Aging and the Accumulation of Oxidative Damage to DNA
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alternative Oxidase: a Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants
Int. J. Mol. Sci. 2013, 14, 6805-6847; doi:10.3390/ijms14046805 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada; E-Mail: [email protected]; Tel.: +1-416-208-2742; Fax: +1-416-287-7676 Received: 16 February 2013; in revised form: 8 March 2013 / Accepted: 12 March 2013 / Published: 26 March 2013 Abstract: Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis. -
Melatonin Induces Apoptosis in Cholangiocarcinoma Cell Lines by Activating the Reactive Oxygen Species-Mediated Mitochondrial Pathway
ONCOLOGY REPORTS 33: 1443-1449, 2015 Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway Umawadee LAOTHONG1-3,5, YUSUKE HIRAKU2, SHINJI Oikawa2, KITTI INTUYOD3,4, MARIKO Murata2* and SOMCHAI PINLAOR1,3* 1Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; 2Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan; 3Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; 4Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand Received November 26, 2014; Accepted January 2, 2015 DOI: 10.3892/or.2015.3738 Abstract. We previously demonstrated that melatonin could pro-oxidant by activating ROS-dependent DNA damage and be used as a chemopreventive agent for inhibiting cholangio- thus leading to the apoptosis of CCA cells. carcinoma (CCA) development in a hamster model. However, the cytotoxic activity of melatonin in cancer remains unclear. Introduction In the present study, we investigated the effect of melatonin on CCA cell lines. Human CCA cell lines (KKU-M055 and Cholangiocarcinoma (CCA) is a devastating biliary cancer that KKU-M214) were treated with melatonin at concentrations poses continuing diagnostic and therapeutic challenges (1). of 0.5, 1 and 2 mM for 48 h. Melatonin treatment exerted a There are several risk factors for CCA: mainly liver fluke cytotoxic effect on CCA cells by inhibiting CCA cell viability infection, primary sclerosing cholangitis, biliary-duct cysts in a concentration-dependent manner. Treatment with mela- and hepatolithiasis (2). The highest prevalence of liver fluke tonin, especially at 2 mM, increased intracellular reactive Opisthorchis viverrini infection has been reported in Northeast oxygen species (ROS) production and in turn led to increased Thailand, where CCA incidence is also high (3). -
Base Excision Repair Synthesis of DNA Containing 8-Oxoguanine in Escherichia Coli
EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 35, No. 2, 106-112, April 2003 Base excision repair synthesis of DNA containing 8-oxoguanine in Escherichia coli Yun-Song Lee1,3 and Myung-Hee Chung2 Introduction 1Division of Pharmacology 8-oxo-7,8-dihydroguanine (8-oxo-G) in DNA is a muta- Department of Molecular and Cellular Biology genic adduct formed by reactive oxygen species Sungkyunkwan University School of Medicine (Kasai and Nishimura, 1984). As a structural prefe- Suwon 440-746, Korea rence, adenine is frequently incorporated into oppo- 2Department of Pharmacology site template 8-oxo-G (Shibutani et al., 1991), and 8- Seoul National University College of Medicine oxo-dGTP is incorporated into opposite template dA Jongno-gu, Seoul 110-799, Korea during DNA synthesis (Cheng et al., 1992). Thus, un- 3Corresponding author: Tel, 82-31-299-6190; repaired, these mismatches lead to GT and AC trans- Fax, 82-31-299-6209; E-mail, [email protected] versions, respectively (Grollman and Morya, 1993). In Escherichia coli, several DNA repair enzymes, Accepted 29 March 2003 preventing mutagenesis by 8-oxo-G, are known as the GO system (Michaels et al., 1992). The GO system Abbreviations: 8-oxo-G, 8-oxo-7,8-dihydroguanine; Fapy, 2,6-dihy- consists of MutT (8-oxo-dGTPase), MutM (2,6-dihydro- droxy-5N-formamidopyrimidine; FPG, Fapy-DNA glycosylase; BER, xy-5N-formamidopyrimidine (Fapy)-DNA glycosylase, base excision repair; AP, apurinic/apyrimidinic; dRPase, deoxyribo- Fpg) and MutY (adenine-DNA glycosylase). 8-oxo- phosphatase GTPase prevents incorporation of 8-oxo-dGTP into DNA by degrading 8-oxo-dGTP. -
The Two Faces of the Guanyl Radical: Molecular Context and Behavior
molecules Review The Two Faces of the Guanyl Radical: Molecular Context and Behavior Chryssostomos Chatgilialoglu 1,2 1 ISOF, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; [email protected]; Tel.: +39-051-6398309 2 Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Pozna´n,Poland Abstract: The guanyl radical or neutral guanine radical G(-H)• results from the loss of a hydrogen atom (H•) or an electron/proton (e–/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed. Keywords: guanine; guanyl radical; tautomerism; guanine radical cation; oligonucleotides; DNA; G-quadruplex; time-resolved spectroscopies; reactive oxygen species (ROS); oxidation 1. The Guanine Sink Citation: Chatgilialoglu, C. The Two The free radical chemistry associated with guanine (Gua) and its derivatives, guano- Faces of the Guanyl Radical: sine (Guo), 2’-deoxyguanosine (dGuo), guanosine-50-monophosphate (GMP), and 20- Molecular Context and Behavior. deoxyguanosine-50-monophosphate (dGMP), is of particular interest due to its biological Molecules 2021, 26, 3511. -
