Mechanical Integrators for the Optimal Control in Multibody Dynamics

Total Page:16

File Type:pdf, Size:1020Kb

Mechanical Integrators for the Optimal Control in Multibody Dynamics CORE Metadata, citation and similar papers at core.ac.uk Provided by Publikations- und Dokumentenserver der Universitätsbibliothek Siegen Ralf Siebert Mechanical integrators for the optimal control in multibody dynamics Herausgeber: Peter Betsch Schriftenreihe des Lehrstuhls für Numerische Mechanik Band V Mechanical integrators for the optimal control in multibody dynamics Dissertation zur Erlangung des akademischen Grades Doktor-Ingenieur vorgelegt von Dipl.-Math. Ralf Siebert aus Heinsberg eingereicht dem Department Maschinenbau der Universität Siegen Referent: Prof. Dr.-Ing. habil. Peter Betsch Korreferent: Prof. Dr. Moritz Diehl Vorsitzender: Prof. Dr.-Ing. Oliver Nelles Tag der mündlichen Prüfung: 31. 08. 2012 Impressum Prof. Dr.-Ing. habil. Peter Betsch Lehrstuhl für Numerische Mechanik Universität Siegen 57068 Siegen ISSN 1866-1203 URN urn:nbn:de:hbz:467-6520 Zugl.: Siegen, Univ., Diss., 2012 i Abstract The present thesis deals with inverse multibody dynamics problems. In particu- lar, optimal control problems will be treated, which are governed by differential- algebraic equations. The main goal therein is the minimization of the control effort, which is necessary for moving a multibody system from one configuration to another. A basic task therefore is the formulation of the underlying equations of motion. Main focus will be on the formulation of the equations of motion with natural coordinates, which facilitates the design of structure-preserving time- stepping schemes. It is well known that schemes preserving basic properties of the mechanical system algorithmically exhibit superior stability properties in comparison to standard integrators. The application of these schemes within op- timal control problems requires a consistent incorporation of the control torques. A convincing way for the incorporation of the control torques will be proposed in this contribution. In addition to the schemes based on the rotationless for- mulation, also an energy-momentum conserving time-stepping scheme based on quaternions will be presented. Although the quaternion-based scheme turns out to be competitive in the forward dynamics of rigid bodies, the extension to multibody problems is not as straightforward and easy to handle as with the rotationless formulation in terms of natural coordinates. Therefore quaternions will not be applied within optimal control problems in this thesis. Regarding optimal control of multibody systems, new energy-momentum consistent direct transcription methods in terms of natural coordinates will be presented. In a first step, the equations of motion obtained by a reduction process via the dis- crete null space method will be applied. The arising results will be compared with those achieved by a formulation of the equations of motion with the widely used minimal coordinates. In a second step, the original equations of motion in form of differential-algebraic equations will serve as basis for the formulation of the optimal control problem. In addition to the direct transcription methods mentioned before, a novel optimal control method based on indirect transcrip- tion will be presented. The newly proposed method conserves the Hamiltonian corresponding to the optimal control problem. It is worth mentioning that this method is directly related to previously developed energy consistent schemes in forward dynamics. Keywords: Multibody Systems, Differential-Algebraic Equations, Rotationless Formulation, Quaternions, Energy-Momentum Consistency, Optimal Control, Actuation, Direct Transcription, Indirect Transcription, Conservation of the Hamiltonian ii iii Zusammenfassung Die vorliegende Arbeit behandelt Problemstellungen der inversen Mehrkörper- dynamik. Insbesondere werden Optimalsteuerungsprobleme untersucht, die mit- tels differential-algebraischer Gleichungen beschrieben werden. Das Hauptziel besteht in der Minimierung des Steuerungsaufwands, der benötigt wird, um ein Mehrkörpersystem von einer Konfiguration in eine andere zu bewegen. Eine wichtige Aufgabe dafür ist die Formulierung der zu Grunde liegenden Bewe- gungsgleichungen. Hauptaugenmerk wird dabei auf die Formulierung der Be- wegungsgleichungen mit natürlichen Koordinaten gelegt, die die Konstruktion von Struktur erhaltenden Zeitintegratoren ermöglichen. Es ist bekannt, dass