,3 Rosie Yu,3 by Volanesorsen Improves Walter Singleton,3 Brenda F. Baker,3 Dyslipidemia and Insulin Sanjay Bhanot,3 and Rosanne M. Crooke3 Sensitivity in Type 2 Diabetes Diabetes Care 2016;39:1408–1415 | DOI: 10.2337/dc16-0126 OBJECTIVE To determine the effects of volanesorsen (ISIS 304801), a second-generation 2’-O-methoxyethyl chimeric antisense inhibitor of apolipoprotein (apo)C-III, on triglyceride (TG) levels and insulin resistance in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS A randomized, double-blind, placebo-controlled trial was performed in 15 adult patients with type 2 diabetes (HbA1c >7.5% [58 mmol/mol]) and hypertriglycer- idemia (TG >200 and <500 mg/dL). Patients were randomized 2:1 to receive volanesorsen 300 mg or placebo for a total of 15 subcutaneous weekly doses. Glucose handling and insulin sensitivity were measured before and after treat- ment using a two-step hyperinsulinemic-euglycemic clamp procedure. RESULTS Treatment with volanesorsen significantly reduced plasma apoC-III (288%, P = EMERGING TECHNOLOGIES AND THERAPEUTICS 0.02) and TG (269%, P = 0.02) levels and raised HDL cholesterol (HDL-C) (42%, P = 0.03) compared with placebo. These changes were accompanied by a 57% im- provement in whole-body insulin sensitivity (P < 0.001). Importantly, we found a strong relationship between enhanced insulin sensitivity and both plasma apoC-III 1Akcea Therapeutics, Cambridge, MA (r = 20.61, P =0.03)andTG(r = 20.68, P = 0.01) suppression. Improved insulin 2University of Pennsylvania, Philadelphia, PA fi fi 2 P 3Ionis Pharmaceuticals, Inc., Carlsbad, CA sensitivity was suf cient to signi cantly lower glycated albumin ( 1.7%, = 4 fi 2 m P Pro l Institute for Clinical Research, San Diego, 0.034) and fructosamine ( 38.7 mol/L, = 0.045) at the end of dosing and HbA1c CA 2 2 P ( 0.44% [ 4.9 mmol/mol], = 0.025) 3 months postdosing. Corresponding author: Andres Digenio, adigenio@ akceatx.com. CONCLUSIONS Received 20 January 2016 and accepted 9 May Volanesorsen reduced plasma apoC-III and TG while raising HDL-C levels. Impor- 2016. tantly, glucose disposal, insulin sensitivity, and integrative markers of diabetes A.D. and R.L.D. are co–primary authors. also improved in these patients after short-term treatment. Clinical trial reg. no. NCT01647308, clinicaltrials .gov. Insulin resistance states usually seen in the context of obesity and type 2 diabetes This article contains Supplementary Data online are commonly associated with a metabolic dyslipidemia that amplifies cardiovas- at http://care.diabetesjournals.org/lookup/ suppl/doi:10.2337/dc16-0126/-/DC1. cular disease risk. Among patients with type 2 diabetes, insulin resistance impairs © 2016 by the American Diabetes Association. the ability to utilize glucose as fuel, prompting a switch toward fat storage that Readers may use this article as long as the work is promotes free fatty acid flux, hepatic triglyceride (TG) synthesis, and secretion of properly cited, the use is educational and not for large VLDL particles (1). Cholesteryl ester transfer protein-mediated exchange of profit, and the work is not altered. care.diabetesjournals.org Digenio and Associates 1409 VLDL-TG for cholesteryl esters in LDL more recent studies, it does not appear euglycemic (HE) clamp trial was conducted and HDL particles promotes atherogenic that apoC-III is directly associated with at a single center in the U.S. (ProfilIn- small-dense LDL and dysfunctional small- the incidence of nonalcoholic fatty liver stitute for Clinical Research, San Diego, dense HDL particles, which are more disease in broader patient populations CA) between 8 August 2012 and 31 Jan- readily catabolized by the kidney. The re- (14). Two recent Mendelian randomiza- uary 2014 to evaluate the effects of sulting metabolic dyslipidemia features tion studies showed that individuals with volanesorsen treatment in adult pa- a triad of high levels of VLDL-TG, low