Aging and the Accumulation of Oxidative Damage to DNA

Total Page:16

File Type:pdf, Size:1020Kb

Aging and the Accumulation of Oxidative Damage to DNA Serial Review J. Clin. Biochem.Nutr., 34, 51-60,2003 Aging and Oxidative Stress Guest Editor: Mitsuyoshi Matsuo Aging and the Accumulation of Oxidative Damage to DNA Takao Kaneko* RedoxRegulation ResearchGroup, Tokyo Metropolitan Institute of Gerontology,35-2 Sakaecho,Itabashi-ku, Tokyo173-0015, Japan Received 1 September, 2003; Accepted 14 October, 2003 Summary The oxidative stress hypothesis of aging is currently one of the most popular explanations for the cause of aging. Oxidative stress, including that due to reactive oxygen species, causes lesions to biomolecules such as DNA, protein and lipids. 8-Oxo-2'-deox- yguanosine (8-oxodG) is a major oxidative product of DNA and can be detected using a variety of assay methods. For an accurate measurement of 8-oxodG, it is important to mini- mize as much as possible the oxidation of intact DNA during its isolation from cells or tis- sues and during the hydrolysis of DNA to nucleosides. The most popular analytical technique is high-performance liquid chromatography with electrochemical detection. The levels of oxidative damage to DNA are likely to increase in mammalian tissues during aging, although it is not clear whether the levels increase linearly during aging or exponen- tially in aged animals. The accumulation of oxidative damage to DNA is recognized as inducing mutations and dysfunction during aging. The steady state levels of oxidative dam- age to DNA are proposed to depend on the balance between the formation and repair of damage. The repair activity appears to be weak in aged animals compared with young ani- mals, but antioxidative activity has not been shown to undergo a consistent changing pat- tern. Thus, it is assumed that the decline in repair activity in aged animals leads to the accumulation of oxidative damage in aged tissues. Key Words: aging, oxidative stress, DNA damage, 8-oxo-2'-deoxyguanosine cess. The oxidative stress hypothesis of aging, which Introduction was first proposed as the free radical hypothesis of aging [1], is currently one of the most popular expla- During the aging process, the functional capacities nations for the cause of aging. In this hypothesis, the of a variety of physiological systems undergo pro- progressive and irreversible accumulation of molecu- gressive impairment after the maturational phase, lar oxidative damage, induced by oxidative stress, is a decaying the ability to maintain homeostasis and main causal factor underlying the age-related losses resulting in death. Many hypotheses have been of physiological functions. This hypothesis has been offered to explain the mechanism of the aging pro- widely accepted because numerous studies have shown a correlation between increasing in age and * To whom correspondenceshould be addressed. the accumulation of oxidative damage to cellular bio- Tel: +81-3-3964-3241 Fax: +81-3-3579-4776 molecules [2,3]. Since not only free radicals but also E-mail:[email protected] non-radical species attack biomolecules oxidatively, 51 52 T. Kaneko "reactive oxygen species (ROS)" is a preferred term more, it has been shown that certain types of patho- to characterize the oxidants involved in such biomo- logical lesions arisen with age are associated with lecular modifications.The most frequently generated increased levels of oxidative damage to cellular bio- ROS are the superoxideanion radical, hydrogen per- molecules [5,6]. Thus, the rate of ROS formation oxide, and hydroxylradicals, and the main biological appears to be a determining factor in the aging pro- targets of ROS are proteins, lipids, and DNA. Oxi- cess. dative damage is observed as products derived from the oxidative modification of these biomolecules Oxidative DNA Damage such as proteins and protein-associated carbonyls, advanced glycation end products (AGEs), lipid per- Oxidative damage to DNA