sich Verfahren, die grundlegende mechanische Eigenschaften algorithmisch er- halten, durch überlegene numerische Stabilitätseigenschaften im Vergleich zu Standardintegratoren auszeichnen. Die Anwendung von diesen Verfahren inner- halb von Optimalsteuerungsproblemen erfordert einen konsistenten Einbau von Steuerungsmomenten. Ein überzeugender Weg für den Einbau von Steuerungsmo- menten wird in dieser Arbeit vorgeschlagen. Zusätzlich zu den Integratoren auf- bauend auf der rotationsfreien Formulierung wird ergänzend ein Energie-Impuls- erhaltendes Zeitschrittverfahren basierend auf Quaternionen vorgestellt. Zwar stellt sich das Quaternionen gestützte Verfahren als konkurrenzfähig in der Vor- wärtsdynamik von Starrkörpern heraus, die Erweiterung auf Mehrkörperprob- leme ist allerdings nicht so direkt und einfach zu handhaben wie bei der rota- tionsfreien Formulierung basierend auf natürlichen Koordinaten. Daher werden die Quaternionen innerhalb von den Optimalsteuerungsproblemen in dieser Ar- beit nicht verwendet. In Bezug auf die optimale Steuerung von Mehrkörpersys- temen werden neuartige Energie-Impuls-konsistente direkte Transkriptionsver- fahren beruhend auf natürlichen Koordinaten vorgestellt. In einem ersten Schritt werden Bewegungsgleichungen verwendet, die über eine Reduktion mittels der diskreten Nullraum-Methode gewonnen werden. Die Resultate werden verglichen mit denen, die man durch eine Formulierung der Bewegungsgleichungen mit den weit verbreiteten minimalen Koordinaten erhält. In einem zweiten Schritt dienen die ursprünglichen Bewegungsgleichungen in Form von differential-algebraischen Gleichungen als Basis für die Formulierung von den Optimalsteuerungsproble- men. Zusätzlich zu den bereits erwähnten direkten Transkriptionsmethoden wird auch eine neuartige Optimalsteuerungsmethode basierend auf indirekter Transkription eingeführt. Die besagte Methode erhält die zu dem Optimals- teuerungsproblem zugehörige Hamiltonfunktion. Es ist erwähnenswert, das diese Methode direkten Bezug hat zu früher entwickelten Energie-konsistenten Ver- fahren in der Vorwärtsdynamik. iv Schlagwörter: Mehrkörpersysteme, Differential-Algebraische Gleichungen, Ro- tationsfreie Formulierung, Quaternionen, Energie-Impuls-Konsistenz, Optimals- teurung, Aktuierung, Direkte Transkription, Indirekte Transkription, Erhaltung der Hamilton-Funktion v Vorwort Die vorliegende Arbeit entstand in der Zeit von 2007 bis 2012 im Rahmen meiner Tätigkeit als wissenschaftlicher Mitarbeiter am Lehrstuhl für Numerische Mechanik der Universität Siegen. Besonders bedanken möchte ich mich bei Herrn Prof. Dr.-Ing. Peter Betsch für die fachliche Unterstützung und Motivation bei der Erarbeitung dieser Disserta- tion sowie die Übernahme des Hauptreferates. Ebenfalls danken möchte ich Herrn Prof. Dr. Moritz Diehl für die Übernahme des Korreferates, das damit gezeigte Interesse an dieser Arbeit und zahlreiche wertvolle Anmerkungen. Außerdem möchte ich allen Mitarbeitern des Lehrstuhls für Numerische Mechanik für die angenehme Arbeitsatmosphäre und Zusammenarbeit danken. Siegen, September 2012 Ralf Siebert vi vii Contents 1. Introduction 1 1.1. Literaturereview ........................... 2 1.2. Outline................................. 4 2. Basics of optimal control 9 2.1. Continuousoptimalcontrol . 10 2.2. Discreteoptimalcontrol . 11 2.3. Review of numerical optimal control methods . .. 14 3. Equations of motion 17 3.1. Dynamics of constrained mechanical systems with size reduction . 17 3.2. Basic and reduced energy-momentum scheme . 21 3.3. Connection with generalized coordinates . ... 24 4. Rigid body dynamics 27 4.1. Spatialrigidbody. .. .. .. 28 4.2. Kinematicpairs ............................ 37 4.3. Consistent incorporation of control torques . ..... 46 4.4. Consistent incorporation of linear viscous friction . ........ 49 5. Alternative rigid body formulation: Quaternions 51 5.1. Basicsofquaternions . 52 5.2. Rigidbodydynamics . 53 5.3. Hamiltonequationsofmotion . 55 5.4. Conservingdiscretization. 57 5.5. Steadyprecessionofagyrotop . 59 5.6. Concluding remarks on quaternions . 62 6. Optimal control with equations of motion in ODE-form 63 6.1. Optimal control formulation: Direct transcription . ....... 64 6.2. 3-linkmanipulator .. .. .. 66 6.3. Satellite ................................ 71 7. Optimal control with equations of motion in DAE-form 79 7.1. Optimal control formulation: Direct transcription . ....... 80 7.2. Overheadcrane ............................ 81 7.3. 