loss-of-function APOC3 variants had tients with type 2 diabetes and hyper- HDL cholesterol (HDL-C), and an in- lower TG concentrations and LDL-C, triglyceridemia. The primary objective creased prevalence of small-dense LDL higher HDL-C, and, compellingly, a 40% of this trial was to determine the effects particles despite normal or even low LDL reduction in risk of coronary heart dis- of volanesorsen versus placebo on fast- cholesterol (LDL-C) levels. The cumulative ease (15,16). While it is unclear whether ing total apoC-III. The secondary objec- result is a significant increase in the risk of the coronary heart disease risk reduction tives were to determine its effects on atherosclerosis (2). is due to suppressed TG, other TRL- other lipid parameters, glycemic con- Recommended treatments include associated factors, or apoC-III per se, trol, and insulin sensitivity. Written in- diet and exercise as well as statins that the aforementioned cardioprotective formed consent was obtained from all have the strongest evidence for im- properties suggest that apoC-III is an participants prior to participation in the provement of this condition (3–5). Be- attractive therapeutic target (17). study. The protocol was approved by cause the TG-reducing effect of statins is Potent second-generation antisense the institutional review board and con- modest at best, patient-centered guide- oligonucleotides (ASOs) have been de- ducted in compliance with the stan- lines also recommend a second drug veloped to reduce apoC-III expression dards of Good Clinical Practice and such as fibric acid derivatives, niacin, in animals and humans (18). In mice, guidelines of the 2002 Declaration of or n-3 fatty acids (3). In support of this administration of a species-specific Helsinki. approach, meta-analyses of five large tri- apoC-III ASO led to dose-dependent re- Eligible patients were 18–65 years als assessing the impact of fibrates on car- ductions in hepatic apoC-III mRNA and old; had hypertriglyceridemia (TG diovascular end points revealed benefits plasma apoC-III protein. In dyslipidemic .200 mg/dL and ,500 mg/dL) and among patients with the lipid triad (6). rodent models, this led to .50% reduc- type 2 diabetes that had been diag- While it is well established that insulin tions in both fasting and postprandial nosed for at least 6 months; had uncon- resistance drives dyslipidemia, there is plasma TG. Recapitulating preclinical trolled hyperglycemia (HbA1c .7.5% growing evidence that the elevation in models, treating normolipidemic and [58 mmol/mol]); and were on a stable plasma TGs and reduction in HDL-C ac- hypertriglyceridemic human subjects dose of metformin $1,000 mg/day. Pa- companying insulin resistance states with the human-specificapoC-IIIASO, tients with uncontrolled high blood may exacerbate the insulin-resistant volanesorsen (ISIS 304801), profoundly pressure, heart failure New York Heart phenotype, albeit by yet-to-be-defined reduced plasma apoC-III protein and Association III and IV, recent episode of mechanisms (7). In preclinical models, plasma TG levels (18,19). This included angina, prior acute myocardial infarction, HDL may improve insulin sensitivity, in- subjects with familial chylomicronemia recent coronary bypass surgery, severe di- sulin secretion through the b-cells, and syndrome (FCS), who have extreme abetes microvascular complications, kid- b-cell survival (8). Clinically, elevations hypertriglyceridemia due to loss-of- ney or liver disease, hypothyroidism, or in TG-rich lipoprotein (TRL) levels have function mutations leading to absent low platelet count were excluded from been shown to exacerbate the pathol- LPL activity (20). This latter study dem- participation in the study. Acceptable con- ogy of insulin resistance. Therefore, re- onstrates that apoC-III also inhibits an traceptive methods were required during ducing TG and increasing HDL may not LPL-independent