is also implicated in oxidation products, lipofuscin, 8-oxo-2'-deoxygua- mutagenesis and carcinogenesis as well as in aging nosine (8-oxodG), etc. ROS are formed continuously [7,8]. Numerous lesions have been characterized as in cells during normal cellular metabolism and by arising from oxidative damage to DNA. Hydroxyl exogenous agents such as carcinogenic compounds radicals cause many types of DNA damage including and ionizing radiation [4]. Thus, such damage is the oxidative modification of bases and sugars, strand detectable under normal physiological conditions, breaks, and cross-linking to proteins [9,10]. The even in healthy young animals. Although mammali- structures of main modified DNA bases are shown in an cells have numerous antioxidant defenses to limit Fig. 1. The 8-oxodG lesion has been studied most the generation and attack of ROS, such as catalase, extensivelybecause it is the major oxidative lesion superoxide dismutase and glutathione peroxidase, and because it can be detected relatively easily using ROS can escape these defense systems and injure a variety of assay methods [11]. 8-OxodG has been biomolecules, suggesting that the efficiency of the reported to be induced by the treatment of DNA antioxidativeand repair mechanisms is not complete. with Fenton-type reagents [12], carcinogens [13] The amount of oxidative damage to various biomol- and X ray-irradiation [14]. These treatments are ecules has been shown to increase during aging in a known to generate ROS during the reaction. Metal variety of tissues from different species [3]. Further- ions, such as iron and copper ions, both of which are thymine thymine glycol 5-hydroxymethyluracil 5 ,6-dihydrothymine 5-hydroxy-5-methylhydantoin cytosine cytosine glycol 5-hydroxycytosine 5,6-di hydroxycytosine 5-hydroxyhydantoin adenine 2-hydroxyadenine 8-oxoadeninel 4,6-diamino-5-formamidopyrimidine guanine 8-oxoguanine 2,6-diamino-4-hydroxy-5-formamidopyrimidine Fig. 1. Molecular structures of the main modified bases produced from the reaction of DNA with hydroxyl radicals. J. Clin. Biochem. Nutr. Aging and Oxidative DNA Damage 53 levels of 8-oxodG in mtDNA than in nDNA [24- 26]. However, Higuchi and Linn reported that the levels of 8-oxodG measured in mtDNA isolated by cesium chloride density gradient centrifugation were lower than those reported for nDNA [27]. Anson et al. measured the levels of oxidative damage in mtDNA from rat liver using an Fpg/EndoIII/south- em blot assay and concluded that endogenous oxida- tive damage to mtDNA had been overestimated [28]. Measurement of Oxidative Damage to DNA Because the levels of oxidative damage to DNA are low(on the order of fmole range per μg DNA), it is not easy to detect and quantify these lesions with accuracy. Techniques used to measure oxidative dam- age to DNA include high-performance liquid chro- matography with electrochemical detection (HPLC/ ECD), gas chromatography-mass spectroscopy (GC/ MS), immunochemical techniques, post-labeling as- Fig. 2. Mispairing of 8-oxoG in the syn-conformation says, and the comet assay for DNA break measure- (keto form) with adenine. ment, not for oxidative damage. The most frequently used technique is HPLC/ECD among these analyt- ical techniques. By the HPLC/ECD following the known to bind to DNA because of its overall nega- mild enzymic hydrolysis of DNA, modified nucleo- tive charge, are believed to produce 8-oxodG sides such as 8-oxodG can be detected in a fmole through metal-catalyzed oxidation reactions. The C- range [29]. Because of the availability of this tech- 8 hydroxyl group of 8-oxodG tautomerizes to the C- nique and of the mutagenic properties of 8-oxodG 8 keto form (syn-conformation) in neutral aqueous [11, most studies using HPLC/ECD have concen- solutions [15]. Since the keto form is more stable trated on this compound. On the other hand, GC/ than the enol form (8-hydroxyguanine) [16], 8- MS in combination with a selective-ion monitoring oxodG adopts the