Reactive Oxygen Species from Chloroplasts Contribute to 3-Acetyl-5- Isopropyltetramic Acid-Induced Leaf Necrosis of Arabidopsis Thaliana
Plant Physiology and Biochemistry 52 (2012) 38e51 Contents lists available at SciVerse ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Reactive oxygen species from chloroplasts contribute to 3-acetyl-5- isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana Shiguo Chen a,1, Chunyan Yin a,1, Reto Jörg Strasser a,b,c, Govindjee d,2, Chunlong Yang a, Sheng Qiang a,* a Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China b Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy/Geneva, Switzerland c North West University of South Africa, South Africa d Department of Plant Biology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA article info abstract Article history: 3-Acetyl-5-isopropyltetramic acid (3-AIPTA), a derivate of tetramic acid, is responsible for brown leaf- Received 22 August 2011 spot disease in many plants and often kills seedlings of both mono- and dicotyledonous plants. To further Accepted 2 November 2011 elucidate the mode of action of 3-AIPTA, during 3-AIPTA-induced cell necrosis, a series of experiments Available online 11 November 2011 were performed to assess the role of reactive oxygen species (ROS) in this process. When Arabidopsis thaliana leaves were incubated with 3-AIPTA, photosystem II (PSII) electron transport beyond QA (the Keywords: primary plastoquinone acceptor of PSII) and the reduction of the end acceptors at the PSI acceptor side 3-AIPTA (3-acetyl-5-isopropyltetramic acid) were inhibited; this was followed by increase in charge recombination and electron leakage to O , ROS (reactive oxygen species) 2 Cell death resulting in chloroplast-derived oxidative burst. -
Oxidative Phosphorylation Efficiency, Proton
© 2015. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2015) 218, 3222-3228 doi:10.1242/jeb.126086 RESEARCH ARTICLE Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs Damien Roussel1,*, Karine Salin1,2, Adeline Dumet1, Caroline Romestaing1, Benjamin Rey3,4 and Yann Voituron1 ABSTRACT (Schmidt-Nielsen, 1984; Darveau et al., 2002; Glazier, 2005). Most Body size is a central biological parameter affecting most biological notably, basal metabolic rate in mammals and birds has been processes (especially energetics) and the mitochondrion is a key correlated with many energy-consuming processes at the level of organelle controlling metabolism and is also the cell’s main source of tissues, cells and mitochondria (Kunkel and Campbell, 1952; chemical energy. However, the link between body size and Hulbert and Else, 2000; Else et al., 2004), providing support for the ‘ ’ mitochondrial function is still unclear, especially in ectotherms. In this multiple-causes model of allometry (Darveau et al., 2002). M study, we investigated several parameters of mitochondrial Research has focused on the relationship between body mass ( b) bioenergetics in the liver of three closely related species of frog (the and mitochondrial function (Darveau et al., 2002; Brand et al., 2003; common frog Rana temporaria, the marsh frog Pelophylax ridibundus Porter and Brand, 1993). Understanding the link between body size and the bull frog Lithobates catesbeiana). These particular species and mitochondrial bioenergetics is of fundamental importance as were chosen because of their differences in adult body mass. We found mitochondria are essential organelles of eukaryotic cells responsible that mitochondrial coupling efficiency was markedly increased with for the biosynthesis of many cellular metabolites and the generation animal size, which led to a higher ATP production (+70%) in the larger of chemical energy in the form of ATP (Brand, 2005). -
Tautomerization-Dependent Recognition and Excision of Oxidation Damage in Base-Excision DNA Repair
Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair Chenxu Zhua,1, Lining Lua,1, Jun Zhangb,c,1, Zongwei Yuea, Jinghui Songa, Shuai Zonga, Menghao Liua,d, Olivia Stoviceke, Yi Qin Gaob,c,2, and Chengqi Yia,d,f,2 aState Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; bInstitute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; cBiodynamic Optical Imaging Center, Peking University, Beijing 100871, China; dPeking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; eUniversity of Chicago, Chicago, IL 60637; and fSynthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Edited by Suse Broyde, New York University, New York, NY, and accepted by Editorial Board Member Dinshaw J. Patel June 1, 2016 (received for review March 29, 2016) NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mamma- (FapyA and FapyG), spiroiminodihydantoin (Sp), and guanidino- lian genome against oxidized DNA bases. As the first enzymes in hydantoin (Gh) (23–27). Among these lesions, Tg is the most the base-excision repair pathway, glycosylases must recognize common pyrimidine base modification produced under oxidative the cognate substrates and catalyze their excision. Here we stress and ionizing radiation (28)—arising from oxidation of thy- present crystal structures of human NEIL1 bound to a range of mine and 5-methylcytosine—and is also a preferred substrate of duplex DNA. Together with computational and biochemical NEIL1 (3). -
Mitochondrial ATP Is Required for the Maintenance of Membrane Integrity
REPRODUCTIONRESEARCH Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation M Plaza Davila1, P Martin Muñoz1, J M Gallardo Bolaños1, T A E Stout2,3, B M Gadella3,4, J A Tapia5, C Balao da Silva6, C Ortega Ferrusola7 and F J Peña1 1Laboratory of Equine Reproduction and Equine Spermatology. Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain, 2Department of Equine Sciences, 3Department of Farm Animal Health, 4Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 5Department of Physiology, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain, 6Portalagre Polytechnic Institute, Superior Agriculture School of Elvas, Elvas, Portugal and 7Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, León, Spain Correspondence should be addressed to F J Peña; Email: [email protected] Abstract To investigate the hypothesis that oxidative phosphorylation is a major source of ATP to fuel stallion sperm motility, oxidative phosphorylation was suppressed using the mitochondrial uncouplers CCCP and 2,4,-dinitrophenol (DNP) and by inhibiting mitochondrial respiration at complex IV using sodium cyanide or at the level of ATP synthase using oligomycin-A. As mitochondrial dysfunction may also lead to oxidative stress, production of reactive oxygen species was monitored simultaneously. All inhibitors reduced ATP content, but oligomycin-A did so most profoundly. Oligomycin-A and CCCP also significantly reduced mitochondrial membrane potential. Sperm motility almost completely ceased after the inhibition of mitochondrial respiration and both percentage of motile sperm and sperm velocity were reduced in the presence of mitochondrial uncouplers. -
Mitochondria As Regulators of Reactive Oxygen Species Daniel Munro1,2 and Jason R
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1170-1180 doi:10.1242/jeb.132142 COMMENTARY A radical shift in perspective: mitochondria as regulators of reactive oxygen species Daniel Munro1,2 and Jason R. Treberg1,2,3,* ABSTRACT prolonged activity, and even senescence and ageing (Trushina and Mitochondria are widely recognized as a source of reactive oxygen McMurray, 2007; Costantini, 2008; Monaghan et al., 2009; Dai species (ROS) in animal cells, where it is assumed that over- et al., 2014; Day, 2014; Mason and Wadley, 2014). For example, production of ROS leads to an overwhelmed antioxidant system and during migration, a trade-off may occur between individual oxidative stress. In this Commentary, we describe a more nuanced performance and survival or reproductive fitness, owing to model of mitochondrial ROS metabolism, where integration of ROS oxidative damage accrued during intense exercise. Publications in production with consumption by the mitochondrial antioxidant these areas, and many others, often describe mitochondria as the ‘ ’ pathways may lead to the regulation of ROS levels. Superoxide and major source of ROS in animal cells, despite the high antioxidant capacity of mitochondria (Zoccorato et al., 2004; Dreschel and hydrogen peroxide (H2O2) are the main ROS formed by mitochondria. However, superoxide, a free radical, is converted to the non-radical, Patel, 2010; Banh and Treberg, 2013). However, the rationale behind the notion of mitochondria as the major source of ROS in membrane-permeant H2O2; consequently, ROS may readily cross cellular compartments. By combining measurements of production animal cells has been questioned (Brown and Borutaite, 2012), if not directly challenged, based on the capacity of isolated and consumption of H2O2, it can be shown that isolated mitochondria mitochondria to consume substantial amounts of ROS (Zoccorato can intrinsically approach a steady-state concentration of H2O2 in the medium. -
The Role of Oxidative Stress in Alzheimer's Disease Robin Petroze University of Kentucky
