720002565En.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

720002565En.Pdf FOOD TESTING APPLICATION NOTEBOOK [ TABLE OF CONTENTS ] INTRODUCTION Solid-Phase Extraction Strategies .......................................................................................................................................................................5 Sample Preparation Solutions ............................................................................................................................................................................7 Integrated Solutions ........................................................................................................................................................................................ 10 Separation Solutions ....................................................................................................................................................................................... 11 VETERINARY DRUGS IN FOOD ......................................................................................................................................................14 β2-Agonists in Pork and Pig Liver Tissues ....................................................................................................................................................... 15 Aminoglycoside Antibiotics in Meat and Milk ................................................................................................................................................ 17 Avermectins in Meal and Milk Using QuEChERS .............................................................................................................................................. 19 Chloramphenicol in Honey ............................................................................................................................................................................... 21 Dexamethasone in Pork .................................................................................................................................................................................... 22 Enrofloxacin (Baytril) in Chicken ..................................................................................................................................................................... 23 Multi-Residue Determination of Veterinary Drugs in Edible Muscle Tissues ................................................................................................... 25 Multi-Residue Determination of Veterinary Drugs in Milk ............................................................................................................................... 27 Nitrofurans in Honey ....................................................................................................................................................................................... 29 Nitrofurans in Tissues ...................................................................................................................................................................................... 31 Penicillin G in Pork .......................................................................................................................................................................................... 33 Penicillins, Tetracyclines, and Sulfonamides in Milk ...................................................................................................................................... 34 Spiramycin in Pork ........................................................................................................................................................................................... 35 Steroid Hormones in Meat and Milk Using QuEChERS ..................................................................................................................................... 37 Strepromycin in Honey ................................................................................................................................................................................... 39 Sulfonamide Antibacterials in Milk ................................................................................................................................................................. 40 Tetracyclines and Sulfonamides in Milk .......................................................................................................................................................... 42 Tetracyclines in Honey .................................................................................................................................................................................... 43 PESTICIDES AND CONTAMINANTS ................................................................................................................................................45 Acrylamide in Fried Potato Products ............................................................................................................................................................... 46 Aflatoxins in Corn, Cereals, and Almonds ...................................................................................................................................................... 47 Aflatoxins in Produce Samples ........................................................................................................................................................................ 48 Bisphenols A, B, and E in Baby Food and Infant Formula Using QuEChERS ..................................................................................................... 49 Bisphenol A in Infant Formula Using QuEChERS .............................................................................................................................................. 51 Carbamates in Fruits and Vegetables............................................................................................................................................................... 53 Carbendazim and Other Conazole Fungicides in Orange Juice ........................................................................................................................ 54 Diquat and Paraquat in Drinking Water ........................................................................................................................................................... 57 Malachite Green in Fish (HPLC/UV)................................................................................................................................................................... 59 Malachite Green in Fish (UPLC/MS/MS) ............................................................................................................................................................ 60 Melamine and Cyanuric Acid in Infant Formula Using HPLC ........................................................................................................................... 62 Melamine and Cyanuric Acid in Infant Formula Using UPLC ........................................................................................................................... 64 Melamine and Cyanuric Acid in Infant Formula Using LC/MS/MS ................................................................................................................... 66 Microcystins in Natural Waters ........................................................................................................................................................................ 68 Multi-residue Analysis of Pesticides in Grain and Beans ................................................................................................................................ 69 Multi-residue Analysis of Pesticides in Vegetables and Fruits ........................................................................................................................ 70 Multi-residue LC/MS/MS Determination of 52 Non-gas Chromatography Amenable Pesticides and Metabolites in Fruits and Vegetables ... 71 [ 3 ] Multi-residue Analysis of Pesticides by QuEChERS in: .................................................................................................................................... 72 Avocado by GC/MS .................................................................................................................................................................................. 72 Avocado by LC/MS/MS ............................................................................................................................................................................ 73 Avocado and Grapes by GC/MS .............................................................................................................................................................. 74 Baby Food by UPLC/MS/MS ..................................................................................................................................................................... 75 Baby Food by UPLC/MS/MS ..................................................................................................................................................................... 76 Flour by GC/MS ....................................................................................................................................................................................... 77 Flour by UPLC/MS/MS ............................................................................................................................................................................. 78 Grapes by GC/MS ....................................................................................................................................................................................