syn-conformation. Because 8- (SIM) technique can detect a large number of DNA oxodG pairs preferentially with adenine rather than lesions simultaneously. Recently, liquid chromatogra- cytosine, its presence can generate G—T transver- phy/tandem mass spectrometry (LC/MS/MS) [30] sions as shown in Fig. 2 [17,18], which are likely to and liquid chromatography/mass spectrometry (LC/ be involved in carcinogenesis [7,8]. Indeed, 8- MS) [31] have emerged as new techniques for the oxodG has been detected at higher levels in cancer measurement of modified nucleosides in DNA. cells [19,20], and, further, the formation of 8- It has become apparent that a significant amount oxodG has been demonstrated in target organ DNA of DNA oxidation can occur during the DNA isola- in a wide variety of in vivo experimental carcinogen- tion and sample preparation for assay. The oxidation esis models [21,22]. of intact bases during DNA isolation and/or under Mitochondrial DNA (mtDNA) is not protected subsequent procedures is recognized to depend on by nucleosomes, being different from nuclear DNA analytical techniques used for the measurement of (nDNA), and it lies in close proximity to the free DNA damage. Indeed, it has been shown that DNA radical producing processes of oxidative phosphory- is oxidized during isolation, and that precautions lation. Therefore, mtDNA is thought to be highly must be taken to prevent the oxidation of guanine prone to oxidative damage. Richter et al. first report- [32]. The oxidation of DNA has been discussed ed that the levels of 8-oxodG were 16-fold higher in extensively in recent reviews [33, 34]. Such oxidation mtDNA than nDNA in rat liver [23]. Subsequently, has raised important questions about the accuracy of many investigators have reported significantly higher various assays used to measure in vivo levels of DNA Vol.34, No.2, 2003 54 T. Kaneko oxidation. For example, 8-oxodG levels obtained by GC/MS are considerablyhigher than those obtained using HPLC/EC [35]. Artifacts may occur during the derivatization of DNA acid-hydrolysatesat high temperature prior to GC/MS analysis [36]. Guanine is the most prone to oxidation among DNA bases [37], and is oxidized to yield 8-oxoguanine (8- oxoG).
Recommended publications
  • Alternative Oxidase: a Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis During Abiotic and Biotic Stress in Plants
    Int. J. Mol. Sci. 2013, 14, 6805-6847; doi:10.3390/ijms14046805 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants Greg C. Vanlerberghe Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C1A4, Canada; E-Mail: [email protected]; Tel.: +1-416-208-2742; Fax: +1-416-287-7676 Received: 16 February 2013; in revised form: 8 March 2013 / Accepted: 12 March 2013 / Published: 26 March 2013 Abstract: Alternative oxidase (AOX) is a non-energy conserving terminal oxidase in the plant mitochondrial electron transport chain. While respiratory carbon oxidation pathways, electron transport, and ATP turnover are tightly coupled processes, AOX provides a means to relax this coupling, thus providing a degree of metabolic homeostasis to carbon and energy metabolism. Beside their role in primary metabolism, plant mitochondria also act as “signaling organelles”, able to influence processes such as nuclear gene expression. AOX activity can control the level of potential mitochondrial signaling molecules such as superoxide, nitric oxide and important redox couples. In this way, AOX also provides a degree of signaling homeostasis to the organelle. Evidence suggests that AOX function in metabolic and signaling homeostasis is particularly important during stress. These include abiotic stresses such as low temperature, drought, and nutrient deficiency, as well as biotic stresses such as bacterial infection. This review provides an introduction to the genetic and biochemical control of AOX respiration, as well as providing generalized examples of how AOX activity can provide metabolic and signaling homeostasis.