Kaleidoscope Volume 2 Article 15 2003 The Role of Oxidative Stress in Alzheimer's Disease Robin Petroze University of Kentucky Follow this and additional works at: https://uknowledge.uky.edu/kaleidoscope Part of the Medical Biochemistry Commons Right click to open a feedback form in a new tab to let us know how this document benefits you. Recommended Citation Petroze, Robin (2003) "The Role of Oxidative Stress in Alzheimer's Disease," Kaleidoscope: Vol. 2, Article 15. Available at: https://uknowledge.uky.edu/kaleidoscope/vol2/iss1/15 This Beckman Scholars Program is brought to you for free and open access by the The Office of Undergraduate Research at UKnowledge. It has been accepted for inclusion in Kaleidoscope by an authorized editor of UKnowledge. For more information, please contact [email protected]. BECKMAN ScHOLARS PROGRAM Abstract Over four million individuals in the United States currently suffer from Alzheimer's disease (AD), a devastating disorder of progressive dementia. Within the next several decades, AD is expected to affect over 22 million people globally. AD can only be definitively diagnosed by postmortem exami nation. Thus, investigation into the specific patho genesis of neuronal degeneration and death in AD on a biochemical level is essential for both earlier diagnosis and potential treatment and prevention options. Overproduction of amyloid [3-peptide (A[3) in the brain leads to both free radical oxidative stress and toxicity to neurons in AD. My under graduate biochemical studies with regard to AD explore the various ways in which free radical oxi dative stress might contribute to the pathology of AD. -
Reactive Oxygen Species Precede Protein Kinase C
Anesthesiology 2004; 100:506–14 © 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Reactive Oxygen Species Precede Protein Kinase C-␦ Activation Independent of Adenosine Triphosphate–sensitive Mitochondrial Channel Opening in Sevoflurane-induced Cardioprotection R. Arthur Bouwman, M.D.,* René J. P. Musters, Ph.D.,† Brechje J. van Beek-Harmsen, B.S.,‡ Jaap J. de Lange, M.D., Ph.D.,§ Christa Boer, Ph.D.ʈ Background: In the current study, the authors investigated others have shown that protein kinase C (PKC), adeno- the distinct role and relative order of protein kinase C (PKC)-␦, sine triphosphate–sensitive mitochondrial Kϩ (mito ؉ Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/100/3/506/354512/0000542-200403000-00008.pdf by guest on 01 October 2021 adenosine triphosphate–sensitive mitochondrial K (mito ϩ ؉ K ATP) channels, and reactive oxygen species (ROS) are K ATP) channels, and reactive oxygen species (ROS) in the sig- nal transduction of sevoflurane-induced cardioprotection and necessary in the signal transduction of volatile anesthe- 3,6,7 specifically addressed their mechanistic link. tic–induced cardioprotection. Volatile anesthetics di- Methods: Isolated rat trabeculae were preconditioned with rectly activate PKC8 and induce intracellular ROS pro- 3.8% sevoflurane and subsequently subjected to an ischemic 7 ϩ duction, either through modulation of mito K ATP protocol by superfusion of trabeculae with hypoxic, glucose- function9 or through modulation of the electron trans- free buffer (40 min) followed by 60 min of reperfusion. In 10 addition, the acute affect of sevoflurane on PKC-␦ and PKC-⑀ port chain. ROS modulates PKC function directly via translocation and nitrotyrosine formation was established with oxidative modification or indirectly via tyrosine phos- 11,12 ϩ use of immunofluorescent analysis. -
Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V)
University of Montana ScholarWorks at University of Montana Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 10-2002 Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V) Kent D. Sugden University of Montana - Missoula, [email protected] Brooke Martin University of Montana - Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/chem_pubs Part of the Biochemistry Commons, and the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Sugden, Kent D. and Martin, Brooke, "Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V)" (2002). Chemistry and Biochemistry Faculty Publications. 22. https://scholarworks.umt.edu/chem_pubs/22 This Article is brought to you for free and open access by the Chemistry and Biochemistry at ScholarWorks at University of Montana. It has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Metals Toxicity Guanine and 7,8-Dihydro-8-Oxo-Guanine–Specific Oxidation in DNA by Chromium(V) Kent D. Sugden and Brooke D. Martin Department of Chemistry, The University of Montana, Missoula, Montana, USA chromate. Cellular data have implied that this The hexavalent oxidation state of chromium [Cr(VI)] is a well-established human carcinogen, pathway is a significant contributor to the although the mechanism of cancer induction is currently unknown. Intracellular reduction of overall mutagenic and carcinogenic potential Cr(VI) forms Cr(V), which is thought to play a fundamental role in the mechanism of DNA dam- of this metal (13).