Recommended publications
  • Analytical Standards for Human Exposure Analysis
    ENVIRONMENTAL STANDARDS Cambridge Isotope Laboratories, Inc. isotope.com Analytical Standards for Human Exposure Analysis Human Personal Care Industrial Products Pollution Dermal Inhalation Ingestion Food Tobacco Products Drinking Water Pharmaceuticals Cambridge Isotope Laboratories, Inc. North America: 1.800.322.1174 [email protected] | International: +1.978.749.8000 [email protected] | fax: 1.978.749.2768 | isotope.com Cambridge Isotope Laboratories, Inc. | Analytical Standards for Human Exposure Analysis Analytical Standards for Human Exposure Analysis Exposomics is the study of the exposome and is a field that has been gaining attention as researchers focus not only on identifying contaminants present in the environment, but their effects on humans. The exposome encompasses an individual’s lifetime exposure to internal and external stresses, including environmental, dietary, and metabolic factors, to name a few. Cambridge Isotope Laboratories, Inc. (CIL) has and continues to produce standards that are used in many leading biomonitoring research projects, such as the US Centers for Disease Control and Prevention (CDC) “National Health and Nutrition Examination Survey (NHANES)” and the Japan National Institute for Environmental Studies (NIES) “Japan Environment and Children’s Study (JECS).” The CDC’s NHANES program is focused on assessing the health and nutritional status of both children and adults in the United States. There are several studies involved in this program, which is notable in that both interviews and physical examinations are factored in when compiling data. The first NHANES study was conducted from 1971-1975 and subsequent studies are continuing to this day. Additional information about the NHANES program can be found at www.cdc.gov/nchs/nhanes/index.htm.
    [Show full text]
  • Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware
    molecules Article Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware , Ingo Ebner * y , Steffi Haberer, Stefan Sander, Oliver Kappenstein , Andreas Luch and Torsten Bruhn y Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; [email protected] (S.H.); [email protected] (S.S.); [email protected] (O.K.); [email protected] (A.L.); [email protected] (T.B.) * Correspondence: [email protected]; Tel.: +49-30-18412-27403 These authors contributed equally to this work. y Academic Editor: Roland Franz Received: 26 June 2020; Accepted: 31 July 2020; Published: 10 August 2020 Abstract: The release of melamine and formaldehyde from kitchenware made of melamine resins is still a matter of great concern. To investigate the migration and release behavior of the monomers from melamine-based food contact materials into food simulants and food stuffs, cooking spoons were tested under so-called hot plate conditions at 100 ◦C. Release conditions using the real hot plate conditions with 3% acetic acid were compared with conditions in a conventional migration oven and with a release to deionized water. Furthermore, the kinetics of the release were studied using Arrhenius plots giving an activation energy for the release of melamine of 120 kJ/mol. Finally, a correlation between quality of the resins, specifically the kind of bridges between the monomers, and the release of melamine, was confirmed by CP/MAS 13C-NMR measurements of the melamine kitchenware. Obviously, the ratio of methylene bridges and dimethylene ether bridges connecting the melamine monomers during the curing process can be directly correlated with the amount of the monomers released into food.
    [Show full text]
  • Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards Solutions for a Greener World Introduction
    Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards Solutions for a Greener World Introduction Priority Pollutant, Endocrine Disruptor, and Chemical Contaminant Standards isotope.com Pharmaceutical and Personal Care Product Halogenated and Substituted Benzene Standards and Phenol Standards Concern about environmental and human exposure to Many industrial and consumer products are composed of pharmaceuticals and personal care products (PPCPs) has grown chemicals that contain halogenated or substituted benzene significantly. This classification encompasses a broad range of or phenol functional groups. Resistant to decomposition and chemicals, ranging from antibiotics to hormones to pesticides. metabolism, these chemicals may persist even after the parent One common theme among these groups is the need for molecule has undergone partial decomposition, or they may high-quality isotopically labeled standards to strengthen the exist as a product or an industrial byproduct. The increased analysis of PPCPs in difficult matrices such as sewage sludge use of brominated compounds is expected to lead to more and wastewater. CIL, with guidance from leading laboratories brominated benzenes and phenols in the environment, and around the world, works diligently to produce representative the continued presence of chlorinated compounds ensures standards for the analysis of PPCPs. that chlorinated benzenes and phenols will be found in the environment for years to come. Food and Drinking Water Analysis Standards Bisphenol Standards Increased attention to possible contamination of food and Bisphenol A (BPA) is a synthetic compound that has long been water has caused analysts to broaden the scope of trace food used in the production of polycarbonate plastics and epoxy and water testing by IDMS.