    [Show full text]
  • Melatonin Induces Apoptosis in Cholangiocarcinoma Cell Lines by Activating the Reactive Oxygen Species-Mediated Mitochondrial Pathway
    ONCOLOGY REPORTS 33: 1443-1449, 2015 Melatonin induces apoptosis in cholangiocarcinoma cell lines by activating the reactive oxygen species-mediated mitochondrial pathway Umawadee LAOTHONG1-3,5, YUSUKE HIRAKU2, SHINJI Oikawa2, KITTI INTUYOD3,4, MARIKO Murata2* and SOMCHAI PINLAOR1,3* 1Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; 2Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan; 3Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; 4Biomedical Science Program, Graduate School, Khon Kaen University, Khon Kaen 40002, Thailand Received November 26, 2014; Accepted January 2, 2015 DOI: 10.3892/or.2015.3738 Abstract. We previously demonstrated that melatonin could pro-oxidant by activating ROS-dependent DNA damage and be used as a chemopreventive agent for inhibiting cholangio- thus leading to the apoptosis of CCA cells. carcinoma (CCA) development in a hamster model. However, the cytotoxic activity of melatonin in cancer remains unclear. Introduction In the present study, we investigated the effect of melatonin on CCA cell lines. Human CCA cell lines (KKU-M055 and Cholangiocarcinoma (CCA) is a devastating biliary cancer that KKU-M214) were treated with melatonin at concentrations poses continuing diagnostic and therapeutic challenges (1). of 0.5, 1 and 2 mM for 48 h. Melatonin treatment exerted a There are several risk factors for CCA: mainly liver fluke cytotoxic effect on CCA cells by inhibiting CCA cell viability infection, primary sclerosing cholangitis, biliary-duct cysts in a concentration-dependent manner. Treatment with mela- and hepatolithiasis (2). The highest prevalence of liver fluke tonin, especially at 2 mM, increased intracellular reactive Opisthorchis viverrini infection has been reported in Northeast oxygen species (ROS) production and in turn led to increased Thailand, where CCA incidence is also high (3).
    [Show full text]
  • Base Excision Repair Synthesis of DNA Containing 8-Oxoguanine in Escherichia Coli
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 35, No. 2, 106-112, April 2003 Base excision repair synthesis of DNA containing 8-oxoguanine in Escherichia coli Yun-Song Lee1,3 and Myung-Hee Chung2 Introduction 1Division of Pharmacology 8-oxo-7,8-dihydroguanine (8-oxo-G) in DNA is a muta- Department of Molecular and Cellular Biology genic adduct formed by reactive oxygen species Sungkyunkwan University School of Medicine (Kasai and Nishimura, 1984). As a structural prefe- Suwon 440-746, Korea rence, adenine is frequently incorporated into oppo- 2Department of Pharmacology site template 8-oxo-G (Shibutani et al., 1991), and 8- Seoul National University College of Medicine oxo-dGTP is incorporated into opposite template dA Jongno-gu, Seoul 110-799, Korea during DNA synthesis (Cheng et al., 1992). Thus, un- 3Corresponding author: Tel, 82-31-299-6190; repaired, these mismatches lead to GT and AC trans- Fax, 82-31-299-6209; E-mail, [email protected] versions, respectively (Grollman and Morya, 1993). In Escherichia coli, several DNA repair enzymes, Accepted 29 March 2003 preventing mutagenesis by 8-oxo-G, are known as the GO system (Michaels et al., 1992). The GO system Abbreviations: 8-oxo-G, 8-oxo-7,8-dihydroguanine; Fapy, 2,6-dihy- consists of MutT (8-oxo-dGTPase), MutM (2,6-dihydro- droxy-5N-formamidopyrimidine; FPG, Fapy-DNA glycosylase; BER, xy-5N-formamidopyrimidine (Fapy)-DNA glycosylase, base excision repair; AP, apurinic/apyrimidinic; dRPase, deoxyribo- Fpg) and MutY (adenine-DNA glycosylase). 8-oxo- phosphatase GTPase prevents incorporation of 8-oxo-dGTP into DNA by degrading 8-oxo-dGTP.