pathway of TRL dosing and in the follow-up period. Lipid only reduce cardiovascular risk but also clearance. and blood pressure medications were al- improve insulin sensitivity and delay Given evidence that hypertriglyceri- lowed provided that they were stable b-cell failure (1,9). demia may worsen insulin sensitiv- before dosing. Oral antidiabetes medi- Apolipoprotein (apo)C-III has been ity and the data suggesting a role for cation other than metformin was pro- identified as a key modulator of plasma apoC-III in mediating insulin resistance, hibited. Men had to restrict alcohol TG concentrations in animal models and we reasoned that an intervention that intake to 2 drinks and women to 1 drink in humans. ApoC-III affects TG metabo- robustly suppressed apoC-III and plasma daily. All patients received glucose- lism by inhibiting lipoprotein lipase TG would lead to improved insulin sen- monitoring instructions and dietary ed- (LPL) activity and by interfering with sitivity. Thus, we conducted a clinical ucation based on the American Diabetes receptor-mediated uptake of TRLs by trial that allowed us to test the mecha- Association guidelines. the liver (10,11). Mice overexpressing nistic hypothesis that aggressively lower- The trial consisted of three periods apoC-III not only have high plasma TG ing TG by apoC-III ASO treatment would (Supplementary Fig. 1): screening, dos- but also display increased insulin resis- improve insulin sensitivity in patients ing (13 weeks, days 1–85), and post- tance (12). In East Indian Asians, an with diabetes with high TGs. treatment/follow-up (13 weeks, days APOC3 genotype associated with in- 86–176). Eligible patients were random- creased plasma TG is also associated with RESEARCH DESIGN AND METHODS ized 2:1 to receive volanesorsen 300 mg: insulin resistance and nonalcoholic fatty Clinical Trial Design and Participants placebo for a total of 15 subcutaneous liver disease, the hepatic manifestation of A randomized, double-blind, placebo- doses (days 1, 3, 5, 8, 15, 22, 29, 35, 42, the metabolic syndrome (13).
Recommended publications
  • Polymorphisms in APOA1 and LPL Genes Are Statistically Independently Associated with Fasting TG in Men with CAD
    European Journal of Human Genetics (2005) 13, 445–451 & 2005 Nature Publishing Group All rights reserved 1018-4813/05 $30.00 www.nature.com/ejhg ARTICLE Polymorphisms in APOA1 and LPL genes are statistically independently associated with fasting TG in men with CAD Olga W Souverein*,1, J Wouter Jukema2, S Matthijs Boekholdt3, Aeilko H Zwinderman1 and Michael WT Tanck1 1Department of Clinical Epidemiology and Biostatistics, Academic Medical Center, Amsterdam, The Netherlands; 2Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; 3Department of Cardiology, Academic Medical Center, Amsterdam, The Netherlands The objective of this paper was to identify the single nucleotide polymorphisms (SNPs) that show unshared effects on plasma triglyceride (TG) levels and to investigate whether these SNPs show statistically independent effects on plasma TG levels. In total, 59 polymorphisms in 20 genes involved in lipid metabolism were investigated. Polymorphisms were selected for a multivariate ANOVA model if they showed an univariate association with TG (after adjustment for HDL-C and LDL-C) in more than 50% of bootstrap samples that were made from the original data. The multivariate model included 512 men with coronary artery disease from the REGRESS study who were completely genotyped for eight polymorphisms selected in the univariate procedure (ie, APOA1 G(À75)A, ABCA1 C(À477)T, ABCA1 G1051A, APOC3 T3206G, APOE Arg158Cys, LIPC C(À514)T, LPL Asn291Ser and LPL Ser447Stop). The gene variants APOA1 G(À75)A (P ¼ 0.04) and LPL Asn291Ser (P ¼ 0.03) were significantly associated with plasma TG levels in this multivariate analysis. The eight polymorphisms explained 8.9% of the variation in plasma TG levels.
