In Various Parts of the World Are Not Given by the Weather Bureau, Nor As Far As I Know by Any European Government

Total Page:16

File Type:pdf, Size:1020Kb

In Various Parts of the World Are Not Given by the Weather Bureau, Nor As Far As I Know by Any European Government in various parts of the world are not given by the Weather Bureau, nor as far as I know by any European government. They cannot be deduced from the records of the ordinary anemometer, and anemometers especially devised to give these data are expensive and not wholly reliable. The only information regarding the velocities of the wind in tornadoes are mere guesses. It was thought that a simple and inexpensive device which would give at least an approximate idea of them would be of value. I sent a description of such a plan to the editor of the Scientific Amer- ican of which he wrote an account, 1924, 288. It consists merely of a set of hollow metallic cylinders either of lead or iron, all of exactly the same size, but with walls of different thickness. Small cylinders could consist merely of tin boxes laden with different materials ranging in specific gravity from feathers to alternate layers of wood and lead. At present I am merely partly filling the boxes with bird shot. The cyl- inders are arranged on a base which will trip them if they are blown over by the wind, and are tied by cords to prevent their rolling away. The pressure of the overturn is measured later by a horizontal spring balance. I sent the suggestion to the Weather Bureau, but the Washington authorities thought it was not practicable, so I made a model out of tin boxes such as were formerly used by the Kodak Co. in sending their films to the tropics, and it worked very well for the winds up to thirty miles an hour, which was the highest velocity measured. From 1924, when the apparatus was constructed, until the present day we have not had a single hurricane in Jamaica. November hurricanes are scarce, and the last one occurred just twenty years ago, but at the present time we are recovering from a rather severe one. I started to set up my apparatus, but found in the meantime it had all gone to pieces, and by the time I had got it properly in order the hurricane was over. However, I set it up, and it recorded a velocity of one gust of 17 miles. The formula for the reduction of the results is given in Mark's Engineer's Handbook, 1248, and doubtless in other similar publications. My idea for tornado measurements would be to use hollow iron cylinders 12 inches high and 5 inches in diameter, or 25 cm. by 10 for a universal standard. In case a dozen such sets could be set up in some of our middle western states I have no doubt but that in a few years we might really get some idea of the actual velocity of the wind in an active tornado. It would cer- tainly be of interest.—William H. Pickering, Mandeville, Jamaica, B. W. I., November 9, 1932. TORNADO CLOUDS IV^uch attention has been given to tornado clouds the past few years and many photographs have been published, including photos in series, showing the development of these storms and the accompanying cloud formations. Published literature on tornadoes enumerates many shapes, the fun- nel-shape being the general type. Other forms reported are sheaf- shaped, rope-like, serpent-like, cone-shaped, elephant trunk shaped, hour glass, truncated cone, inverted cone, basket-shaped and wine glass. Dense rolling, boiling effects and clouds converging from opposite direc- Unauthenticated | Downloaded 09/28/21 11:59 AM UTC tions are often reported preceding a tornado. Occasionally tornadoes are reported without a distinct funnel cloud, but only a lowering of the main ceiling as a violent storm passes. Nothing is offered in most in- stances explaining the cause of the cloud forms except that they accom- pany a violent whirl. The same processes form tornado clouds that form other clouds, the condensation of atmospheric moisture due to lowering the temperature below the dew point. Their shape and action are largely determined by the movements and locations of a supercooled mass of air through an- other mass of air with high humidities and tem'peratures. The tornado cloud forms around the core of the whirl or spin. The air in the core of the whirl has been supercooled by attenuation, or rarefaction, pro- duced by mechanically diminished pressure, since the air is drawn away from the center of the whirl by centrifugal force. The diminished pressure in the whirl is proved by barometer readings and explosive effects observed on buildings located near or in the path of tornadoes. The vortex of an approaching tornado observed before the formation