    [Show full text]
  • The Two Faces of the Guanyl Radical: Molecular Context and Behavior
    molecules Review The Two Faces of the Guanyl Radical: Molecular Context and Behavior Chryssostomos Chatgilialoglu 1,2 1 ISOF, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy; [email protected]; Tel.: +39-051-6398309 2 Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Pozna´n,Poland Abstract: The guanyl radical or neutral guanine radical G(-H)• results from the loss of a hydrogen atom (H•) or an electron/proton (e–/H+) couple from the guanine structures (G). The guanyl radical exists in two tautomeric forms. As the modes of formation of the two tautomers, their relationship and reactivity at the nucleoside level are subjects of intense research and are discussed in a holistic manner, including time-resolved spectroscopies, product studies, and relevant theoretical calculations. Particular attention is given to the one-electron oxidation of the GC pair and the complex mechanism of the deprotonation vs. hydration step of GC•+ pair. The role of the two G(-H)• tautomers in single- and double-stranded oligonucleotides and the G-quadruplex, the supramolecular arrangement that attracts interest for its biological consequences, are considered. The importance of biomarkers of guanine DNA damage is also addressed. Keywords: guanine; guanyl radical; tautomerism; guanine radical cation; oligonucleotides; DNA; G-quadruplex; time-resolved spectroscopies; reactive oxygen species (ROS); oxidation 1. The Guanine Sink Citation: Chatgilialoglu, C. The Two The free radical chemistry associated with guanine (Gua) and its derivatives, guano- Faces of the Guanyl Radical: sine (Guo), 2’-deoxyguanosine (dGuo), guanosine-50-monophosphate (GMP), and 20- Molecular Context and Behavior. deoxyguanosine-50-monophosphate (dGMP), is of particular interest due to its biological Molecules 2021, 26, 3511.
    [Show full text]
  • Reactive Oxygen Species from Chloroplasts Contribute to 3-Acetyl-5- Isopropyltetramic Acid-Induced Leaf Necrosis of Arabidopsis Thaliana
    Plant Physiology and Biochemistry 52 (2012) 38e51 Contents lists available at SciVerse ScienceDirect Plant Physiology and Biochemistry journal homepage: www.elsevier.com/locate/plaphy Research article Reactive oxygen species from chloroplasts contribute to 3-acetyl-5- isopropyltetramic acid-induced leaf necrosis of Arabidopsis thaliana Shiguo Chen a,1, Chunyan Yin a,1, Reto Jörg Strasser a,b,c, Govindjee d,2, Chunlong Yang a, Sheng Qiang a,* a Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China b Bioenergetics Laboratory, University of Geneva, CH-1254 Jussy/Geneva, Switzerland c North West University of South Africa, South Africa d Department of Plant Biology, and Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA article info abstract Article history: 3-Acetyl-5-isopropyltetramic acid (3-AIPTA), a derivate of tetramic acid, is responsible for brown leaf- Received 22 August 2011 spot disease in many plants and often kills seedlings of both mono- and dicotyledonous plants. To further Accepted 2 November 2011 elucidate the mode of action of 3-AIPTA, during 3-AIPTA-induced cell necrosis, a series of experiments Available online 11 November 2011 were performed to assess the role of reactive oxygen species (ROS) in this process. When Arabidopsis thaliana leaves were incubated with 3-AIPTA, photosystem II (PSII) electron transport beyond QA (the Keywords: primary plastoquinone acceptor of PSII) and the reduction of the end acceptors at the PSI acceptor side 3-AIPTA (3-acetyl-5-isopropyltetramic acid) were inhibited; this was followed by increase in charge recombination and electron leakage to O , ROS (reactive oxygen species) 2 Cell death resulting in chloroplast-derived oxidative burst.