3-linkmanipulator .. .. .. 84 8. Hamiltonian conserving indirect optimal control method 91 viii Contents 8.1. Systemswithonedegreeoffreedom . 92 8.2. Systems with several degrees of freedom . 97 9. Summary and outlook 107 A. Details of the implementation of the REM 111 B. Details of the implementation of the BEM 115 1 1. Introduction In the present thesis, numerical methods for treating optimal control of mechan- ical multibody systems will be developed. To preserve resources, energy-optimal movements become more and more important. Hence, the main focus will be on the minimization of the control effort which is necessary for moving a multibody system from a specific initial to a specific end position. Areas of application of such problems are the simulation
Recommended publications
  • Dynamics of Multibody Systems in Research and Education
    Editorial Dynamics of Multibody Systems in Research and Education prof. Ing. Štefan Segľa, CSc. Technical University of Košice, Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering Štefan Segľa, prof., Ing., CSc., (born in 1954) is a professor at the Technical University of Košice, Faculty of Mechanical Engineering, Institute of Design and Process Engineering. He graduated from the Faculty of Mechanical Engineering, Czech Technical University in Prague in 1978. His research areas are kinematic and dynamic analysis and optimization of mechanical and mechatronical systems. He is an author of three monographs, twelve textbooks and more than one hundred scientific publications in journals and conference proceedings in Slovakia and abroad. Forteen papers are registered in Web of Science and SCOPUS. He is a member of IFToMM (International Federation for the Promotion of Mechanism and Machine Science), its Permanent Commission for the Standardization of Terminology and Multibody Dynamics, a vice-chairman of the Slovak National Committee of IFToMM, a member of the Czech Society of Mechanics, Slovak Society of Mechanics and Central European Association for Computational Mechanics. Many common mechanisms and machines such as vehicle and aircraft subsystems, robotic systems, biomechanical and mechatronic systems consist of rigid and deformable bodies that undergo large rigid body motion. The bodies are interconnected with kinematical constraints and coupling elements. The dynamics of these large-scale and nonlinear systems under dynamic loading in most cases can only be solved with methods of computational mechanics. For these systems the concept of the multibody dynamics can be successfuly utilized. Their mechanical models should be as complex as necessary but also as simple as possible.
    [Show full text]
  • Modeling of Flexible Multibody Systems Excited by Moving Loads with Application to a Robotic Portal System
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Institute of Transport Research:Publications The 2nd Joint International Conference on Multibody System Dynamics May 29–June 1, 2012, Stuttgart, Germany Modeling of Flexible Multibody Systems Excited by Moving Loads with Application to a Robotic Portal System Stefan Hartweg and Andreas Heckmann Department of System Dynamics and Control Robotics and Mechatronics Center (RMC) German Aerospace Center (DLR) Muenchner Strasse 20, D-82234 Wessling, Germany [Stefan.Hartweg, Andreas.Heckmann]@DLR.de ABSTRACT In this paper, an approach to solve mechanical problems with moving loads and flexible bodies is presented. Therefore, the multi-disciplinary modeling language Modelica together with the DLR FlexibleBodies Li- brary is utilized. Rather than solving the equations of motion analytically, this approach solves them numer- ically. While large overall motions of the flexible parts are described using the Floating Frame of Reference (FFR) method, the deformation is represented by appropriate shape functions. It is shown how a subsystem with masses and spring-damper elements can be connected to the flexible body and how the occurring forces of this moving load affect it. The equations of motion are derived in a general way, yielding a formulation compatible to e. g. a finite element models which are reduced to global shape functions. The usage of this formulation is shown for the simulation of a robotic portal system. 1 INTRODUCTION A variety of structures in the field of engineering is subject to moving loads. These loads can result from external forces, masses or whole subsystems moving with constant or varying velocity along the structure.