of the funnel cloud is quite interesting. It shows clouds rushing and converging towards a central point and disappearing as if being drawn up into the heavens. If the vortex continues and increases its angular velocity, the sky opens at the center and the observer reports "A hole in the sky," with the clouds revolving around an open space. This hap- pens before the core of the whirl below has been cooled enough to pro- duce a cloud sheath, and the observer sees through the transparent walls of the whirl into the space above. This phenomenon is rarely reported because the funnel cloud usually forms promptly and observers are too alarmed to give it attention. This feature is similar to the one reported by an observer in Kansas reporting conditions inside of a tornado funnel cloud from a cyclone cellar seeing clouds and debris whirling around the inner walls of the cloud sheath. This incident is reported on pages 205- 206, M. W. R. Vol. 58, 1930. The first funnel cloud forms are usually inverted cones not reaching the earth. The cloud formations extend lower as the storm proceeds. Whirls may extend to the earth without the cloud sheath following, since whirls with revolving debris have been reported without the cloud sheath. Greater cooling in the upper sections than in the lower sections of the whirl would explain this feature. The earlier funnel clouds extending to the earth are usually slender forms like a rope, serpent or the stem of a wine glass. The cloud sheet is thin and clean looking, appearing sometimes like a fog or vapor. This indicates that condensation has just started. As the cooling process pro- ceeds, the cloud sheet becomes denser and blacker and is often fouled by ascending debris. The larger, broader, blacker, and denser tornado clouds are characteristic of the later history of an individual tornado. Funnel clouds are sometimes obscured by rain. Absence of funnel clouds during the history of a tornado is explained in various ways. Opposing parallel currents contribute largely to the maintenance of a whirl, and anything which disturbs their position or velocity would tend to interrupt it and the cloud forming processes. The Unauthenticated | Downloaded 09/28/21 11:59 AM UTC whirl may also be broken up by topography. The progressive movement of a tornado contributes to breaking up of the funnel clouds; slow forward movement of the storm would favor formation of the whirls. This process is similar to the formation of fracto-cumulus on a windy day. An interesting example of this process is shown in the Tri-state tornado of March, 1925. The progressive velocity of this storm was 57 miles per hour in Missouri, 59 in Illinois, and 68 in Indiana. The few observations reported of a funnel cloud in the early history of storm and its almost total absence in the latter part was a subject of comment by officials discussing the storm.—T. G. Shipmctn, U. S. Weather Bureau, Daven- port, Iowa. DAILY AIRPLANE WEATHER OBSERVATION OF OCTOBER 31, 1932, DALLAS, TEXAS The pilot takes off at the usual time—3.30 a. m. A windshift is due shortly, Can he make the hour and a half flight before it arrives? The plane climbs for an hour, only two thousand feet more to go. Lightning is closing in from all directions. Suddenly the ship falls out of the climb. It is in a violent down draft. The wind-shift has struck. The pilot dives the plane to the southeast to try to get out of the grip of the elements. The rate of climb meter registers fourteen hundred feet per minute descent. The motor is roaring out twenty-six hundred revo- lutions per minute. Very suddenly the rate of climb meter changes to zero although the plane is still in the diving attitude. Out of the corners of his eyes the pilot notes that the wings are still with him—hardly expected. The pilot now takes a terrific beating. Even though he is holding the joy stick with both hands it pounds his legs until they are painfully sore. The blind flying instruments are jumping so much that it is guess-work to read them. It is impossible to hear the radio beam signals with the radio. The pilot thinks he is somewhere east of Dallas. He is now close to the ground and looking for a light. There is a very heavy rain in progress. It looks as if buckets of water were being poured against the windshield. The pilot turns on his landing lights trying to see the ground. The lights run out a few feet and are cut off sharp. The pilot comes down every few minutes until the altimeter reads zero. (The pressure trace on the Weather Bureau Meteorograph bears this out. He couldn't have been more than a very few feet from the ground several times.) However, the pilot can't see a thing.
