The Distribution Function of a Probability Measure on a Linearly Ordered Topological Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Measure-Theoretic Probability I
Measure-Theoretic Probability I Steven P.Lalley Winter 2017 1 1 Measure Theory 1.1 Why Measure Theory? There are two different views – not necessarily exclusive – on what “probability” means: the subjectivist view and the frequentist view. To the subjectivist, probability is a system of laws that should govern a rational person’s behavior in situations where a bet must be placed (not necessarily just in a casino, but in situations where a decision must be made about how to proceed when only imperfect information about the outcome of the decision is available, for instance, should I allow Dr. Scissorhands to replace my arthritic knee by a plastic joint?). To the frequentist, the laws of probability describe the long- run relative frequencies of different events in “experiments” that can be repeated under roughly identical conditions, for instance, rolling a pair of dice. For the frequentist inter- pretation, it is imperative that probability spaces be large enough to allow a description of an experiment, like dice-rolling, that is repeated infinitely many times, and that the mathematical laws should permit easy handling of limits, so that one can make sense of things like “the probability that the long-run fraction of dice rolls where the two dice sum to 7 is 1/6”. But even for the subjectivist, the laws of probability should allow for description of situations where there might be a continuum of possible outcomes, or pos- sible actions to be taken. Once one is reconciled to the need for such flexibility, it soon becomes apparent that measure theory (the theory of countably additive, as opposed to merely finitely additive measures) is the only way to go. -
A Convenient Category for Higher-Order Probability Theory
A Convenient Category for Higher-Order Probability Theory Chris Heunen Ohad Kammar Sam Staton Hongseok Yang University of Edinburgh, UK University of Oxford, UK University of Oxford, UK University of Oxford, UK Abstract—Higher-order probabilistic programming languages 1 (defquery Bayesian-linear-regression allow programmers to write sophisticated models in machine 2 let let sample normal learning and statistics in a succinct and structured way, but step ( [f ( [s ( ( 0.0 3.0)) 3 sample normal outside the standard measure-theoretic formalization of proba- b ( ( 0.0 3.0))] 4 fn + * bility theory. Programs may use both higher-order functions and ( [x] ( ( s x) b)))] continuous distributions, or even define a probability distribution 5 (observe (normal (f 1.0) 0.5) 2.5) on functions. But standard probability theory does not handle 6 (observe (normal (f 2.0) 0.5) 3.8) higher-order functions well: the category of measurable spaces 7 (observe (normal (f 3.0) 0.5) 4.5) is not cartesian closed. 8 (observe (normal (f 4.0) 0.5) 6.2) Here we introduce quasi-Borel spaces. We show that these 9 (observe (normal (f 5.0) 0.5) 8.0) spaces: form a new formalization of probability theory replacing 10 (predict :f f))) measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and proba- bility by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti’s theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces. -
Jointly Measurable and Progressively Measurable Stochastic Processes
Jointly measurable and progressively measurable stochastic processes Jordan Bell [email protected] Department of Mathematics, University of Toronto June 18, 2015 1 Jointly measurable stochastic processes d Let E = R with Borel E , let I = R≥0, which is a topological space with the subspace topology inherited from R, and let (Ω; F ;P ) be a probability space. For a stochastic process (Xt)t2I with state space E, we say that X is jointly measurable if the map (t; !) 7! Xt(!) is measurable BI ⊗ F ! E . For ! 2 Ω, the path t 7! Xt(!) is called left-continuous if for each t 2 I, Xs(!) ! Xt(!); s " t: We prove that if the paths of a stochastic process are left-continuous then the stochastic process is jointly measurable.1 Theorem 1. If X is a stochastic process with state space E and all the paths of X are left-continuous, then X is jointly measurable. Proof. For n ≥ 1, t 2 I, and ! 2 Ω, let 1 n X Xt (!) = 1[k2−n;(k+1)2−n)(t)Xk2−n (!): k=0 n Each X is measurable BI ⊗ F ! E : for B 2 E , 1 n [ −n −n f(t; !) 2 I × Ω: Xt (!) 2 Bg = [k2 ; (k + 1)2 ) × fXk2−n 2 Bg: k=0 −n −n Let t 2 I. For each n there is a unique kn for which t 2 [kn2 ; (kn +1)2 ), and n −n −n thus Xt (!) = Xkn2 (!). Furthermore, kn2 " t, and because s 7! Xs(!) is n −n left-continuous, Xkn2 (!) ! Xt(!). -
Probability and Statistics Lecture Notes
