Optimal Control of Multibody Systems Using the Adjoint Variable Approach

Total Page:16

File Type:pdf, Size:1020Kb

Optimal Control of Multibody Systems Using the Adjoint Variable Approach DISSERTATION Optimal Control of Multibody Systems using the Adjoint Variable Approach ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften (Dr. techn.) eingereicht an der Technischen Universität Wien, Fakultät für Maschinenwesen und Betriebswissenschaften von Dipl.-Ing. Thomas Lauß, BSc. Geboren am 06.03.1989 Mat. Nr.: 1429523 unter der Leitung von Priv. Doz. Dipl.-Ing. Dr. Wolfgang Steiner am Institut für Mechanik und Mechatronik, E325 Abteilung für Mechanik fester Körper begutachtet von Ao.Univ.Prof. Dipl.-Ing. Dr. Alois Steindl Prof. Ahmed A. Shabana, PhD Technische Universität Wien University of Illinois at Chicago InstitutfürMechanikundMechatronik Dep.ofMechanical&Industrial Engineering Getreidemarkt 9, 1060 Wien 842 W. Taylor Street, Chicago, IL 60607 Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Eidesstattliche Erklärung Dipl. Ing. Thomas Lauß, BSc. Wimm 27/3 4872 Neukirchen a. d. V. Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grund- sätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Ar- beit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht. Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer Beur- teilerin/einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vor- gelegt. Diese Arbeit stimmt mit der von den Begutachterinnen/Begutachtern beurteilten Arbeit überein. Wien, am 01.04.2019 Thomas Lauß i Danksagung Die vorliegende Arbeit entstand im Rahmen einer Anstellung als wissenschaftlicher Mitarbeiter an der Fachhochschule Oberösterreich in Kooperation mit dem Institut für Mechanik und Mechatronik an der Technischen Universität Wien im Zeitraum von 2015–2019. Ohne die Unterstützung zahlreicher Personen hätte die Doktorarbeit in dieser Form nicht realisiert werden können. Für die vielfältig erfahrene Hilfe möchte ich mich an dieser Stelle sehr herzlich bedanken. Mein ganz spezieller Dank gilt Herrn Prof. Wolfgang Steiner, meinem Doktorvater, der mit seinen ausgezeichneten Vor- lesungen, während des Studiums, mein Interesse für die Mechanik geweckt hat. Im Anschluss wurde ich als wissenschaftlicher Mitarbeiter Teil seiner Forschungsgruppe, die er in den letzten Jahren erfolgreich aufgebaut hat. Dank seiner theoretischen und fachlichen Unterstützung habe ich in den vergangenen Jahren sehr viel lernen dürfen. Ich danke Herrn Prof. Alois Steindl für die hilfsbereite und wissenschaftliche Betreu- ung als Erstgutachter. Seine anspruchsvollen Vorlesungen zur höheren Mechanik an der Technischen Universität Wien haben mein Interesse an der Mechanik und Mathe- matik noch deutlich gestärkt. Darüber hinaus möchte ich mich für die Organisation des Prüfungsverfahrens und für die Beteiligung an der Prüfungskommission sehr herzlich bedanken. Ferner danke ich Herrn Prof. Ahmed A. Shabana für die wissenschaftliche Beurteilung als Zweitgutachter. Des Weiteren möchte ich mich bei meinen Kollegen Stefan Oberpeilsteiner, Prof. Karin Nachbagauer, Peter Leitner, Philipp Eichmeir, Flo- rian Pichler und Prof. Wolfgang Witteveen für die schöne Zusammenarbeit und die vie- len hilfreichen Diskussionen bedanken. Tief verbunden und dankbar bin ich meinen Eltern und meiner Frau für ihre unglaublich hilfreiche Unterstützung und ihr Verständ- nis bei der Anfertigung der Doktorarbeit. iii Die Anstellung wurde von folgenden Forschungsprogrammen und Industriekooperatio- nen finanziert: Regio 13: Das Projekt wurde im Rahmen des EU-Programms "Regionale Wettbe- • werbsfähigkeit OÖ 2007-2013 (Regio 13)" aus Mitteln des Europäischen Fonds für Regionale Entwicklung (EFRE) sowie aus Mitteln des Landes OÖ gefördert. ProtoFrame: Das Projekt wurde im Programm COIN Cooperation & Innovation • durch das Bundesministerium für Wirtschaft, Familie und Jugend sowie das Bun- desministerium für Verkehr, Innovation und Technologie gefördert. JR-Zentrum: Das Projekt wird zu 50% von der Christian Doppler Forschungsge- • sellschaft und zu 50% vom Unternehmenspartner KTM AG finanziert BMW-Industrieprojekt: Das Projekt wurde von BMW Motoren GmbH in Auftrag • gegeben und zu 100% finanziert. Kurzfassung In den letzten Jahren ist die Komplexität der Modelle in der Mehrkörperdynamik sehr stark gestiegen. Industriellen Anwendungen, wie zum Beispiel ein gesamtes Fahrzeug- modell, führen