Recommended publications
  • Soaring Weather
    Chapter 16 SOARING WEATHER While horse racing may be the "Sport of Kings," of the craft depends on the weather and the skill soaring may be considered the "King of Sports." of the pilot. Forward thrust comes from gliding Soaring bears the relationship to flying that sailing downward relative to the air the same as thrust bears to power boating. Soaring has made notable is developed in a power-off glide by a conven­ contributions to meteorology. For example, soar­ tional aircraft. Therefore, to gain or maintain ing pilots have probed thunderstorms and moun­ altitude, the soaring pilot must rely on upward tain waves with findings that have made flying motion of the air. safer for all pilots. However, soaring is primarily To a sailplane pilot, "lift" means the rate of recreational. climb he can achieve in an up-current, while "sink" A sailplane must have auxiliary power to be­ denotes his rate of descent in a downdraft or in come airborne such as a winch, a ground tow, or neutral air. "Zero sink" means that upward cur­ a tow by a powered aircraft. Once the sailcraft is rents are just strong enough to enable him to hold airborne and the tow cable released, performance altitude but not to climb. Sailplanes are highly 171 r efficient machines; a sink rate of a mere 2 feet per second. There is no point in trying to soar until second provides an airspeed of about 40 knots, and weather conditions favor vertical speeds greater a sink rate of 6 feet per second gives an airspeed than the minimum sink rate of the aircraft.
    [Show full text]
  • More Observations of Small Funnel Clouds and Other Tubular Clouds
    3714 MONTHLY WEATHER REVIEW VOLUME 133 PICTURE OF THE MONTH More Observations of Small Funnel Clouds and Other Tubular Clouds HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 14 March 2005, in final form 20 May 2005) ABSTRACT In this brief contribution, photographic documentation is provided of a variety of small, tubular-shaped clouds and of a small funnel cloud pendant from a convective cloud that appears to have been modified by flow over high-altitude mountains in northeast Colorado. These funnel clouds are contrasted with others that have been documented, including those pendant from high-based cumulus clouds in the plains of the United States. It is suggested that the mountain funnel cloud is unique in that flow over high terrain is probably responsible for its existence; other types of small funnel clouds are seen both over elevated, mountainous terrain and over flat terrain at lower elevations. 1. Introduction which the benign funnel clouds occur so that if they are observed, severe weather warnings are not issued. Fur- Bluestein (1994) and others (e.g., Doswell 1985, p. thermore, the small funnel clouds are of interest in their 107; McCaul and Blanchard 1990) have documented, in own right because their dynamics are not well under- the plains of the United States, small funnel clouds pen- stood, and they have not been discussed in the litera- dant from convective clouds whose updrafts appear to ture to the much greater extent that the dynamics of be rooted above the boundary layer. Above many of tornadoes have (e.g., Davies-Jones 1986).
    [Show full text]
  • The Lagrange Torando During Vortex2. Part Ii: Photogrammetry Analysis of the Tornado Combined with Dual-Doppler Radar Data
    6.3 THE LAGRANGE TORANDO DURING VORTEX2. PART II: PHOTOGRAMMETRY ANALYSIS OF THE TORNADO COMBINED WITH DUAL-DOPPLER RADAR DATA Nolan T. Atkins*, Roger M. Wakimoto#, Anthony McGee*, Rachel Ducharme*, and Joshua Wurman+ *Lyndon State College #National Center for Atmospheric Research +Center for Severe Weather Research Lyndonville, VT 05851 Boulder, CO 80305 Boulder, CO 80305 1. INTRODUCTION studies, however, that have related the velocity and reflectivity features observed in the radar data to Over the years, mobile ground-based and air- the visual characteristics of the condensation fun- borne Doppler radars have collected high-resolu- nel, debris cloud, and attendant surface damage tion data within the hook region of supercell (e.g., Bluestein et al. 1993, 1197, 204, 2007a&b; thunderstorms (e.g., Bluestein et al. 1993, 1997, Wakimoto et al. 2003; Rasmussen and Straka 2004, 2007a&b; Wurman and Gill 2000; Alexander 2007). and Wurman 2005; Wurman et al. 2007b&c). This paper is the second in a series that pre- These studies have revealed details of the low- sents analyses of a tornado that formed near level winds in and around tornadoes along with LaGrange, WY on 5 June 2009 during the Verifica- radar reflectivity features such as weak echo holes tion on the Origins of Rotation in Tornadoes Exper- and multiple high-reflectivity rings. There are few iment (VORTEX 2). VORTEX 2 (Wurman et al. 5 June, 2009 KCYS 88D 2002 UTC 2102 UTC 2202 UTC dBZ - 0.5° 100 Chugwater 100 50 75 Chugwater 75 330° 25 Goshen Co. 25 km 300° 50 Goshen Co. 25 60° KCYS 30° 30° 50 80 270° 10 25 40 55 dBZ 70 -45 -30 -15 0 15 30 45 ms-1 Fig.