    [Show full text]
  • The Crucial Roles of Apolipoproteins E and C-III in Apob Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Sacks, Frank M. 2015. “The Crucial Roles of Apolipoproteins E and C-III in apoB Lipoprotein Metabolism in Normolipidemia and Hypertriglyceridemia.” Current Opinion in Lipidology 26 (1) (February): 56–63. doi:10.1097/mol.0000000000000146. Published Version doi:10.1097/MOL.0000000000000146 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:30203554 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptCurr Opin Author Manuscript Lipidol. Author Author Manuscript manuscript; available in PMC 2016 February 01. Published in final edited form as: Curr Opin Lipidol. 2015 February ; 26(1): 56–63. doi:10.1097/MOL.0000000000000146. The crucial roles of apolipoproteins E and C-III in apoB lipoprotein metabolism in normolipidemia and hypertriglyceridemia Frank M. Sacks Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA Abstract Purpose of review—To describe the roles of apolipoprotein C-III (apoC-III) and apoE in VLDL and LDL metabolism Recent findings—ApoC-III can block clearance from the circulation of apolipoprotein B (apoB) lipoproteins, whereas apoE mediates their clearance.
    [Show full text]
  • Lrp1 Modulators
    Last updated on February 14, 2021 Cognitive Vitality Reports® are reports written by neuroscientists at the Alzheimer’s Drug Discovery Foundation (ADDF). These scientific reports include analysis of drugs, drugs-in- development, drug targets, supplements, nutraceuticals, food/drink, non-pharmacologic interventions, and risk factors. Neuroscientists evaluate the potential benefit (or harm) for brain health, as well as for age-related health concerns that can affect brain health (e.g., cardiovascular diseases, cancers, diabetes/metabolic syndrome). In addition, these reports include evaluation of safety data, from clinical trials if available, and from preclinical models. Lrp1 Modulators Evidence Summary Lrp1 has a variety of essential functions, mediated by a diverse array of ligands. Therapeutics will need to target specific interactions. Neuroprotective Benefit: Lrp1-mediated interactions promote Aβ clearance, Aβ generation, tau propagation, brain glucose utilization, and brain lipid homeostasis. The therapeutic effect will depend on the interaction targeted. Aging and related health concerns: Lrp1 plays mixed roles in cardiovascular diseases and cancer, dependent on context. Lrp1 is dysregulated in metabolic disease, which may contribute to insulin resistance. Safety: Broad-spectrum Lrp1 modulators are untenable therapeutics due to the high potential for extensive side effects. Therapies that target a specific Lrp1-ligand interaction are expected to have a better therapeutic profile. 1 Last updated on February 14, 2021 Availability: Research use Dose: N/A Chemical formula: N/A S16 is in clinical trials MW: N/A Half life: N/A BBB: Angiopep is a peptide that facilitates BBB penetrance by interacting with Lrp1 Clinical trials: S16, an Lrp1 Observational studies: sLrp1 levels are agonist was tested in healthy altered in Alzheimer’s disease, volunteers (n=10) in a Phase 1 cardiovascular disease, and metabolic study.