Probability and Statistics Lecture Notes Antonio Jiménez-Martínez Chapter 1 Probability spaces In this chapter we introduce the theoretical structures that will allow us to assign proba- bilities in a wide range of probability problems. 1.1. Examples of random phenomena Science attempts to formulate general laws on the basis of observation and experiment. The simplest and most used scheme of such laws is: if a set of conditions B is satisfied =) event A occurs. Examples of such laws are the law of gravity, the law of conservation of mass, and many other instances in chemistry, physics, biology... If event A occurs inevitably whenever the set of conditions B is satisfied, we say that A is certain or sure (under the set of conditions B). If A can never occur whenever B is satisfied, we say that A is impossible (under the set of conditions B). If A may or may not occur whenever B is satisfied, then A is said to be a random phenomenon. Random phenomena is our subject matter. Unlike certain and impossible events, the presence of randomness implies that the set of conditions B do not reflect all the necessary and sufficient conditions for the event A to occur. It might seem them impossible to make any worthwhile statements about random phenomena. However, experience has shown that many random phenomena exhibit a statistical regularity that makes them subject to study. For such random phenomena it is possible to estimate the chance of occurrence of the random event. This estimate can be obtained from laws, called probabilistic or stochastic, with the form: if a set of conditions B is satisfied event A occurs m times =) repeatedly n times out of the n repetitions. -
Shape Analysis, Lebesgue Integration and Absolute Continuity Connections
NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 NISTIR 8217 Shape Analysis, Lebesgue Integration and Absolute Continuity Connections Javier Bernal Applied and Computational Mathematics Division Information Technology Laboratory This publication is available free of charge from: https://doi.org/10.6028/NIST.IR.8217 July 2018 INCLUDES UPDATES AS OF 07-18-2018; SEE APPENDIX U.S. Department of Commerce Wilbur L. Ross, Jr., Secretary National Institute of Standards and Technology Walter Copan, NIST Director and Undersecretary of Commerce for Standards and Technology ______________________________________________________________________________________________________ This Shape Analysis, Lebesgue Integration and publication Absolute Continuity Connections Javier Bernal is National Institute of Standards and Technology, available Gaithersburg, MD 20899, USA free of Abstract charge As shape analysis of the form presented in Srivastava and Klassen’s textbook “Functional and Shape Data Analysis” is intricately related to Lebesgue integration and absolute continuity, it is advantageous from: to have a good grasp of the latter two notions. Accordingly, in these notes we review basic concepts and results about Lebesgue integration https://doi.org/10.6028/NIST.IR.8217 and absolute continuity. In particular, we review fundamental results connecting them to each other and to the kind of shape analysis, or more generally, functional data analysis presented in the aforeme- tioned textbook, in the process shedding light on important aspects of all three notions. Many well-known results, especially most results about Lebesgue integration and some results about absolute conti- nuity, are presented without proofs. -
LEBESGUE MEASURE and L2 SPACE. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References
LEBESGUE MEASURE AND L2 SPACE. ANNIE WANG Abstract. This paper begins with an introduction to measure spaces and the Lebesgue theory of measure and integration. Several important theorems regarding the Lebesgue integral are then developed. Finally, we prove the completeness of the L2(µ) space and show that it is a metric space, and a Hilbert space. Contents 1. Measure Spaces 1 2. Lebesgue Integration 2 3. L2 Space 4 Acknowledgments 9 References 9 1. Measure Spaces Definition 1.1. Suppose X is a set. Then X is said to be a measure space if there exists a σ-ring M (that is, M is a nonempty family of subsets of X closed under countable unions and under complements)of subsets of X and a non-negative countably additive set function µ (called a measure) defined on M . If X 2 M, then X is said to be a measurable space. For example, let X = Rp, M the collection of Lebesgue-measurable subsets of Rp, and µ the Lebesgue measure. Another measure space can be found by taking X to be the set of all positive integers, M the collection of all subsets of X, and µ(E) the number of elements of E. We will be interested only in a special case of the measure, the Lebesgue measure. The Lebesgue measure allows us to extend the notions of length and volume to more complicated sets. Definition 1.2. Let Rp be a p-dimensional Euclidean space . We denote an interval p of R by the set of points x = (x1; :::; xp) such that (1.3) ai ≤ xi ≤ bi (i = 1; : : : ; p) Definition 1.4. -
1 Measurable Functions