    [Show full text]
  • Use of the European Severe Weather Database to Verify Satellite-Based Storm Detection Or Nowcasting
    USE OF THE EUROPEAN SEVERE WEATHER DATABASE TO VERIFY SATELLITE-BASED STORM DETECTION OR NOWCASTING Nikolai Dotzek1,2, Caroline Forster1 1 Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany 2 European Severe Storms Laboratory, Münchner Str. 20, 82234 Wessling, Germany Abstract Severe thunderstorms constitute a major weather hazard in Europe, with an estimated total damage of € 5-8 billion each year. Yet a pan-European database of severe weather reports in a homogeneous data format has become available only recently: the European Severe Weather Database (ESWD). We demonstrate the large potential of ESWD applications for storm detection and forecast or now- casting/warning verification purposes. The study of five warm-season severe weather days in Europe from 2007 and 2008 revealed that up to 47% of the ESWD reports were located exactly within the polygons detected by the Cb-TRAM algorithm for three different stages of deep moist convection. The cool-season case study of extratropical cyclone “Emma” on 1 March 2008 showed that low-topped winter thunderstorms can provide a challenge for satellite storm detection and nowcasting adapted to warm-season storms with high, cold cloud tops. However, this case also demonstrated how ESWD reports alone can still be valuable to identify the hazardous regions along the cold front of the cyclone. 1. INTRODUCTION Severe thunderstorms, with their attendant strong winds, hail, flooding, and tornadoes, are common phenomena in many European countries, leading to a total damage estimate of 5 to 8 billion euros per year (source: Munich Re Group). Extreme events like an F4 tornado in France and an F3 downburst in Austria in 2008 exemplify these damage totals.
    [Show full text]
  • Glossary of Severe Weather Terms
    Glossary of Severe Weather Terms -A- Anvil The flat, spreading top of a cloud, often shaped like an anvil. Thunderstorm anvils may spread hundreds of miles downwind from the thunderstorm itself, and sometimes may spread upwind. Anvil Dome A large overshooting top or penetrating top. -B- Back-building Thunderstorm A thunderstorm in which new development takes place on the upwind side (usually the west or southwest side), such that the storm seems to remain stationary or propagate in a backward direction. Back-sheared Anvil [Slang], a thunderstorm anvil which spreads upwind, against the flow aloft. A back-sheared anvil often implies a very strong updraft and a high severe weather potential. Beaver ('s) Tail [Slang], a particular type of inflow band with a relatively broad, flat appearance suggestive of a beaver's tail. It is attached to a supercell's general updraft and is oriented roughly parallel to the pseudo-warm front, i.e., usually east to west or southeast to northwest. As with any inflow band, cloud elements move toward the updraft, i.e., toward the west or northwest. Its size and shape change as the strength of the inflow changes. Spotters should note the distinction between a beaver tail and a tail cloud. A "true" tail cloud typically is attached to the wall cloud and has a cloud base at about the same level as the wall cloud itself. A beaver tail, on the other hand, is not attached to the wall cloud and has a cloud base at about the same height as the updraft base (which by definition is higher than the wall cloud).
    [Show full text]
  • NOTES and CORRESPONDENCE a Funnel Cloud in a Convective
    2786 MONTHLY WEATHER REVIEW VOLUME 136 NOTES AND CORRESPONDENCE A Funnel Cloud in a Convective Cloud Line to the Rear of a Surface Cold Front HOWARD B. BLUESTEIN School of Meteorology, University of Oklahoma, Norman, Oklahoma (Manuscript received 24 August 2007, in final form 28 November 2008) ABSTRACT This brief case study describes the unusually benign environment in which a funnel cloud formed along a line of convective towers during the summer in Kansas. The parent cloud line was solitary and very narrow, yet organized on the mesoscale. The cloud line appeared to be best correlated with a zone of horizontal temperature gradient to the northwest of cool (evaporatively produced) outflow from an area of precipitation located just to the rear of a cold front. Implications for forecasting such an event are noted. 1. Introduction common. To the best of the author’s knowledge, no comprehensive landspout climatology has appeared in Tornadoes are frequently associated with larger-scale the literature. One must identify days on which surface parent vortices, such as mesocyclones in supercells, and boundaries marked by vertical vorticity are likely loca- ordinary cells that are often in lines (Davies-Jones et al. tions for the initiation of nonsupercell convection, and 2001). Those that form in ordinary cells frequently de- then anticipate that landspouts may occur. rive their vorticity from preexisting vorticity in the On 19 August 2006, the author, while en route from boundary layer (Wakimoto and Wilson 1989; Lee and Boulder, Colorado, to Norman, Oklahoma, serendipi- Wilhelmson 1997), begin near the ground first and tously observed a relatively long-lived landspout funnel build upward, and look visually like many Florida wa- cloud pendant from a line of cumulus congestus in west- terspouts (Bluestein 1985; Brady and Szoke 1989); for ern Kansas, 13 km east of Hays, Kansas.