    [Show full text]
  • Oxidative Phosphorylation Efficiency, Proton
    © 2015. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2015) 218, 3222-3228 doi:10.1242/jeb.126086 RESEARCH ARTICLE Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs Damien Roussel1,*, Karine Salin1,2, Adeline Dumet1, Caroline Romestaing1, Benjamin Rey3,4 and Yann Voituron1 ABSTRACT (Schmidt-Nielsen, 1984; Darveau et al., 2002; Glazier, 2005). Most Body size is a central biological parameter affecting most biological notably, basal metabolic rate in mammals and birds has been processes (especially energetics) and the mitochondrion is a key correlated with many energy-consuming processes at the level of organelle controlling metabolism and is also the cell’s main source of tissues, cells and mitochondria (Kunkel and Campbell, 1952; chemical energy. However, the link between body size and Hulbert and Else, 2000; Else et al., 2004), providing support for the ‘ ’ mitochondrial function is still unclear, especially in ectotherms. In this multiple-causes model of allometry (Darveau et al., 2002). M study, we investigated several parameters of mitochondrial Research has focused on the relationship between body mass ( b) bioenergetics in the liver of three closely related species of frog (the and mitochondrial function (Darveau et al., 2002; Brand et al., 2003; common frog Rana temporaria, the marsh frog Pelophylax ridibundus Porter and Brand, 1993). Understanding the link between body size and the bull frog Lithobates catesbeiana). These particular species and mitochondrial bioenergetics is of fundamental importance as were chosen because of their differences in adult body mass. We found mitochondria are essential organelles of eukaryotic cells responsible that mitochondrial coupling efficiency was markedly increased with for the biosynthesis of many cellular metabolites and the generation animal size, which led to a higher ATP production (+70%) in the larger of chemical energy in the form of ATP (Brand, 2005).
    [Show full text]
  • Tautomerization-Dependent Recognition and Excision of Oxidation Damage in Base-Excision DNA Repair
    Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair Chenxu Zhua,1, Lining Lua,1, Jun Zhangb,c,1, Zongwei Yuea, Jinghui Songa, Shuai Zonga, Menghao Liua,d, Olivia Stoviceke, Yi Qin Gaob,c,2, and Chengqi Yia,d,f,2 aState Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China; bInstitute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; cBiodynamic Optical Imaging Center, Peking University, Beijing 100871, China; dPeking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; eUniversity of Chicago, Chicago, IL 60637; and fSynthetic and Functional Biomolecules Center, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China Edited by Suse Broyde, New York University, New York, NY, and accepted by Editorial Board Member Dinshaw J. Patel June 1, 2016 (received for review March 29, 2016) NEIL1 (Nei-like 1) is a DNA repair glycosylase guarding the mamma- (FapyA and FapyG), spiroiminodihydantoin (Sp), and guanidino- lian genome against oxidized DNA bases. As the first enzymes in hydantoin (Gh) (23–27). Among these lesions, Tg is the most the base-excision repair pathway, glycosylases must recognize common pyrimidine base modification produced under oxidative the cognate substrates and catalyze their excision. Here we stress and ionizing radiation (28)—arising from oxidation of thy- present crystal structures of human NEIL1 bound to a range of mine and 5-methylcytosine—and is also a preferred substrate of duplex DNA. Together with computational and biochemical NEIL1 (3).
    [Show full text]
  • Mitochondrial ATP Is Required for the Maintenance of Membrane Integrity
    REPRODUCTIONRESEARCH Mitochondrial ATP is required for the maintenance of membrane integrity in stallion spermatozoa, whereas motility requires both glycolysis and oxidative phosphorylation M Plaza Davila1, P Martin Muñoz1, J M Gallardo Bolaños1, T A E Stout2,3, B M Gadella3,4, J A Tapia5, C Balao da Silva6, C Ortega Ferrusola7 and F J Peña1 1Laboratory of Equine Reproduction and Equine Spermatology. Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain, 2Department of Equine Sciences, 3Department of Farm Animal Health, 4Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands, 5Department of Physiology, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain, 6Portalagre Polytechnic Institute, Superior Agriculture School of Elvas, Elvas, Portugal and 7Reproduction and Obstetrics Department of Animal Medicine and Surgery, University of León, León, Spain Correspondence should be addressed to F J Peña; Email: [email protected] Abstract To investigate the hypothesis that oxidative phosphorylation is a major source of ATP to fuel stallion sperm motility, oxidative phosphorylation was suppressed using the mitochondrial uncouplers CCCP and 2,4,-dinitrophenol (DNP) and by inhibiting mitochondrial respiration at complex IV using sodium cyanide or at the level of ATP synthase using oligomycin-A. As mitochondrial dysfunction may also lead to oxidative stress, production of reactive oxygen species was monitored simultaneously. All inhibitors reduced ATP content, but oligomycin-A did so most profoundly. Oligomycin-A and CCCP also significantly reduced mitochondrial membrane potential. Sperm motility almost completely ceased after the inhibition of mitochondrial respiration and both percentage of motile sperm and sperm velocity were reduced in the presence of mitochondrial uncouplers.