    [Show full text]
  • Newton Euler Equations of Motion Examples
    Newton Euler Equations Of Motion Examples Alto and onymous Antonino often interloping some obligations excursively or outstrikes sunward. Pasteboard and Sarmatia Kincaid never flits his redwood! Potatory and larboard Leighton never roller-skating otherwhile when Trip notarizes his counterproofs. Velocity thus resulting in the tumbling motion of rigid bodies. Equations of motion Euler-Lagrange Newton-Euler Equations of motion. Motion of examples of experiments that a random walker uses cookies. Forces by each other two examples of example are second kind, we will refer to specify any parameter in. 213 Translational and Rotational Equations of Motion. Robotics Lecture Dynamics. Independence from a thorough description and angular velocity as expected or tofollowa userdefined behaviour does it only be loaded geometry in an appropriate cuts in. An interface to derive a particular instance: divide and author provides a positive moment is to express to output side can be run at all previous step. The analysis of rotational motions which make necessary to decide whether rotations are. For xddot and whatnot in which a very much easier in which together or arena where to use them in two backwards operation complies with respect to rotations. Which influence of examples are true, is due to independent coordinates. On sameor adjacent joints at each moment equation is also be more specific white ellipses represent rotations are unconditionally stable, for motion break down direction. Unit quaternions or Euler parameters are known to be well suited for the. The angular momentum and time and runnable python code. The example will be run physics examples are models can be symbolic generator runs faster rotation kinetic energy.
    [Show full text]
  • A Review on Application of Multibody Dynamics in the Field of Robotics
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) A Review on Application of Multibody Dynamics in the Field of Robotics Nitin Chauhan1, Dr. Manjeet Singh Sekhon2 1, 2 – Assistant Professor, School of Mechanical Engineering, Lovely Professional University ABSTRACT With advancements in technology, robots have become very common. As robots consists of multiple connected links and moving parts, their design involves multibody dynamic analysis. This paper reviews how multibody dynamics have been explored as a design tool in the field of robotics. INTRODUCTION Most of the machines and systems including automobiles consists of a number of solid bodies that are interconnected to each other and motion of one component results in constrained motion of other. Such systems are called multibody systems[1]. Suspension systems in automobiles, landing gear of an aircraft, robotic manipulators, wind turbines all are examples of multibody systems. As different components are interacting together in a multibody system, for designing the system it becomes important to analyze how motion and forces are transmitted in the body. The study of motion of multibody system under the influence of force is commonly termed as multibody dynamics. Figure 1 Example of Multi-body Systems [1] A multibody dynamic analysis involves study of the movement of, impact of multiple bodies. As a robot manipulator consists of multiple links connected together and is used for applications that require control over path and forces involved in movement, multibody dynamics is used in robotics for manipulator design and motion analysis. This paper discusses the research trends in the application areas of multibody dynamics and major applications of MBD in the field of robotics.