zu großen Systemen mit sehr vielen Freiheitsgraden. Darüber hinaus besteht eine große Nachfrage in der Forschung und im Entwicklungsprozess nach effizi- enten und zuverlässigen Algorithmen zum Lösen von Optimalsteuerungsaufgaben. Ein allgemeiner Ansatz besteht darin, das Optimalsteuerungsproblem in eine Optimierungs- aufgabe umzuformulieren. Dabei betrachtet man die diskretisierten Systemeingänge vom Mehrkörpersystem als Optimierungsvariablen und versucht eine Kostenfunktion, die zum Beispiel aus der aufsummierten Abweichung eines Systemausganges von einer vorgegebenen Trajektore besteht, zu minimieren. Der Schwerpunkt dieser Arbeit liegt darin, den Gradienten der Kostenfunktion mithilfe der adjungierten Variablen effizient zu berechnen. Dabei erweitert man zuerst die Kostenfunktion um die Systemgleichun- gen und multipliziert diese mit den noch beliebig wählbaren adjungierten Variablen. Danach wird eine Variation der Kostenfunktion durchgeführt und die adjungierten Va- riablen werden nun so gewählt, dass die komplizierten Beziehungen zwischen den Va- riationen der Systemeingängen und den Zuständen nicht berechnet werden müssen. Die Definition der adjungierten Variablen führt auf ein lineares, zeitvariantes differential- algebraisches System, mit dessen Lösung der Gradient der Kostenfunktion bestimmt werden kann. Allerdings führt die numerische Lösung des adjungierten Systems manch- mal zu Problemen hinsichtlich Stabilität und Genauigkeit. Daher wird in dieser Arbeit ein alternativer Ansatz, die diskrete adjungierte Methode, beschrieben. Dabei konstru- iert man sich ein Finite-Differenzen-Schema für das adjungierte System direkt aus der numerischen Integrationsmethode der Systemgleichungen. Schlussendlich werden die beschriebenen Methoden an akademischen bzw. industriellen Anwendungen getestet. Als erstes Beispiel wird eine Steuerung zum Aufschwingen eines Doppelpendels be- rechnet. Als zweite akademische Anwendung wird die Kraft an einem Wagen und das Moment an der Seilwinde eines Portalkrans berechnet, sodass die Last einer vorgege- benen Trajektorie folgt. Die energieoptimale Bahnplanung eines Roboters von einem Ausgangspunkt zu einem Endpunkt in vorgegebener Zeit wird als erste industrielle An- wendung behandelt. Zu guter Letzt wird die Radaufhängung eines Rennfahrzeugs unter- sucht und die Kräfte an der Radnabe bei gegebener Bewegung am Federbein berechnet. v Abstract In the last years, the complexity of models in multibody dynamics has grown tremen- dously. In particular, industrial simulations of large systems including several flexible bodies such as complete vehicles or robots result in models with a vast number of de- grees of freedom. Moreover, there is also an increased demand of both, the research, as well as the industry for developing efficient and reliable algorithms for solving opti- mal control problems in multibody dynamics. A general approach to solve an optimal control problem is the formulation as an optimization task. In this case, one looks for actuating forces or torques of a multibody system, which minimizes a cost functional, e.g. the mean deviation of a system output from a measured signal. The focus of the pre- sented thesis lies on the efficient gradient computation of the cost functional by using the adjoint variable approach. Therefore, the cost functional is extended by the equations of motion, which are multiplied by the adjoint variables. Then, the variation of the ex- tended cost functional has to be determined and the adjoint variables have to be chosen, such that this variation is directly related to the variation of the inputs. This leads to a system of additional differential-algebraic equations, from which the gradient of the cost functional with respect to the inputs can be computed. However, the numerical solution of the adjoint differential equations raises several questions with respect to stability and accuracy. Hence, an alternative and maybe more natural approach is the discrete adjoint method. A finite difference scheme is constructed for the adjoint system directly from the numerical solution procedure, which is used for the solution of the equations of mo- tion. The method delivers the gradient of the discretized cost functional subjected to the discretized equations of motion. Moreover, the efficient computation of the gradient al- lows the application of gradient-based optimization methods, which speed-up the whole solution procedure significantly. Finally, the described methods are applied to academic and industrial applications. First of all, an optimal control of a swing-up maneuver of a cart double pendulum is computed. As a second academic example the force on a cart and the torque on the winch are determined for an underactuated planar overhead crane, such that the load follows a prescribed path. The energy optimal trajectory planning of a robot is presented as a first industrial application. Finally, a wheel suspension of a racing car is investigated as an inverse dynamic problem. vii Contents 1 Introduction