    [Show full text]
  • Mitochondria As Regulators of Reactive Oxygen Species Daniel Munro1,2 and Jason R
    © 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 1170-1180 doi:10.1242/jeb.132142 COMMENTARY A radical shift in perspective: mitochondria as regulators of reactive oxygen species Daniel Munro1,2 and Jason R. Treberg1,2,3,* ABSTRACT prolonged activity, and even senescence and ageing (Trushina and Mitochondria are widely recognized as a source of reactive oxygen McMurray, 2007; Costantini, 2008; Monaghan et al., 2009; Dai species (ROS) in animal cells, where it is assumed that over- et al., 2014; Day, 2014; Mason and Wadley, 2014). For example, production of ROS leads to an overwhelmed antioxidant system and during migration, a trade-off may occur between individual oxidative stress. In this Commentary, we describe a more nuanced performance and survival or reproductive fitness, owing to model of mitochondrial ROS metabolism, where integration of ROS oxidative damage accrued during intense exercise. Publications in production with consumption by the mitochondrial antioxidant these areas, and many others, often describe mitochondria as the ‘ ’ pathways may lead to the regulation of ROS levels. Superoxide and major source of ROS in animal cells, despite the high antioxidant capacity of mitochondria (Zoccorato et al., 2004; Dreschel and hydrogen peroxide (H2O2) are the main ROS formed by mitochondria. However, superoxide, a free radical, is converted to the non-radical, Patel, 2010; Banh and Treberg, 2013). However, the rationale behind the notion of mitochondria as the major source of ROS in membrane-permeant H2O2; consequently, ROS may readily cross cellular compartments. By combining measurements of production animal cells has been questioned (Brown and Borutaite, 2012), if not directly challenged, based on the capacity of isolated and consumption of H2O2, it can be shown that isolated mitochondria mitochondria to consume substantial amounts of ROS (Zoccorato can intrinsically approach a steady-state concentration of H2O2 in the medium.
    [Show full text]
  • The Role of Oxidative Stress in Alzheimer's Disease Robin Petroze University of Kentucky
    Kaleidoscope Volume 2 Article 15 2003 The Role of Oxidative Stress in Alzheimer's Disease Robin Petroze University of Kentucky Follow this and additional works at: https://uknowledge.uky.edu/kaleidoscope Part of the Medical Biochemistry Commons Right click to open a feedback form in a new tab to let us know how this document benefits you. Recommended Citation Petroze, Robin (2003) "The Role of Oxidative Stress in Alzheimer's Disease," Kaleidoscope: Vol. 2, Article 15. Available at: https://uknowledge.uky.edu/kaleidoscope/vol2/iss1/15 This Beckman Scholars Program is brought to you for free and open access by the The Office of Undergraduate Research at UKnowledge. It has been accepted for inclusion in Kaleidoscope by an authorized editor of UKnowledge. For more information, please contact [email protected]. BECKMAN ScHOLARS PROGRAM Abstract Over four million individuals in the United States currently suffer from Alzheimer's disease (AD), a devastating disorder of progressive dementia. Within the next several decades, AD is expected to affect over 22 million people globally. AD can only be definitively diagnosed by postmortem exami­ nation. Thus, investigation into the specific patho­ genesis of neuronal degeneration and death in AD on a biochemical level is essential for both earlier diagnosis and potential treatment and prevention options. Overproduction of amyloid [3-peptide (A[3) in the brain leads to both free radical oxidative stress and toxicity to neurons in AD. My under­ graduate biochemical studies with regard to AD explore the various ways in which free radical oxi­ dative stress might contribute to the pathology of AD.