    [Show full text]
  • Association Between the APOA2 Rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI
    biomedicines Article Association between the APOA2 rs3813627 Single Nucleotide Polymorphism and HDL and APOA1 Levels Through BMI Hatim Boughanem 1 , Borja Bandera-Merchán 2, Pablo Hernández-Alonso 2,3,4 , Noelia Moreno-Morales 5, Francisco José Tinahones 2,3, José Lozano 6 , Sonsoles Morcillo 2,3,* and Manuel Macias-Gonzalez 2,3,* 1 Instituto de Investigación Biomédica de Málaga (IBIMA), Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] 2 Unidad de Gestión Clínica de Endocrinología y Nutrición del Hospital Virgen de la Victoria, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, 29010 Málaga, Spain; [email protected] (B.B.-M.); [email protected] (P.H.-A.); [email protected] (F.J.T.) 3 Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición, CIBERObn, 28029 Madrid, Spain 4 Human Nutrition Unit, Faculty of Medicine and Health Sciences, Sant Joan Hospital, Institut d’Investigació Sanitària Pere Virgili, Rovira i Virgili University, 43201 Reus, Spain 5 Department of Physiotherapy, School of Health Sciences, University of Malaga-Instituto de Investigación Biomédica de Málaga (IBIMA), 29010 Málaga, Spain; [email protected] 6 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, 29010 Málaga, Spain; [email protected] * Correspondence: [email protected] (S.M.); [email protected] (M.M.-G.); Tel.: +34-951-032-648 (S.M. & M.M.-G.); Fax: +34-27-951-924-651 (S.M. & M.M.-G.) Received: 18 February 2020; Accepted: 25 February 2020; Published: 27 February 2020 Abstract: Background: The interaction between obesity and genetic traits on high density lipoprotein (HDL) levels has been extensively studied.
    [Show full text]
  • Apolipoprotein A4 Gene (APOA4) (Chromosome 11/Haplotypes/Intron Loss/Coronary Artery Disease/Apoal-APOC3 Deficiency) Sotirios K
    Proc. Natl. Acad. Sci. USA Vol. 83, pp. 8457-8461, November 1986 Biochemistry Structure, evolution, and polymorphisms of the human apolipoprotein A4 gene (APOA4) (chromosome 11/haplotypes/intron loss/coronary artery disease/APOAl-APOC3 deficiency) SOTIRios K. KARATHANASIS*t, PETER OETTGEN*t, ISSAM A. HADDAD*t, AND STYLIANOS E. ANTONARAKISt *Laboratory of Molecular and Cellular Cardiology, Department of Cardiology, Children's Hospital and tDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115; and tDepartment of Pediatrics, Genetics Unit, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205 Communicated by Donald S. Fredrickson, July 11, 1986 ABSTRACT The genes coding for three proteins of the APOC3 deficiency and premature coronary artery disease plasma lipid transport system-apolipoproteins Al (APOAI), (13-15), hypertriglyceridemia (16), and hypoalphalipopro- C3 (APOC3), and A4 (APOA4)-are closely linked and teinemia (17). tandemly organized on the long arm ofhuman chromosome 11. In this report the nucleotide sequence of the human In this study the human APOA4 gene has been isolated and APOA4 gene has been determined. The results suggest that characterized. In contrast to APOAl and APOC3 genes, which the APOAI, APOC3, and APOA4 genes were derived from a contain three introns, the APOA4 gene contains only two. An common evolutionary ancestor and indicate that during intron interrupting the 5' noncoding region of the APOA1 and evolution the APOA4 gene lost one of its ancestral introns. APOC3 mRNAs is absent from the corresponding position of Screening of the APOA4 gene region for polymorphisms the APOA4 mRNA. However, similar to APOAI and APOC3 showed that two different Xba I restriction endonuclease genes, the introns of the APOA4 gene separate nucleotide sites are polymorphic in Mediterranean and Northern Euro- sequences coding for the signal peptide and the amphipathic pean populations.