    [Show full text]
  • Multibody System Dynamics (IMSD) Was Held at the Institute of Engineering and Computational Mechanics at the University of Stuttgart, Germany in May 29 - June 1, 2012
    Final Report of the IMSD 2012 Stuttgart, Germany For more information www.itm.uni-stuttgart.de/imsd2012 1. Summary The Joint International Conference on Multibody System Dynamics (IMSD) was held at the Institute of Engineering and Computational Mechanics at the University of Stuttgart, Germany in May 29 - June 1, 2012. The IMSD conference is a biannual series that serves as a meeting point for the international Multibody community and as an opportunity to exchange high-level, current information on the theory and applications of Multibody systems. As a rapidly growing branch of mechanical dynamics, Multibody System Dynamics is seeing more and more use, and is becoming increasingly important in the development of complex engineered systems. The continual new challenges faced by the IMSD community demand productive conference forums where ideas are freely exchanged and a spirit of cooperation is encouraged. Overview of the Conference Besides seven distinguished keynote lectures, 56 technical sessions were held, offering 192 technical presentations authored by more than 450 authors. In total, 299 participants from 29 different countries participated in the IMSD 2012. The conference website can be found at: http://www.itm.uni-stuttgart.de/imsd2012 We would like to thank the following institutional sponsors for their highly appreciated support. ASME (American Society of Mechanical Engineers) IFToMM (International Federation for the Promotion of Mechanism and Machine Science) IUTAM (International Union of Theoretical and Applied Mechanics) JSME (Japan Society of Mechanical Engineers) KSME (Korean Society of Mechanical Engineers) We would like to thank the following industrial sponsors for their highly appreciated support. Alcatel-Lucent Carl Zeiss SMT ESTA Apparatebau FunctionBay GmbH Maplesoft Europe Robert Bosch GmbH SIMPACK The organization of the IMSD 2012 was supervised by an International Steering Committee consisting of the following distinguished academics.
    [Show full text]
  • Dynamics and Control of a Planar Multibody Mobile Robot for Confined Environment Inspection
    Dynamics and Control of a Planar Multibody Mobile Robot for Confined Environment Inspection Lounis Douadi Davide Spinello∗ School of Electrical Engineering Department of Mechanical Engineering and Computer Science University of Ottawa University of Ottawa Email: [email protected] Email: [email protected] Wail Gueaieb School of Electrical Engineering and Computer Science University of Ottawa Email: [email protected] ABSTRACT In this paper, we study the dynamics of an articulated planar mobile robot for confined environment exploration. The mobile vehicle is composed of n identical modules hitched together with passive revolute joints. Each module has the structure of a four-bar parallel mechanism on a mobile platform. The dynamic model is derived using Lagrange formulation. Computer simulations illustrate the model by addressing a path following problem inside a pipe. The dynamic model presented in this paper is the basis for the design of motion control algorithms that encode energy optimization and sensor performance maximization. 1 Introduction and Related Literature This work is part of a project aimed at the development of a three-dimensional autonomous articu- lated mobile robot for the exploration and nondestructive testing in confined environments that can be hazardous or not accessible to humans. One application targeted by this system is natural gas pipelines inspection. Articulated mobile robots made their appearance in the framework of service robotics [1]. Snake-like mobile robots are often chosen for the class of applications we are interested in because of their great agility and high redundancy, which enable them to operate in environments that might be too challenging for a conventional wheeled robot.
    [Show full text]
  • Dynamics of Multibody Systems
    Robert E. Roberson Richard Schwertassek Dynamics of Multibody Systems With 100 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Contents PART I. INTRODUCTION 1 1. Multibody Systems 3 1.1 Origins 3 1.1.1 Rise of Rotational Mechanics 3 1.1.2 Rotation in Technology 5 1.1.3 Status: mid-Twentieth Century 9 1.2 Multibody System Dynamics 11 1.2.1 Multibody Renaissance 11 1.2.2 Examples of Applications 13 1.2.3 Goals of Multibody System Investigation 21 1.2.4 Multibody Formalisms and Computer Codes .... 24 1.3 References 36 2. Mathematical Preliminaries 38 2.1 Terminology and Notation 38 2.1.1 Frames and Coordinates 38 2.1.2 Vectors and Cartesian Tensors 42 2.1.3 Matrices 45 2.1.4 Arrays of Vectors and Dyadics 46 2.2 Vectors, Dyadics and their Matrix Representations 47 2.2.1 Basic Operations 47 2.2.2 Transformations 50 2.2.3 Cartesian Tensors 53 2.3 References 56 PART II. KINEMATICS OF A RIGID BODY 57 3. Location and Orientation 59 3.1 Introduction 59 3.1.1 Degrees of Freedom 59 3.1.2 Rotation 61 XI 3.2 Direction Cosine Matrices 63 3.2.1 Representation of General Rotation 63 3.2.2 Infinitesimal Rotation 67 3.3 Angle Representations of Rotation 68 3.3.1 Elementary Rotations 68 3.3.2 Euler Angles 70 3.3.3 Tait-Bryan Angles 73 3.4 Other Representations of Rotation 75 3.4.1 Euler Parameters 75 3.4.2 Euler-Rodrigues Parameters 77 3.4.3 Six-Parameter Methods 77 3.5 References 78 4.