    [Show full text]
  • Reactive Oxygen Species Precede Protein Kinase C
    Anesthesiology 2004; 100:506–14 © 2004 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Reactive Oxygen Species Precede Protein Kinase C-␦ Activation Independent of Adenosine Triphosphate–sensitive Mitochondrial Channel Opening in Sevoflurane-induced Cardioprotection R. Arthur Bouwman, M.D.,* René J. P. Musters, Ph.D.,† Brechje J. van Beek-Harmsen, B.S.,‡ Jaap J. de Lange, M.D., Ph.D.,§ Christa Boer, Ph.D.ʈ Background: In the current study, the authors investigated others have shown that protein kinase C (PKC), adeno- the distinct role and relative order of protein kinase C (PKC)-␦, sine triphosphate–sensitive mitochondrial Kϩ (mito ؉ Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/100/3/506/354512/0000542-200403000-00008.pdf by guest on 01 October 2021 adenosine triphosphate–sensitive mitochondrial K (mito ϩ ؉ K ATP) channels, and reactive oxygen species (ROS) are K ATP) channels, and reactive oxygen species (ROS) in the sig- nal transduction of sevoflurane-induced cardioprotection and necessary in the signal transduction of volatile anesthe- 3,6,7 specifically addressed their mechanistic link. tic–induced cardioprotection. Volatile anesthetics di- Methods: Isolated rat trabeculae were preconditioned with rectly activate PKC8 and induce intracellular ROS pro- 3.8% sevoflurane and subsequently subjected to an ischemic 7 ϩ duction, either through modulation of mito K ATP protocol by superfusion of trabeculae with hypoxic, glucose- function9 or through modulation of the electron trans- free buffer (40 min) followed by 60 min of reperfusion. In 10 addition, the acute affect of sevoflurane on PKC-␦ and PKC-⑀ port chain. ROS modulates PKC function directly via translocation and nitrotyrosine formation was established with oxidative modification or indirectly via tyrosine phos- 11,12 ϩ use of immunofluorescent analysis.
    [Show full text]
  • Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V)
    University of Montana ScholarWorks at University of Montana Chemistry and Biochemistry Faculty Publications Chemistry and Biochemistry 10-2002 Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V) Kent D. Sugden University of Montana - Missoula, [email protected] Brooke Martin University of Montana - Missoula, [email protected] Follow this and additional works at: https://scholarworks.umt.edu/chem_pubs Part of the Biochemistry Commons, and the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Sugden, Kent D. and Martin, Brooke, "Guanine and 7,8-Dihydro-8-Oxo-Guanine-Specific Oxidation in DNA by Chromium(V)" (2002). Chemistry and Biochemistry Faculty Publications. 22. https://scholarworks.umt.edu/chem_pubs/22 This Article is brought to you for free and open access by the Chemistry and Biochemistry at ScholarWorks at University of Montana. It has been accepted for inclusion in Chemistry and Biochemistry Faculty Publications by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Metals Toxicity Guanine and 7,8-Dihydro-8-Oxo-Guanine–Specific Oxidation in DNA by Chromium(V) Kent D. Sugden and Brooke D. Martin Department of Chemistry, The University of Montana, Missoula, Montana, USA chromate. Cellular data have implied that this The hexavalent oxidation state of chromium [Cr(VI)] is a well-established human carcinogen, pathway is a significant contributor to the although the mechanism of cancer induction is currently unknown. Intracellular reduction of overall mutagenic and carcinogenic potential Cr(VI) forms Cr(V), which is thought to play a fundamental role in the mechanism of DNA dam- of this metal (13).
    [Show full text]