    [Show full text]
  • Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia
    Original Research Low-Density Lipoprotein Receptor–Dependent and Low-Density Lipoprotein Receptor–Independent Mechanisms of Cyclosporin A–Induced Dyslipidemia Maaike Kockx, Elias Glaros, Betty Kan, Theodore W. Ng, Jimmy F.P. Berbée, Virginie Deswaerte, Diana Nawara, Carmel Quinn, Kerry-Anne Rye, Wendy Jessup, Patrick C.N. Rensen, Peter J. Meikle, Leonard Kritharides Objective—Cyclosporin A (CsA) is an immunosuppressant commonly used to prevent organ rejection but is associated with hyperlipidemia and an increased risk of cardiovascular disease. Although studies suggest that CsA-induced hyperlipidemia is mediated by inhibition of low-density lipoprotein receptor (LDLr)–mediated lipoprotein clearance, the data supporting this are inconclusive. We therefore sought to investigate the role of the LDLr in CsA-induced hyperlipidemia by using Ldlr-knockout mice (Ldlr−/−). Approach and Results—Ldlr−/− and wild-type (wt) C57Bl/6 mice were treated with 20 mg/kg per d CsA for 4 weeks. On a chow diet, CsA caused marked dyslipidemia in Ldlr−/− but not in wt mice. Hyperlipidemia was characterized by a prominent increase in plasma very low–density lipoprotein and intermediate-density lipoprotein/LDL with unchanged plasma high-density lipoprotein levels, thus mimicking the dyslipidemic profile observed in humans. Analysis of specific lipid species by liquid chromatography–tandem mass spectrometry suggested a predominant effect of CsA on increased very low–density lipoprotein–IDL/LDL lipoprotein number rather than composition. Mechanistic studies indicated that CsA did not alter hepatic lipoprotein production but did inhibit plasma clearance and hepatic uptake of [14C]cholesteryl oleate and glycerol tri[3H]oleate-double-labeled very low–density lipoprotein–like particles.
    [Show full text]
  • A Case of Ezetimibe-Effective Hypercholesterolemia with a Novel Heterozygous Variant in ABCG5
    2020, 67 (11), 1099-1105 Original A case of ezetimibe-effective hypercholesterolemia with a novel heterozygous variant in ABCG5 Yujiro Nakano1), Chikara Komiya1), Hitomi Shimizu2), 3), Hiroyuki Mishima3), Kumiko Shiba1), Kazutaka Tsujimoto1), Kenji Ikeda1), Kenichi Kashimada4), Sumito Dateki2), Koh-ichiro Yoshiura3), Yoshihiro Ogawa5) and Tetsuya Yamada1) 1) Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 2) Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaski 852-8501, Japan 3) Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan 4) Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan 5) Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan Abstract. Sitosterolemia is caused by homozygous or compound heterozygous gene mutations in either ATP-binding cassette subfamily G member 5 (ABCG5) or 8 (ABCG8). Since ABCG5 and ABCG8 play pivotal roles in the excretion of neutral sterols into feces and bile, patients with sitosterolemia present elevated levels of serum plant sterols and in some cases also hypercholesterolemia. A 48-year-old woman was referred to our hospital for hypercholesterolemia. She had been misdiagnosed with familial hypercholesterolemia at the age of 20 and her serum low-density lipoprotein cholesterol (LDL-C) levels had remained about 200–300 mg/dL at the former clinic. Although the treatment of hydroxymethylglutaryl-CoA (HMG-CoA) reductase inhibitors was ineffective, her serum LDL-C levels were normalized by ezetimibe, a cholesterol transporter inhibitor.
    [Show full text]
  • Apoa4 Antibody Cat
    ApoA4 Antibody Cat. No.: 6269 Western blot analysis of ApoA4 in chicken small intestine tissue lysate with ApoA4 antibody at 1 μg/mL Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Chicken, Human ApoA4 antibody was raised against a 20 amino acid synthetic peptide near the carboxy terminus of chicken ApoA4. IMMUNOGEN: The immunogen is located within the last 50 amino acids of ApoA4. TESTED APPLICATIONS: ELISA, WB ApoA4 antibody can be used for detection of ApoA4 by Western blot at 1 μg/mL. APPLICATIONS: Antibody validated: Western Blot in chicken samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Chicken Small Intestine Lysate Properties PURIFICATION: ApoA4 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG September 24, 2021 1 https://www.prosci-inc.com/apoa4-antibody-6269.html CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: ApoA4 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL ApoA4 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. As with all antibodies care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: APOA4 ALTERNATE NAMES: ApoA4 Antibody: Apolipoprotein A-IV, Apolipoprotein A4, Apo-AIV ACCESSION NO.: NP_990269 PROTEIN GI NO.: 71773110 GENE ID: 337 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References ApoA4 Antibody: Apolipoprotein A4 (also known as ApoA-IV) is a plasma protein that is O- linked glycoprotein after proteolytic processing.