    [Show full text]
  • Contacts in Multibody Systems F
    Contacts in multibody systems F. Pfeiffer, Christoph Glocker To cite this version: F. Pfeiffer, Christoph Glocker. Contacts in multibody systems. Journal of Applied Mathematics and Mechanics, Elsevier, 2000, 64 (5), pp.773 - 782. 10.1016/S0021-8928(00)00107-6. hal-01394245 HAL Id: hal-01394245 https://hal.archives-ouvertes.fr/hal-01394245 Submitted on 9 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License CONTACTS IN MULTIBODY SYSTEMSt F. PFEIFFER and Ch. GLOCKER Research in contact mechanics is reviewed, mainly based on result determined at the Institute B of Mechanics in the Thchnical University of Munich. Interest in such problems arise in the 1960s in relation to statics and elastomechanics. Most of the mathematical tools were developed and used in those fields. As a result of increasing pressure from the practical side concerning vibrations and noise related to contract processes, methods of multibody dynamics with unilateral constraints have been elaborated. © 2001 Elsevier Science Ltd. All rights reserved. 1. INTRODUCTION Contact phenomena, including bilateral and unilateral ones, often arise in dynamical systems. Walking, grasping and climbing are typically unilateral processes; the operation of machines and mechanisms includes a large variety of unilateral behaviour.
    [Show full text]
  • Sensitivity Analysis and Optimization of Multibody Systems
    Sensitivity Analysis and Optimization of Multibody Systems Yitao Zhu Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Corina Sandu, Chair Adrian Sandu, Co-chair Daniel Dopico Jan Helge Bøhn Steve Southward December 5, 2014 Blacksburg, Virginia Keywords: Sensitivity Analysis, Optimization, Multibody Dynamics, Vehicle Dynamics Copyright 2014, Yitao Zhu Sensitivity Analysis and Optimization of Multibody Systems Yitao Zhu Abstract Multibody dynamics simulations are currently widely accepted as valuable means for dynamic performance analysis of mechanical systems. The evolution of theoretical and com- putational aspects of the multibody dynamics discipline make it conducive these days for other types of applications, in addition to pure simulations. One very important such appli- cation is design optimization for multibody systems. Sensitivity analysis of multibody system dynamics, which is performed before optimization or in parallel, is essential for optimization. Current sensitivity approaches have limitations in terms of efficiently performing sen- sitivity analysis for complex systems with respect to multiple design parameters. Thus, we bring new contributions to the state-of-the-art in analytical sensitivity approaches in this study. A direct differentiation method is developed for multibody dynamic models that em- ploy Maggi's formulation. An adjoint variable method is developed for explicit and implicit first order Maggi's formulations, second order Maggi's formulation, and first and second order penalty formulations. The resulting sensitivities are employed to perform optimiza- tion of different multibody systems case studies. The collection of benchmark problems includes a five-bar mechanism, a full vehicle model, and a passive dynamic robot.
    [Show full text]
  • Rigid-Body Dynamics with Friction and Impact∗
    SIAM REVIEW c 2000 Society for Industrial and Applied Mathematics Vol. 42, No. 1, pp. 3–39 Rigid-Body Dynamics with Friction and Impact∗ David E. Stewart† Abstract. Rigid-body dynamics with unilateral contact is a good approximation for a wide range of everyday phenomena, from the operation of car brakes to walking to rock slides. It is also of vital importance for simulating robots, virtual reality, and realistic animation. However, correctly modeling rigid-body dynamics with friction is difficult due to a number of dis- continuities in the behavior of rigid bodies and the discontinuities inherent in the Coulomb friction law. This is particularly crucial for handling situations with large coefficients of friction, which can result in paradoxical results known at least since Painlev´e[C. R. Acad. Sci. Paris, 121 (1895), pp. 112–115]. This single example has been a counterexample and cause of controversy ever since, and only recently have there been rigorous mathematical results that show the existence of solutions to his example. The new mathematical developments in rigid-body dynamics have come from several sources: “sweeping processes” and the measure differential inclusions of Moreau in the 1970s and 1980s, the variational inequality approaches of Duvaut and J.-L. Lions in the 1970s, and the use of complementarity problems to formulate frictional contact problems by L¨otstedt in the early 1980s. However, it wasn’t until much more recently that these tools were finally able to produce rigorous results about rigid-body dynamics with Coulomb friction and impulses. Key words. rigid-body dynamics, Coulomb friction, contact mechanics, measure-differential inclu- sions, complementarity problems AMS subject classifications.