    [Show full text]
  • Tornadoes – Forecasting, Dynamics and Genesis
    Tornadoes – forecasting, dynamics and genesis Mteor 417 – Iowa State University – Week 12 Bill Gallus Tools to diagnose severe weather risks • Definition of tornado: A vortex (rapidly rotating column of air) associated with moist convection that is intense enough to do damage at the ground. • Note: Funnel cloud is merely a cloud formed by the drop of pressure inside the vortex. It is not needed for a tornado, but usually is present in all but fairly dry areas. • Intensity Scale: Enhanced Fujita scale since 2007: • EF0 Weak 65-85 mph (broken tree branches) • EF1 Weak 86-110 mph (trees snapped, windows broken) • EF2 Strong 111-135 mph (uprooted trees, weak structures destroyed) • EF3 Strong 136-165 mph (walls stripped off buildings) • EF4 Violent 166-200 mph (frame homes destroyed) • EF5 Violent > 200 mph (steel reinforced buildings have major damage) Supercell vs QLCS • It has been estimated that 60% of tornadoes come from supercells, with 40% from QLCS systems. • Instead of treating these differently, we will concentrate on mesocyclonic versus non- mesocyclonic tornadoes • Supercells almost always produce tornadoes from mesocyclones. For QLCS events, it is harder to say what is happening –they may end up with mesocyclones playing a role, but usually these are much shorter lived. Tornadoes - Mesocyclone-induced a) Usually occur within rotating supercells b) vertical wind shear leads to horizontal vorticity which is tilted by the updraft to produce storm rotation, which is stretched by the updraft into a mesocyclone with scales of a few
    [Show full text]
  • Storm Observation
    Storm Observation The Basics of Severe Thunderstorms and Tornadoes By Ethan Schisler Introduction • About Me: • Storm Chasing since 2003 • Have chased from Montana to Florida • Observed over 100 tornadoes • Several strong hurricanes • Blizzards • Ice Storms Goal: Minimize the risks and maximize the positives Introduction • Storm Observation Can Be: • Exciting • Rewarding • Awe Inspiring • Fun • And Informative • Storm Observation Can Also Be…. • Dangerous • Time Consuming • And even costly….. Goal: Minimize the risks and maximize the positives • EF0 to EF5 • EF0 – 60-85 mph • EF1 – 86-110 mph • EF2 – 111-135 mph • EF3 – 136-165 mph • EF4 – 166-200 mph • EF5 – 200+ mph Enhanced Fujita Scale Why Storm Spotting? • Limitations in Doppler Radar • Warning Verification • To gain additional knowledge July 19 2018: Marshalltown, IA -Large EF-3 Tornado impacts town -Up to 43 minutes lead time -Only minor injuries and no deaths –Attributed to advanced warning, radar, and storm spotters! Storm Observation: Equipment • Cell phone/computer with radar application • Radarscope (Iphone, Mac, Windows); PYKL3 (Android); GR Level 3 (Windows) • Reliable vehicle to get from point A to point B • A partner to navigate • Stay distraction free while driving to the target area or storms • Video camera or still camera for documentation • Road maps and weather radio • Cell phone data can be sketchy in rural areas…have a backup plan • Marginal Risk • Slight Risk • Moderate Risk • High Risk Storm Prediction Center Outlooks Basics of Storm Development • Instability •
    [Show full text]
  • Structures of Winter Mesoscale Convective Systems