    [Show full text]
  • Apolipoprotein B: a Risk-Enhancing Factor in the Primary Prevention of Cardiovascular Disease
    Apolipoprotein B: a Risk-enhancing Factor in the Primary Prevention of Cardiovascular Disease The American College of Cardiologists and the American Heart • elevated high-sensitivity C-reactive Protein (≥ 2.0 mg/L); Association recently issued an updated guideline to help address • elevated Lipoprotein(a) – ≥ 50 mg/dL constitutes risk-enhancing the primary prevention of cardiovascular disease at population and factor; relative indication for measurement is family history of individual patient levels. This 2019 guideline combines existing premature ASCVD; scientific statements, expert consensus, and clinical practice guidelines • elevated Apolipoprotein B (≥ 130 mg/dL constitutes risk- and adds new recommendations for physical activity, aspirin use, enhancing factor; relative indication for measurement is and tobacco use. Suggestions for team-based care, shared decision triglyceride ≥ 200 mg/dL (≥ 130 mg/dL corresponds to LDL-C > making, and assessment of social determinants of health round out a 160 mg/dL). comprehensive but focused approach to primary prevention.1 The role of low-density lipoprotein (LDL) particles has been To enhance clinician-patient discussions and help inform prevention documented to elevate patient risk for ASCVD and is well known in strategies, the guideline advocates, among other things, estimating the development and progression of ASCVD.3 As stated in the Journal an individual’s 10-year risk for atherosclerotic cardiovascular disease of Family Medicine, LDL particles move into the arterial wall via a (ASCVD) to1: gradient-driven process. Once inside the intima, LDL particles that bind to the arterial wall are oxidized and subsequently taken up by • match the intensity of interventions with patient’s risk, macrophages to form foam cells.3 The greater the circulating levels • maximize the expected benefit, and of LDL over time, the greater the acceleration of this process and the • minimize possible harm from overtreatment.
    [Show full text]
  • Postprandial Lipoprotein Metabolism: VLDL Vs Chylomicrons
    UC Davis UC Davis Previously Published Works Title Postprandial lipoprotein metabolism: VLDL vs chylomicrons. Permalink https://escholarship.org/uc/item/9wx8p0x5 Journal Clinica chimica acta; international journal of clinical chemistry, 412(15-16) ISSN 0009-8981 Authors Nakajima, Katsuyuki Nakano, Takamitsu Tokita, Yoshiharu et al. Publication Date 2011-07-01 DOI 10.1016/j.cca.2011.04.018 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Clinica Chimica Acta 412 (2011) 1306–1318 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/clinchim Invited critical review Postprandial lipoprotein metabolism: VLDL vs chylomicrons Katsuyuki Nakajima a,b,d,e,i,⁎, Takamitsu Nakano a,b, Yoshiharu Tokita a, Takeaki Nagamine a, Akihiro Inazu c, Junji Kobayashi d, Hiroshi Mabuchi d, Kimber L. Stanhope e, Peter J. Havel e, Mitsuyo Okazaki f,g, Masumi Ai h,i, Akira Tanaka g,i a School of Health Sciences, Faculty of Medicine, Gunma University, Maebashi, Gunma, Japan b Otsuka Pharmaceuticals Co., Ltd, Tokushima, Japan c Department of Laboratory Sciences, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan d Department of Lipidology and Division of Cardiology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan e Department of Molecular Biosciences, School of Veterinary Medicine and Department of Nutrition, University of California, Davis, CA, USA f Skylight Biotech Inc., Akita, Japan g Department of Vascular Medicine and
    [Show full text]