    [Show full text]
  • WHO Guidelines for Indoor Air Quality : Selected Pollutants
    WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest).
    [Show full text]
  • Annexure Iii
    ANNEXURE III DETAILS OF PRODUCTION AND MANUFACTURING PROCESS 1. RSF Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of Formaldehyde into the clean vessel, followed by Urea and Glyoxal 40% and diethylene glycol. The temperature is increased to 60-80 C under constant stirring. The process is continued for 5-6 hours. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product. Chemical Reaction Material Balance Input Output Formaldehyde 0.40 RSF Urea 0.20 Reaction Vessel 1.00 Intermediate Glyoxal 0.40 Total 1.00 Total 1.00 Process Flow Diagram M/S. Dystar India Pvt. Ltd., Plot No. 3002/A,GIDC Ankleshwar, Bharuch (GJ) 2. NFF-T Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of glyoxal 40%and water into the clean vessel under constant stirring. Cool the vessel and add N, N-dimethyl urea until homogenous mixture is achieved. The temperature is maintained below ambient temperature and reaction is further continued for 2-4 hours under catalytic concentration of citric acid. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product.
    [Show full text]
  • Recommendation on Perfluorinated Compound Treatment Options for Drinking Water
    Recommendation on Perfluorinated Compound Treatment Options for Drinking Water New Jersey Drinking Water Quality Institute Treatment Subcommittee June 2015 Laura Cummings, P.E., Chair Anthony Matarazzo Norman Nelson, P.E. Fred Sickels Carol T. Storms Background At the request of the Commissioner of the New Jersey Department of Environmental Protection the Drinking Water Quality Institute (DWQI) is working to develop recommended Maximum Contaminant Levels (MCL) for three long-chain perfluorinated compounds (PFC): Perfluorononanoic acid (PFNA), Perfluorooctanoic acid (PFOA) and Perfluorooctanesulfonic acid (PFOS). The Treatment Subcommittee of the Drinking Water Quality Institute is responsible for identifying available treatment technologies or methods for removal of hazardous contaminants from drinking water. The subcommittee has met several times over the last year beginning in July 2014 to discuss and investigate best available treatment options for the long-chain (8 – 9 carbon) PFCs identified above. The subcommittee decided to research and report on treatment options for all three compounds, as the treatment options are not expected to differ from compound to compound due to their similar properties (e.g. persistence, water solubility, similar structure, strong carbon-fluorine bonds, and high polarity). This approach contrasts with the other two subcommittees which will address the three compounds separately. The subcommittee has gathered and reviewed data from several sources in order to identify widely-accepted and well-performing strategies for removal of long-chain PFCs, including use of alternate sources. This report is intended to present the subcommittee’s findings. At this time, there are no Federal drinking water standards for PFNA, PFOA or PFOS; however in 2009 the United State Environmental Protection Agency (USEPA, 2009) established a Provisional Health Advisory (PHA) level of 0.4 µg/L for PFOA and 0.2 µg/L PHA for PFOS for short-term exposure.
    [Show full text]
  • UNITED NATIONS Stockholm Convention on Persistent Organic Pollutants Technical Paper on the Identification and Assessment Of
    UNITED NATIONS SC UNEP/POPS/POPRC.8/INF/17 Distr.: General 15 August 2012 English only Stockholm Convention on Persistent Organic Pollutants Persistent Organic Pollutants Review Committee Eighth meeting Geneva, 15–19 October 2012 Item 5 (g) of the provisional agenda* Technical work: assessment of alternatives to perfluorooctane sulfonic acid in open applications Technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications Note by the Secretariat 1. In paragraph 6 of decision SC-5/5, the Conference of the Parties to the Stockholm Convention requested the Secretariat, subject to the availability of resources, to commission a technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications for consideration by the Persistent Organic Pollutants Review Committee at its eighth meeting. 2. That technical paper has been prepared, with financial support provided by the Government of Norway, on the basis of the terms of reference and an outline developed by the Committee at its seventh meeting. It is set out in the annex to the present note, where it is presented without formal editing. * UNEP/POPS/POPRC.8/1. K1282361 110912 UNEP/POPS/POPRC.8/INF/17 Annex Technical paper on the identification and assessment of alternatives to the use of perfluorooctane sulfonic acid in open applications 2 UNEP/POPS/POPRC.8/INF/17 Table of contents Executive summary.........................................................................................................................................................