    P4A.7 DOPPLER RADAR OBSERVATION OF WINTER TORNADOES OVER THE JAPAN SEA Fumiaki KOBAYASHI* National Defense Academy, Yokosuka, Japan 1. INTRODUCTION 7 mobile Doppler radars were set up along the Tornadoes (supercell tornadoes, landspouts and coastline. Some GSP sonde and wind profiler points water spouts) often occur in Japan. According to the made up the routine upper air observations. Also, geographical distribution, many tornadoes occurred missions of observation ships and aircrafts were along the coastline of the Pacific Ocean. On the planned during the core observation period. Figure other hand, tornadoes also reported on the Japan 1 shows the observation area at Mikuni Town, Fukui Sea Coast. Ishikawa Prefecture is the highest value Prefecture. The NDA Doppler radar was set up at of “the tornado probability” which is larger than that the coastline to make clear the fine structure of of several Prefectures on the Pacific side. MCSs and the precipitation process at the landing of Supercell tornadoes often occurred in Japan (e.g., snowclouds. GPS sonde was launched at every 3 or Kobayashi et al., 1986; Niino et al., 1993; Suzuki et 6-hour intervals. Surface weather stations were set al., 2000). However, the structure, morphology or up. Moreover, the Boundary Layer Radar and the mechanism of the tornadoes, which occurred over cloud radar (Kyoto Uni.), the C-band dual- the Japan Sea in winter, is unknown until now. We polarization Doppler radar (Hokuriku Electric Power call the tornadoes generated over the Japan Sea in Company) and the UHF Interferometer to observe winter season as “winter tornado” or “tornado with lightning strokes (Osaka Uni.) were also set up at snowcloud”.
    [Show full text]
  • Oz's Awesome Twister Activity Plan
    OZ’S AWESOME TWISTER CHALLENGE ACTIVITY Dorothy and Toto were whipped away from Kansas in a magical tornado and taken to Oz. But there is no place like home and they desperately want to go back to see Aunt Em and Uncle Henry. Today, your challenge is to create your own tornado. And maybe, your tornado can bring them safely back home. Video link: GETTING READY Summary: Active Time: Have you seen the movie The Wizard of Oz? In the movie, the main character • 20-30 minutes Dorothy and her dog, Toto, are carried away by a tornado and end up in a fantasy land called Oz. While tornadoes do not safely carry people to magical Total Project Time: places, they can be extremely dangerous and cause terrible damage. In this • 20-30 minutes activity, you will make your own tornado and explore how they form. Key Concepts: Weather, Vortex, Centripetal Force MATERIALS You will need: • Oz’s Awesome Twister Log Book pages (download or use your own notebook) • 2 mason jars of any size (jars or bottles with a tight fitting lids or caps such as an empty peanut butter or spaghetti sauce jar, or a plastic water bottle). Jars do not have to match in size or shape. • Water • Liquid dish soap • Sprinkles (optional) • Food coloring (optional) • Glitter (optional) BACKGROUND A tornado is a type of storm in which powerful winds form a column that reaches from a cloud down toward the ground. Tornadoes, also called twisters or cyclones, often form during very strong thunderstorms. A thunderstorm occurs when warm air near the ground meets cold air from above.
    [Show full text]
  • Weather Forecasting 7 Days Ahead
    Types of Severe Weather • Thunderstorms – Lightening – Thunder • Tornadoes • Hurricanes Thunderstorms • Lightning is an electric discharge that occurs between a posively charged area and a negavely charged area. Thunderstorms are very acve electrically. • Thunder is the sound that results from the rapid expansion of air along the lightning strike. Tornadoes • A tornado is a small, spinning column of air that has high wind speeds and low central pressure and that touches the ground. • A tornado starts out as a funnel cloud that pokes through the boom of a cumulonimbus cloud and hangs in the air. The funnel cloud becomes a tornado when it makes contact with Earth’s surface. Hurricanes • How a Hurricane Forms A hurricane begins as a group of thunderstorms moving over tropical ocean waters. Winds traveling in two different direcons meet and cause the storm to spin. • Damage Caused by Hurricanes Hurricanes can cause a lot of damage when they move near or on to land. Wind speeds of most hurricanes range from 120 to 150 km/h. