International Journal of Molecular Sciences Editorial Oxidative Stress and DNA Damage in Chronic Disease and Environmental Studies Marco Peluso 1,* , Valentina Russo 1, Tommaso Mello 2 and Andrea Galli 2 1 Research Branch, Regional Cancer Prevention Laboratory, ISPRO-Study, Prevention and Oncology Network Institute, 50139 Florence, Italy;
[email protected] 2 Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; tommaso.mello@unifi.it (T.M.);
[email protected]fi.it (A.G.) * Correspondence:
[email protected] Received: 11 September 2020; Accepted: 18 September 2020; Published: 21 September 2020 Humans are continually exposed to a large number of environmental carcinogens [1], some of them share a specific toxicity model which acts via the enhancement of cellular levels of reactive oxygen species (ROS), such as superoxide anion and hydroxyl radicals [2]. ROS are chemicals capable of inducing oxidative stress, a condition where free radical generation overwhelms antioxidant protection in the body’s cells, causing oxidative damage of proteins, lipids and nucleic acids [2]. One biological consequence is the decline in physiological mechanisms designed to maintain cell repair and metabolic homeostasis, which can lead to tissue injury and cell transformation [3]. Oversensitive reactions to endogenous and extrinsic agents are associated with phenotypes characterized by elevated levels of genetic alterations [4,5], a process that can initiate carcinogenesis [6]. From a general perspective, the study of these factors can be useful to develop personalized medicine and to fill the knowledge gap of the molecular mechanisms behind the pathogenesis of chronic diseases. In this context, the current Special Issue’s challenge is to provide an overview on the topic of ROS, oxidative DNA damage and related-DNA repair factors in chronic diseases and environmental studies.