36-752 Advanced Probability Overview Spring 2018 2. Measurable Functions, Random Variables, and Integration Instructor: Alessandro Rinaldo Associated reading: Sec 1.5 of Ash and Dol´eans-Dade; Sec 1.3 and 1.4 of Durrett. 1 Measurable Functions 1.1 Measurable functions Measurable functions are functions that we can integrate with respect to measures in much the same way that continuous functions can be integrated \dx". Recall that the Riemann integral of a continuous function f over a bounded interval is defined as a limit of sums of lengths of subintervals times values of f on the subintervals. The measure of a set generalizes the length while elements of the σ-field generalize the intervals. Recall that a real-valued function is continuous if and only if the inverse image of every open set is open. This generalizes to the inverse image of every measurable set being measurable. Definition 1 (Measurable Functions). Let (Ω; F) and (S; A) be measurable spaces. Let f :Ω ! S be a function that satisfies f −1(A) 2 F for each A 2 A. Then we say that f is F=A-measurable. If the σ-field’s are to be understood from context, we simply say that f is measurable. Example 2. Let F = 2Ω. Then every function from Ω to a set S is measurable no matter what A is. Example 3. Let A = f?;Sg. Then every function from a set Ω to S is measurable, no matter what F is. Proving that a function is measurable is facilitated by noticing that inverse image commutes with union, complement, and intersection. -
Notes 2 : Measure-Theoretic Foundations II
Notes 2 : Measure-theoretic foundations II Math 733-734: Theory of Probability Lecturer: Sebastien Roch References: [Wil91, Chapters 4-6, 8], [Dur10, Sections 1.4-1.7, 2.1]. 1 Independence 1.1 Definition of independence Let (Ω; F; P) be a probability space. DEF 2.1 (Independence) Sub-σ-algebras G1; G2;::: of F are independent for all Gi 2 Gi, i ≥ 1, and distinct i1; : : : ; in we have n Y P[Gi1 \···\ Gin ] = P[Gij ]: j=1 Specializing to events and random variables: DEF 2.2 (Independent RVs) RVs X1;X2;::: are independent if the σ-algebras σ(X1); σ(X2);::: are independent. DEF 2.3 (Independent Events) Events E1;E2;::: are independent if the σ-algebras c Ei = f;;Ei;Ei ; Ωg; i ≥ 1; are independent. The more familiar definitions are the following: THM 2.4 (Independent RVs: Familiar definition) RVs X, Y are independent if and only if for all x; y 2 R P[X ≤ x; Y ≤ y] = P[X ≤ x]P[Y ≤ y]: THM 2.5 (Independent events: Familiar definition) Events E1, E2 are indepen- dent if and only if P[E1 \ E2] = P[E1]P[E2]: 1 Lecture 2: Measure-theoretic foundations II 2 The proofs of these characterizations follows immediately from the following lemma. LEM 2.6 (Independence and π-systems) Suppose that G and H are sub-σ-algebras and that I and J are π-systems such that σ(I) = G; σ(J ) = H: Then G and H are independent if and only if I and J are, i.e., P[I \ J] = P[I]P[J]; 8I 2 I;J 2 J : Proof: Suppose I and J are independent. -
Measure, Integral and Probability
Marek Capinski´ and Ekkehard Kopp Measure, Integral and Probability Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest To our children; grandchildren: Piotr, Maciej, Jan, Anna; Luk asz Anna, Emily Preface The central concepts in this book are Lebesgue measure and the Lebesgue integral. Their role as standard fare in UK undergraduate mathematics courses is not wholly secure; yet they provide the principal model for the development of the abstract measure spaces which underpin modern probability theory, while the Lebesgue function spaces remain the main source of examples on which to test the methods of functional analysis and its many applications, such as Fourier analysis and the theory of partial differential equations. It follows that not only budding analysts have need of a clear understanding of the construction and properties of measures and integrals, but also that those who wish to contribute seriously to the applications of analytical methods in a wide variety of areas of mathematics, physics, electronics, engineering and, most recently, finance, need to study the underlying theory with some care. We have found remarkably few texts in the current literature which aim explicitly to provide for these needs, at a level accessible to current under- graduates. There are many good books on modern probability theory, and increasingly they recognize the need for a strong grounding in the tools we develop in this book, but all too often the treatment is either too advanced for an undergraduate audience or else somewhat perfunctory. We hope therefore that the current text will not be regarded as one which fills a much-needed gap in the literature! One fundamental decision in developing a treatment of integration is whether to begin with measures or integrals, i.e. -
Determinism, Indeterminism and the Statistical Postulate