Recommended publications
  • Dynamics of Multibody Systems in Research and Education
    Editorial Dynamics of Multibody Systems in Research and Education prof. Ing. Štefan Segľa, CSc. Technical University of Košice, Faculty of Mechanical Engineering, Department of Applied Mechanics and Mechanical Engineering Štefan Segľa, prof., Ing., CSc., (born in 1954) is a professor at the Technical University of Košice, Faculty of Mechanical Engineering, Institute of Design and Process Engineering. He graduated from the Faculty of Mechanical Engineering, Czech Technical University in Prague in 1978. His research areas are kinematic and dynamic analysis and optimization of mechanical and mechatronical systems. He is an author of three monographs, twelve textbooks and more than one hundred scientific publications in journals and conference proceedings in Slovakia and abroad. Forteen papers are registered in Web of Science and SCOPUS. He is a member of IFToMM (International Federation for the Promotion of Mechanism and Machine Science), its Permanent Commission for the Standardization of Terminology and Multibody Dynamics, a vice-chairman of the Slovak National Committee of IFToMM, a member of the Czech Society of Mechanics, Slovak Society of Mechanics and Central European Association for Computational Mechanics. Many common mechanisms and machines such as vehicle and aircraft subsystems, robotic systems, biomechanical and mechatronic systems consist of rigid and deformable bodies that undergo large rigid body motion. The bodies are interconnected with kinematical constraints and coupling elements. The dynamics of these large-scale and nonlinear systems under dynamic loading in most cases can only be solved with methods of computational mechanics. For these systems the concept of the multibody dynamics can be successfuly utilized. Their mechanical models should be as complex as necessary but also as simple as possible.
    [Show full text]
  • Modeling of Flexible Multibody Systems Excited by Moving Loads with Application to a Robotic Portal System
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Institute of Transport Research:Publications The 2nd Joint International Conference on Multibody System Dynamics May 29–June 1, 2012, Stuttgart, Germany Modeling of Flexible Multibody Systems Excited by Moving Loads with Application to a Robotic Portal System Stefan Hartweg and Andreas Heckmann Department of System Dynamics and Control Robotics and Mechatronics Center (RMC) German Aerospace Center (DLR) Muenchner Strasse 20, D-82234 Wessling, Germany [Stefan.Hartweg, Andreas.Heckmann]@DLR.de ABSTRACT In this paper, an approach to solve mechanical problems with moving loads and flexible bodies is presented. Therefore, the multi-disciplinary modeling language Modelica together with the DLR FlexibleBodies Li- brary is utilized. Rather than solving the equations of motion analytically, this approach solves them numer- ically. While large overall motions of the flexible parts are described using the Floating Frame of Reference (FFR) method, the deformation is represented by appropriate shape functions. It is shown how a subsystem with masses and spring-damper elements can be connected to the flexible body and how the occurring forces of this moving load affect it. The equations of motion are derived in a general way, yielding a formulation compatible to e. g. a finite element models which are reduced to global shape functions. The usage of this formulation is shown for the simulation of a robotic portal system. 1 INTRODUCTION A variety of structures in the field of engineering is subject to moving loads. These loads can result from external forces, masses or whole subsystems moving with constant or varying velocity along the structure.
    [Show full text]
  • Newton Euler Equations of Motion Examples
    Newton Euler Equations Of Motion Examples Alto and onymous Antonino often interloping some obligations excursively or outstrikes sunward. Pasteboard and Sarmatia Kincaid never flits his redwood! Potatory and larboard Leighton never roller-skating otherwhile when Trip notarizes his counterproofs. Velocity thus resulting in the tumbling motion of rigid bodies. Equations of motion Euler-Lagrange Newton-Euler Equations of motion. Motion of examples of experiments that a random walker uses cookies. Forces by each other two examples of example are second kind, we will refer to specify any parameter in. 213 Translational and Rotational Equations of Motion. Robotics Lecture Dynamics. Independence from a thorough description and angular velocity as expected or tofollowa userdefined behaviour does it only be loaded geometry in an appropriate cuts in. An interface to derive a particular instance: divide and author provides a positive moment is to express to output side can be run at all previous step. The analysis of rotational motions which make necessary to decide whether rotations are. For xddot and whatnot in which a very much easier in which together or arena where to use them in two backwards operation complies with respect to rotations. Which influence of examples are true, is due to independent coordinates. On sameor adjacent joints at each moment equation is also be more specific white ellipses represent rotations are unconditionally stable, for motion break down direction. Unit quaternions or Euler parameters are known to be well suited for the. The angular momentum and time and runnable python code. The example will be run physics examples are models can be symbolic generator runs faster rotation kinetic energy.
    [Show full text]
  • A Review on Application of Multibody Dynamics in the Field of Robotics
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) A Review on Application of Multibody Dynamics in the Field of Robotics Nitin Chauhan1, Dr. Manjeet Singh Sekhon2 1, 2 – Assistant Professor, School of Mechanical Engineering, Lovely Professional University ABSTRACT With advancements in technology, robots have become very common. As robots consists of multiple connected links and moving parts, their design involves multibody dynamic analysis. This paper reviews how multibody dynamics have been explored as a design tool in the field of robotics. INTRODUCTION Most of the machines and systems including automobiles consists of a number of solid bodies that are interconnected to each other and motion of one component results in constrained motion of other. Such systems are called multibody systems[1]. Suspension systems in automobiles, landing gear of an aircraft, robotic manipulators, wind turbines all are examples of multibody systems. As different components are interacting together in a multibody system, for designing the system it becomes important to analyze how motion and forces are transmitted in the body. The study of motion of multibody system under the influence of force is commonly termed as multibody dynamics. Figure 1 Example of Multi-body Systems [1] A multibody dynamic analysis involves study of the movement of, impact of multiple bodies. As a robot manipulator consists of multiple links connected together and is used for applications that require control over path and forces involved in movement, multibody dynamics is used in robotics for manipulator design and motion analysis. This paper discusses the research trends in the application areas of multibody dynamics and major applications of MBD in the field of robotics.
    [Show full text]
  • Multibody System Dynamics (IMSD) Was Held at the Institute of Engineering and Computational Mechanics at the University of Stuttgart, Germany in May 29 - June 1, 2012
    Final Report of the IMSD 2012 Stuttgart, Germany For more information www.itm.uni-stuttgart.de/imsd2012 1. Summary The Joint International Conference on Multibody System Dynamics (IMSD) was held at the Institute of Engineering and Computational Mechanics at the University of Stuttgart, Germany in May 29 - June 1, 2012. The IMSD conference is a biannual series that serves as a meeting point for the international Multibody community and as an opportunity to exchange high-level, current information on the theory and applications of Multibody systems. As a rapidly growing branch of mechanical dynamics, Multibody System Dynamics is seeing more and more use, and is becoming increasingly important in the development of complex engineered systems. The continual new challenges faced by the IMSD community demand productive conference forums where ideas are freely exchanged and a spirit of cooperation is encouraged. Overview of the Conference Besides seven distinguished keynote lectures, 56 technical sessions were held, offering 192 technical presentations authored by more than 450 authors. In total, 299 participants from 29 different countries participated in the IMSD 2012. The conference website can be found at: http://www.itm.uni-stuttgart.de/imsd2012 We would like to thank the following institutional sponsors for their highly appreciated support. ASME (American Society of Mechanical Engineers) IFToMM (International Federation for the Promotion of Mechanism and Machine Science) IUTAM (International Union of Theoretical and Applied Mechanics) JSME (Japan Society of Mechanical Engineers) KSME (Korean Society of Mechanical Engineers) We would like to thank the following industrial sponsors for their highly appreciated support. Alcatel-Lucent Carl Zeiss SMT ESTA Apparatebau FunctionBay GmbH Maplesoft Europe Robert Bosch GmbH SIMPACK The organization of the IMSD 2012 was supervised by an International Steering Committee consisting of the following distinguished academics.
    [Show full text]
  • Dynamics and Control of a Planar Multibody Mobile Robot for Confined Environment Inspection
    Dynamics and Control of a Planar Multibody Mobile Robot for Confined Environment Inspection Lounis Douadi Davide Spinello∗ School of Electrical Engineering Department of Mechanical Engineering and Computer Science University of Ottawa University of Ottawa Email: [email protected] Email: [email protected] Wail Gueaieb School of Electrical Engineering and Computer Science University of Ottawa Email: [email protected] ABSTRACT In this paper, we study the dynamics of an articulated planar mobile robot for confined environment exploration. The mobile vehicle is composed of n identical modules hitched together with passive revolute joints. Each module has the structure of a four-bar parallel mechanism on a mobile platform. The dynamic model is derived using Lagrange formulation. Computer simulations illustrate the model by addressing a path following problem inside a pipe. The dynamic model presented in this paper is the basis for the design of motion control algorithms that encode energy optimization and sensor performance maximization. 1 Introduction and Related Literature This work is part of a project aimed at the development of a three-dimensional autonomous articu- lated mobile robot for the exploration and nondestructive testing in confined environments that can be hazardous or not accessible to humans. One application targeted by this system is natural gas pipelines inspection. Articulated mobile robots made their appearance in the framework of service robotics [1]. Snake-like mobile robots are often chosen for the class of applications we are interested in because of their great agility and high redundancy, which enable them to operate in environments that might be too challenging for a conventional wheeled robot.
    [Show full text]
  • Dynamics of Multibody Systems
    Robert E. Roberson Richard Schwertassek Dynamics of Multibody Systems With 100 Figures Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Contents PART I. INTRODUCTION 1 1. Multibody Systems 3 1.1 Origins 3 1.1.1 Rise of Rotational Mechanics 3 1.1.2 Rotation in Technology 5 1.1.3 Status: mid-Twentieth Century 9 1.2 Multibody System Dynamics 11 1.2.1 Multibody Renaissance 11 1.2.2 Examples of Applications 13 1.2.3 Goals of Multibody System Investigation 21 1.2.4 Multibody Formalisms and Computer Codes .... 24 1.3 References 36 2. Mathematical Preliminaries 38 2.1 Terminology and Notation 38 2.1.1 Frames and Coordinates 38 2.1.2 Vectors and Cartesian Tensors 42 2.1.3 Matrices 45 2.1.4 Arrays of Vectors and Dyadics 46 2.2 Vectors, Dyadics and their Matrix Representations 47 2.2.1 Basic Operations 47 2.2.2 Transformations 50 2.2.3 Cartesian Tensors 53 2.3 References 56 PART II. KINEMATICS OF A RIGID BODY 57 3. Location and Orientation 59 3.1 Introduction 59 3.1.1 Degrees of Freedom 59 3.1.2 Rotation 61 XI 3.2 Direction Cosine Matrices 63 3.2.1 Representation of General Rotation 63 3.2.2 Infinitesimal Rotation 67 3.3 Angle Representations of Rotation 68 3.3.1 Elementary Rotations 68 3.3.2 Euler Angles 70 3.3.3 Tait-Bryan Angles 73 3.4 Other Representations of Rotation 75 3.4.1 Euler Parameters 75 3.4.2 Euler-Rodrigues Parameters 77 3.4.3 Six-Parameter Methods 77 3.5 References 78 4.
    [Show full text]
  • Contacts in Multibody Systems F
    Contacts in multibody systems F. Pfeiffer, Christoph Glocker To cite this version: F. Pfeiffer, Christoph Glocker. Contacts in multibody systems. Journal of Applied Mathematics and Mechanics, Elsevier, 2000, 64 (5), pp.773 - 782. 10.1016/S0021-8928(00)00107-6. hal-01394245 HAL Id: hal-01394245 https://hal.archives-ouvertes.fr/hal-01394245 Submitted on 9 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License CONTACTS IN MULTIBODY SYSTEMSt F. PFEIFFER and Ch. GLOCKER Research in contact mechanics is reviewed, mainly based on result determined at the Institute B of Mechanics in the Thchnical University of Munich. Interest in such problems arise in the 1960s in relation to statics and elastomechanics. Most of the mathematical tools were developed and used in those fields. As a result of increasing pressure from the practical side concerning vibrations and noise related to contract processes, methods of multibody dynamics with unilateral constraints have been elaborated. © 2001 Elsevier Science Ltd. All rights reserved. 1. INTRODUCTION Contact phenomena, including bilateral and unilateral ones, often arise in dynamical systems. Walking, grasping and climbing are typically unilateral processes; the operation of machines and mechanisms includes a large variety of unilateral behaviour.
    [Show full text]
  • Sensitivity Analysis and Optimization of Multibody Systems
    Sensitivity Analysis and Optimization of Multibody Systems Yitao Zhu Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Corina Sandu, Chair Adrian Sandu, Co-chair Daniel Dopico Jan Helge Bøhn Steve Southward December 5, 2014 Blacksburg, Virginia Keywords: Sensitivity Analysis, Optimization, Multibody Dynamics, Vehicle Dynamics Copyright 2014, Yitao Zhu Sensitivity Analysis and Optimization of Multibody Systems Yitao Zhu Abstract Multibody dynamics simulations are currently widely accepted as valuable means for dynamic performance analysis of mechanical systems. The evolution of theoretical and com- putational aspects of the multibody dynamics discipline make it conducive these days for other types of applications, in addition to pure simulations. One very important such appli- cation is design optimization for multibody systems. Sensitivity analysis of multibody system dynamics, which is performed before optimization or in parallel, is essential for optimization. Current sensitivity approaches have limitations in terms of efficiently performing sen- sitivity analysis for complex systems with respect to multiple design parameters. Thus, we bring new contributions to the state-of-the-art in analytical sensitivity approaches in this study. A direct differentiation method is developed for multibody dynamic models that em- ploy Maggi's formulation. An adjoint variable method is developed for explicit and implicit first order Maggi's formulations, second order Maggi's formulation, and first and second order penalty formulations. The resulting sensitivities are employed to perform optimiza- tion of different multibody systems case studies. The collection of benchmark problems includes a five-bar mechanism, a full vehicle model, and a passive dynamic robot.
    [Show full text]
  • Rigid-Body Dynamics with Friction and Impact∗
    SIAM REVIEW c 2000 Society for Industrial and Applied Mathematics Vol. 42, No. 1, pp. 3–39 Rigid-Body Dynamics with Friction and Impact∗ David E. Stewart† Abstract. Rigid-body dynamics with unilateral contact is a good approximation for a wide range of everyday phenomena, from the operation of car brakes to walking to rock slides. It is also of vital importance for simulating robots, virtual reality, and realistic animation. However, correctly modeling rigid-body dynamics with friction is difficult due to a number of dis- continuities in the behavior of rigid bodies and the discontinuities inherent in the Coulomb friction law. This is particularly crucial for handling situations with large coefficients of friction, which can result in paradoxical results known at least since Painlev´e[C. R. Acad. Sci. Paris, 121 (1895), pp. 112–115]. This single example has been a counterexample and cause of controversy ever since, and only recently have there been rigorous mathematical results that show the existence of solutions to his example. The new mathematical developments in rigid-body dynamics have come from several sources: “sweeping processes” and the measure differential inclusions of Moreau in the 1970s and 1980s, the variational inequality approaches of Duvaut and J.-L. Lions in the 1970s, and the use of complementarity problems to formulate frictional contact problems by L¨otstedt in the early 1980s. However, it wasn’t until much more recently that these tools were finally able to produce rigorous results about rigid-body dynamics with Coulomb friction and impulses. Key words. rigid-body dynamics, Coulomb friction, contact mechanics, measure-differential inclu- sions, complementarity problems AMS subject classifications.
    [Show full text]
  • Application of Multibody Dynamics Techniques to the Analysis of Human Gait
    PhD Thesis Application of Multibody Dynamics Techniques to the Analysis of Human Gait Rosa Pàmies i Vilà Universitat Politècnica de Catalunya Departament d’Enginyeria Mecànica UNIVERSITAT POLITÈCNICA DE CATALUNYA Biomedical Engineering Doctoral Programme APPLICATION OF MULTIBODY DYNAMICS TECHNIQUES TO THE ANALYSIS OF HUMAN GAIT by Rosa Pàmies Vilà A thesis submitted for the degree of Doctor for the Universitat Politècnica de Catalunya Supervised by Dr. Josep Maria Font Llagunes Department of Mechanical Engineering (DEM) Barcelona, December 2012 A tu, pare. Agraïments Han sigut moltes les persones que m’han ajudat i recolzat perquè aquesta tesi hagi tirat endavant. Per això, m’agradaria especialment donar les gràcies Al director, Dr. Josep Maria Font Llagunes, per haver confiat sempre amb mi, per haver-me esperonat en els moments més difícils i foscos i haver-me ajudat a créixer, donant-me sempre la mà, en el fascinant món científic. Pels reptes que hem compartit i per l’amistat que des del respecte sempre ens quedarà. Als companys del Departament d’Enginyeria Mecànica de l’Escola Tècnica Superior d’Enginyeria Industrial de Barcelona: Daniel, Quim, Lluïsa, Joan, Miquel, Jordi, Salvador, Enrique, Pau, Ana, Joaquim, Tània, Laia, Ayoub, Matteo i Bruno, pel seu recolzament i pels molt bons moments que ens han anat portant aquests quatre anys. Als investigadors del Laboratorio de Ingeniería Mecánica (LIM) de la Coruña: Amelia, Roland, Fran, Alberto, Daniel, Emilio, Javier, Jairo i Miguel, per no fer-me sentir gens estranya a Ferrol. En especial al Dr. Javier Cuadrado, per introduir-me al món de la dinàmica multisòlid i posar-me totes les facilitats per l’estada a Galícia.
    [Show full text]
  • Rigid Body Dynamics: Links and Joints
    FRIEDRICH-ALEXANDER-UNIVERSITAT¨ ERLANGEN-NURNBERG¨ INSTITUT FUR¨ INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl f¨urInformatik 10 (Systemsimulation) Rigid Body Dynamics: Links and Joints Kristina Pickl Master Thesis Rigid Body Dynamics: Links and Joints Kristina Pickl Master Thesis Aufgabensteller: Prof. Dr. Ulrich R¨ude Betreuer: Klaus Iglberger, M. Sc. Bearbeitungszeitraum: 16.03.2009 { 16.09.2009 Declaration: I confirm that I developed this thesis on my own, without any help of others and that no sources and facilities other than those mentioned in this thesis were used. This thesis has never been submitted in total, in part or in modified form to any other examination board. All quotations taken from other sources are referenced accordingly. Erkl¨arung: Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ¨ahnlicher Form noch keiner anderen Prufungsbeh¨ ¨orde vorgelegen hat und von dieser als Teil einer Prufungs-¨ leistung angenommen wurde. Alle Ausfuhrungen,¨ die w¨ortlich oder sinngem¨aß ubernommen¨ wurden, sind als solche gekennzeichnet. Erlangen, den 16.09.2009 . Abstract Physics-based multibody simulations have a wide range of applications. In order to be capable of analyzing complex problem formulations, e.g. the motion of the human skeleton, joints are a necessary requirement for multibody simulation frameworks. The major focus of this thesis lies on the development and implementation of a general scheme to integrate joint motion constraints into the pe framework, which is developed at the Chair for System Simulation at the Friedrich-Alexander University Erlangen-Nuremberg. The mathematical background based on complementarity constraints is elucidated profoundly.
    [Show full text]