    [Show full text]
  • Application of Multibody Dynamics Techniques to the Analysis of Human Gait
    PhD Thesis Application of Multibody Dynamics Techniques to the Analysis of Human Gait Rosa Pàmies i Vilà Universitat Politècnica de Catalunya Departament d’Enginyeria Mecànica UNIVERSITAT POLITÈCNICA DE CATALUNYA Biomedical Engineering Doctoral Programme APPLICATION OF MULTIBODY DYNAMICS TECHNIQUES TO THE ANALYSIS OF HUMAN GAIT by Rosa Pàmies Vilà A thesis submitted for the degree of Doctor for the Universitat Politècnica de Catalunya Supervised by Dr. Josep Maria Font Llagunes Department of Mechanical Engineering (DEM) Barcelona, December 2012 A tu, pare. Agraïments Han sigut moltes les persones que m’han ajudat i recolzat perquè aquesta tesi hagi tirat endavant. Per això, m’agradaria especialment donar les gràcies Al director, Dr. Josep Maria Font Llagunes, per haver confiat sempre amb mi, per haver-me esperonat en els moments més difícils i foscos i haver-me ajudat a créixer, donant-me sempre la mà, en el fascinant món científic. Pels reptes que hem compartit i per l’amistat que des del respecte sempre ens quedarà. Als companys del Departament d’Enginyeria Mecànica de l’Escola Tècnica Superior d’Enginyeria Industrial de Barcelona: Daniel, Quim, Lluïsa, Joan, Miquel, Jordi, Salvador, Enrique, Pau, Ana, Joaquim, Tània, Laia, Ayoub, Matteo i Bruno, pel seu recolzament i pels molt bons moments que ens han anat portant aquests quatre anys. Als investigadors del Laboratorio de Ingeniería Mecánica (LIM) de la Coruña: Amelia, Roland, Fran, Alberto, Daniel, Emilio, Javier, Jairo i Miguel, per no fer-me sentir gens estranya a Ferrol. En especial al Dr. Javier Cuadrado, per introduir-me al món de la dinàmica multisòlid i posar-me totes les facilitats per l’estada a Galícia.
    [Show full text]
  • Rigid Body Dynamics: Links and Joints
    FRIEDRICH-ALEXANDER-UNIVERSITAT¨ ERLANGEN-NURNBERG¨ INSTITUT FUR¨ INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl f¨urInformatik 10 (Systemsimulation) Rigid Body Dynamics: Links and Joints Kristina Pickl Master Thesis Rigid Body Dynamics: Links and Joints Kristina Pickl Master Thesis Aufgabensteller: Prof. Dr. Ulrich R¨ude Betreuer: Klaus Iglberger, M. Sc. Bearbeitungszeitraum: 16.03.2009 { 16.09.2009 Declaration: I confirm that I developed this thesis on my own, without any help of others and that no sources and facilities other than those mentioned in this thesis were used. This thesis has never been submitted in total, in part or in modified form to any other examination board. All quotations taken from other sources are referenced accordingly. Erkl¨arung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ¨ahnlicher Form noch keiner anderen Prufungsbeh¨ ¨orde vorgelegen hat und von dieser als Teil einer Prufungs-¨ leistung angenommen wurde. Alle Ausfuhrungen,¨ die w¨ortlich oder sinngem¨aß ubernommen¨ wurden, sind als solche gekennzeichnet. Erlangen, den 16.09.2009 . Abstract Physics-based multibody simulations have a wide range of applications. In order to be capable of analyzing complex problem formulations, e.g. the motion of the human skeleton, joints are a necessary requirement for multibody simulation frameworks. The major focus of this thesis lies on the development and implementation of a general scheme to integrate joint motion constraints into the pe framework, which is developed at the Chair for System Simulation at the Friedrich-Alexander University Erlangen-Nuremberg. The mathematical background based on complementarity constraints is elucidated profoundly.
    [Show full text]