    [Show full text]
  • Production and Characterization of Melamine-Formaldehyde Moulding
    International Journal of Advanced Academic Research | Sciences, Technology and Engineering | ISSN: 2488-9849 Vol. 6, Issue 2 (February 2020) PRODUCTION AND CHARACTERIZATION OF MELAMINE- FORMALDEHYDE MOULDING POWDER BY BALOGUN, Ayodeji Timothy REG. NO.: 98/6907EH Department of Chemical Engineering, School of Engineering and Engineering Technology, Federal University of Technology Minna, Nigeria. 26 International Journal of Advanced Academic Research | Sciences, Technology and Engineering | ISSN: 2488-9849 Vol. 6, Issue 2 (February 2020) CHAPTER ONE INTRODUCTION Amino resins are product of polymeric reaction of amino compound with aldehyde especially formaldehyde by a series of addition and condensation reaction. The reaction between formaldehyde and amino compound to form methyl derivatives of the later which on heating condenses to form hard, colourless transparent resin, when cured or heat set, the amino resins are more properly called amino plastics. 1.1 Background to the Study Melamine, the amino group in the production of melamine-formaldehyde is manufactured from coal, limestone and air, we do not indeed use coal as an ingredient but coke, its derivatives. It is obtained together with coal gas and coal tar when bituminous coal is heated in a by-product oven. Lime, another important reactant in the production of melamine is obtained by heating limestone in a kiln to liberate carbon dioxide with nitrogen to form calcium cyan amide which on further reaction with water and acid forms cynamide from which dicyandiamide is obtained by treatment with alkaline. Finally, dicyandiamide is heated with ammonia and methanol to produced melamine. Production of formaldehyde involves the reaction of coke with superheated steam to form hydrogen and carbon monoxide when these two gases are heated under high pressure in the presence of chromic oxide and zinc oxide or some other catalyst, methanol is formed.
    [Show full text]
  • Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment
    Investigation of Levels of Perfluorinated Compounds in New Jersey Fish, Surface Water, and Sediment New Jersey Department of Environmental Protection Division of Science, Research, and Environmental Health SR15-010 June 18, 2018 Updated April 9, 2019 Lead Investigators: Sandra M. Goodrow, Ph.D., Bruce Ruppel, Lee Lippincott, Ph.D., Gloria B. Post, Ph.D., D.A.B.T. 1 Executive Summary Per- and polyfluorinated substances (PFAS) are used in the manufacture of useful products that impart stain resistance, water resistance, heat resistance and other desirable properties. PFAS are also used in various Aqueous Film Forming Foams (AFFF) that are used in fire-fighting. These substances are in wide use today, found at industrial sites that use or manufacture them and at military bases, airports and other areas known for fire-fighting activities. A subset of PFAS, perfluorinated compounds (PFCs), have fully fluorinated carbon chains as their backbone, and their extremely strong carbon-fluorine bonds makes them very resistant to degradation. When released to the environment, PFCs persist indefinitely and can travel distances from their source in surface water, groundwater, or in the atmosphere. PFAS are considered “emerging contaminants” because additional information on their presence and toxicity to ecosystems and humans continues to become available. The Division of Science, Research and Environmental Health (DSREH) performed an initial assessment of 13 PFAS, all of which are perfluorinated compounds (PFCs), at 11 waterways across the state. Fourteen surface water and sediment samples and 94 fish tissue samples were collected at sites along these waterways. The sites were selected based on their proximity to potential sources of PFAS and their likelihood of being used for recreational and fishing purposes.