Tipicality, Explanation, The Statistical Postulate, and GRW Valia Allori Northern Illinois University [email protected] www.valiaallori.com Rutgers, October 24-26, 2019 1 Overview Context: Explanation of the macroscopic laws of thermodynamics in the Boltzmannian approach Among the ingredients: the statistical postulate (connected with the notion of probability) In this presentation: typicality Def: P is a typical property of X-type object/phenomena iff the vast majority of objects/phenomena of type X possesses P Part I: typicality is sufficient to explain macroscopic laws – explanatory schema based on typicality: you explain P if you explain that P is typical Part II: the statistical postulate as derivable from the dynamics Part III: if so, no preference for indeterministic theories in the quantum domain 2 Summary of Boltzmann- 1 Aim: ‘derive’ macroscopic laws of thermodynamics in terms of the microscopic Newtonian dynamics Problems: Technical ones: There are to many particles to do exact calculations Solution: statistical methods - if 푁 is big enough, one can use suitable mathematical technique to obtain information of macro systems even without having the exact solution Conceptual ones: Macro processes are irreversible, while micro processes are not Boltzmann 3 Summary of Boltzmann- 2 Postulate 1: the microscopic dynamics microstate 푋 = 푟1, … . 푟푁, 푣1, … . 푣푁 in phase space Partition of phase space into Macrostates Macrostate 푀(푋): set of macroscopically indistinguishable microstates Macroscopic view Many 푋 for a given 푀 given 푀, which 푋 is unknown Macro Properties (e.g. temperature): they slowly vary on the Macro scale There is a particular Macrostate which is incredibly bigger than the others There are many ways more to have, for instance, uniform temperature than not equilibrium (Macro)state 4 Summary of Boltzmann- 3 Entropy: (def) proportional to the size of the Macrostate in phase space (i.e. -
The Axiom of Choice and Its Implications
THE AXIOM OF CHOICE AND ITS IMPLICATIONS KEVIN BARNUM Abstract. In this paper we will look at the Axiom of Choice and some of the various implications it has. These implications include a number of equivalent statements, and also some less accepted ideas. The proofs discussed will give us an idea of why the Axiom of Choice is so powerful, but also so controversial. Contents 1. Introduction 1 2. The Axiom of Choice and Its Equivalents 1 2.1. The Axiom of Choice and its Well-known Equivalents 1 2.2. Some Other Less Well-known Equivalents of the Axiom of Choice 3 3. Applications of the Axiom of Choice 5 3.1. Equivalence Between The Axiom of Choice and the Claim that Every Vector Space has a Basis 5 3.2. Some More Applications of the Axiom of Choice 6 4. Controversial Results 10 Acknowledgments 11 References 11 1. Introduction The Axiom of Choice states that for any family of nonempty disjoint sets, there exists a set that consists of exactly one element from each element of the family. It seems strange at first that such an innocuous sounding idea can be so powerful and controversial, but it certainly is both. To understand why, we will start by looking at some statements that are equivalent to the axiom of choice. Many of these equivalences are very useful, and we devote much time to one, namely, that every vector space has a basis. We go on from there to see a few more applications of the Axiom of Choice and its equivalents, and finish by looking at some of the reasons why the Axiom of Choice is so controversial. -
Topic 1: Basic Probability Definition of Sets
Topic 1: Basic probability ² Review of sets ² Sample space and probability measure ² Probability axioms ² Basic probability laws ² Conditional probability ² Bayes' rules ² Independence ² Counting ES150 { Harvard SEAS 1 De¯nition of Sets ² A set S is a collection of objects, which are the elements of the set. { The number of elements in a set S can be ¯nite S = fx1; x2; : : : ; xng or in¯nite but countable S = fx1; x2; : : :g or uncountably in¯nite. { S can also contain elements with a certain property S = fx j x satis¯es P g ² S is a subset of T if every element of S also belongs to T S ½ T or T S If S ½ T and T ½ S then S = T . ² The universal set is the set of all objects within a context. We then consider all sets S ½ . ES150 { Harvard SEAS 2 Set Operations and Properties ² Set operations { Complement Ac: set of all elements not in A { Union A \ B: set of all elements in A or B or both { Intersection A [ B: set of all elements common in both A and B { Di®erence A ¡ B: set containing all elements in A but not in B. ² Properties of set operations { Commutative: A \ B = B \ A and A [ B = B [ A. (But A ¡ B 6= B ¡ A). { Associative: (A \ B) \ C = A \ (B \ C) = A \ B \ C. (also for [) { Distributive: A \ (B [ C) = (A \ B) [ (A \ C) A [ (B \ C) = (A [ B) \ (A [ C) { DeMorgan's laws: (A \ B)c = Ac [ Bc (A [ B)c = Ac \ Bc ES150 { Harvard SEAS 3 Elements of probability theory A probabilistic model includes ² The sample space of an experiment { set of all possible outcomes { ¯nite or in¯nite { discrete or continuous { possibly multi-dimensional ² An event A is a set of outcomes { a subset of the sample space, A ½ .