energies Article Assessing Financial and Flexibility Incentives for Integrating Wind Energy in the Grid Via Agent-Based Modeling Amtul Samie Maqbool 1,*, Jens Baetens 1, Sara Lotfi 2, Lieven Vandevelde 1 and Greet Van Eetvelde 1 1 Electrical Energy Laboratory (EELAB), Department of Electromechanical, Systems and Metal Engineering, Ghent University, Tech Lane Ghent Science Park—Campus A, Technologiepark-Zwijnaarde 131, 9052 Ghent, Belgium;
[email protected] (J.B.);
[email protected] (L.V.);
[email protected] (G.V.E.) 2 Sharif Policy Research Institute (SPRI), Sharif University of Technology, Tehran 1459986131, Iran; Sara.Lotfi@Outlook.com * Correspondence:
[email protected] Received: 12 September 2019; Accepted: 7 November 2019; Published: 12 November 2019 Abstract: This article provides an agent-based model of a hypothetical standalone electricity network to identify how the feed-in tariffs and the installed capacity of wind power, calculated in percentage of total system demand, affect the electricity consumption from renewables. It includes the mechanism of electricity pricing on the Day Ahead Market (DAM) and the Imbalance Market (IM). The extra production volumes of Electricity from Renewable Energy Sources (RES-E) and the flexibility of electrical consumption of industries is provided as reserves on the IM. Five thousand simulations were run by using the agent-based model to gather data that were then fit in linear regression models. This helped to quantify the effect of feed-in tariffs and installed capacity of wind power on the consumption from renewable energy and market prices. The consumption from renewable sources, expressed as percentage of total system consumption, increased by 8.17% for every 10% increase in installed capacity of wind power.