    [Show full text]
  • Scientific Documentation
    Scientific Documentation A1378, Aspartame, Powder, NF Not appropriate for regulatory submission. Please visit www.spectrumchemical.com or contact Tech Services for the most up‐to‐date information contained in this information package. Spectrum Chemical Mfg Corp 769 Jersey Avenue New Brunswick, NJ 08901 Phone 732.214.1300 Ver4.05 27.July.2020 A1378, Aspartame, Powder, NF Table of Contents Product Specification Certificate of Analysis Sample(s) Safety Data Sheet (SDS) Certification of Current Good Manufacturing Practices (cGMP) Manufacturing Process Flowchart Source Statement BSE/TSE Statement Allergen Statement EU Fragrance Allergen Statement GMO Statement Melamine Statement Nitrosamine Statement Animal Testing Statement Organic Compliance Statement Shelf Life Statement Other Chemicals Statement Elemental Impurities Statement Residual Solvents Statement General Label Information – Sample Label General Lot Numbering System Guidance Specification for Aspartame, Powder, NF (A1378) Item Number A1378 Item Aspartame, Powder, NF CAS Number 22839-47-0 Molecular Formula C14H18N2O5 Molecular Weight 294.31 MDL Number Synonyms APM ; N-L-alpha-Aspartyl-L-phenylalanine 1-Methyl Ester Test Specification Min Max ASSAY (DRIED BASIS) 98.0 102.0 % TRANSMITTANCE @430 nm 0.95 SPECIFIC ROTATION [a]D +14.5 to +16.5° LOSS ON DRYING 4.5 % RESIDUE ON IGNITION 0.2 % ELEMENTAL IMPURITIES: LEAD AS REPORTED CADMIUM (Cd) AS REPORTED ARSENIC (As) AS REPORTED MERCURY (Hg) AS REPORTED 5-BENZY-3,6-DIOXO-2-PIPERAZINEACETIC ACID 1.5 % CHROMATOGRAPHIC PURITY
    [Show full text]
  • Chemical Contaminates of Meat and Meat Products Which Threaten Human Health Isam T
    Chemical Contaminates of Meat and Meat Products which Threaten Human Health Isam T. Kadim Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, PO Box 34 Al-Khoud, Muscat, Sultanate of Oman ABSTRACT The priorities, which concern meat and meat products consumption today, are food safety issues and meat quality. Humans around the world are exposed to chemical contaminants during their life time. Among the thousands of existing contaminates, some are persistent and remain in the environment for years. The variation in measurable levels depends mainly on the fact that some are synthesized as industrial products, whereas others are released accidentally, as by-products, or given to animals as growth promoters or as prophylactic or therapeutic agents. The measurement of these contaminants requires a complex procedure including sample extraction, sample clean-up, and physico-chemical analysis after chromatographic separation. Contaminants such as organochlorine pesticides, heavy metals, microbes, melamine, hormones, antibiotic, and other feed additives are often measured in various types of matrices during food safety programs, environmental monitoring, and epidemiological studies. Serious health problems including cancer, kidney diseases, disarray and other diseases in humans might be related to food contaminates. According to the World Health Organization (WHO), 1.8 million people died from diarrhea related diseases in 2005. Children and developing fetuses are generally at greater risk from exposure to different chemicals. A great number of these cases might be attributed to contaminate found on food. More than 90% of human exposure to harmful materials is due to consumption of contaminated food items such as meat, milk and dairy products, as well as fish and derived products.
    [Show full text]
  • Chemicals Americas
    Chemicals in the Americas November 30, 2017 The Houston Club, Houston TX www.bdlaw.com/2017ChemicalsConference Global Influences on National Chemical Laws Russ LaMotte, Managing Principal, Beveridge & Diamond www.bdlaw.com/2017ChemicalsConference Goals • Identify key global KEY TAKEAWAYS drivers of chemicals Your takeaways policy here • Flag opportunities to track and influence www.bdlaw.com/2017ChemicalsConference 3 Agenda 1. Global Outlook 2. European Union & REACH: Global Impacts KEY TAKEAWAYS 3. Multilateral Treaties Your takeaways here − Stockholm Convention on Persistent Organic Pollutants − Rotterdam Convention on Prior Informed Consent 4. Other Pressure Points − UN Environment Assembly (UNEA) − Strategic Approach to International Chemicals Management (SAICM) www.bdlaw.com/2017ChemicalsConference 4 New Section/Subsection Divider OptionGlobal 2 – Picture Outlook Background Global Chemical Policy Initiatives International Orgs Key National Regimes OECD European Union WHO United States (TSCA) FAO Canada APEC Japan UNEA Australia China SAICM CA/WA/OR/MN UNECE (GHS) Multilateral Treaties NGOs IPEN Stockholm (PBTs) Greenpeace (“detox”) Rotterdam PIC SIN (hazardous chemicals trade) Retailers/Purchasers Basel (hazardous Walmart waste) Target Montreal Protocol WERCs (ODS and HFCs) Green procurement Minimata Mercury Market deselection Restricted Chemicals Lists Global Chemical Policy Initiatives International Orgs Key National Regimes OECD European Union WHO United States (TSCA) FAO Canada APEC Japan UNEA Australia China SAICM CA/WA/OR/MN
    [Show full text]