  • Isolation of HDL by Sequential Flotation Ultracentrifugation Followed by Size
    www.nature.com/scientificreports OPEN Isolation of HDL by sequential fotation ultracentrifugation followed by size exclusion chromatography reveals size‑based enrichment of HDL‑associated proteins Jack Jingyuan Zheng1, Joanne K. Agus1, Brian V. Hong1, Xinyu Tang1, Christopher H. Rhodes1, Hannah E. Houts1, Chenghao Zhu1, Jea Woo Kang1, Maurice Wong2, Yixuan Xie2, Carlito B. Lebrilla2, Emily Mallick3, Kenneth W. Witwer3 & Angela M. Zivkovic1* High‑density lipoprotein (HDL) particles have multiple benefcial and cardioprotective roles, yet our understanding of their full structural and functional repertoire is limited due to challenges in separating HDL particles from contaminating plasma proteins and other lipid‑carrying particles that overlap HDL in size and/or density. Here we describe a method for isolating HDL particles using a combination of sequential fotation density ultracentrifugation and fast protein liquid chromatography with a size exclusion column. Purity was visualized by polyacrylamide gel electrophoresis and verifed by proteomics, while size and structural integrity were confrmed by transmission electron microscopy. This HDL isolation method can be used to isolate a high yield of purifed HDL from a low starting plasma volume for functional analyses. This method also enables investigators to select their specifc HDL fraction of interest: from the least inclusive but highest purity HDL fraction eluting in the middle of the HDL peak, to pooling all of the fractions to capture the breadth of HDL particles in the original plasma sample. We show that certain proteins such as lecithin cholesterol acyltransferase (LCAT), phospholipid transfer protein (PLTP), and clusterin (CLUS) are enriched in large HDL particles whereas proteins such as alpha‑2HS‑glycoprotein (A2HSG), alpha‑1 antitrypsin (A1AT), and vitamin D binding protein (VDBP) are enriched or found exclusively in small HDL particles.
    [Show full text]
  • Apolipoprotein and LRP1-Based Peptides As New Therapeutic Tools in Atherosclerosis
    Journal of Clinical Medicine Review Apolipoprotein and LRP1-Based Peptides as New Therapeutic Tools in Atherosclerosis Aleyda Benitez Amaro 1,2, Angels Solanelles Curco 2, Eduardo Garcia 1,2, Josep Julve 3,4 , Jose Rives 5,6, Sonia Benitez 7,* and Vicenta Llorente Cortes 1,2,8,* 1 Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), 08036 Barcelona, Spain; [email protected] (A.B.A.); [email protected] (E.G.) 2 Biomedical Research Institute Sant Pau (IIB-Sant Pau), 08041 Barcelona, Spain; [email protected] 3 Metabolic Basis of Cardiovascular Risk Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; [email protected] 4 CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain 5 Biochemistry Department, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain; [email protected] 6 Department of Biochemistry and Molecular Biology, Faculty of Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08016 Barcelona, Spain 7 Cardiovascular Biochemistry Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain 8 CIBERCV, Institute of Health Carlos III, 28029 Madrid, Spain * Correspondence: [email protected] (S.B.); [email protected] or [email protected] (V.L.C.) Abstract: Apolipoprotein (Apo)-based mimetic peptides have been shown to reduce atherosclerosis. Most of the ApoC-II and ApoE mimetics exert anti-atherosclerotic effects by improving lipid profile. ApoC-II mimetics reverse hypertriglyceridemia and ApoE-based peptides such as Ac-hE18A-NH2 Citation: Benitez Amaro, A.; reduce cholesterol and triglyceride (TG) levels in humans.
    [Show full text]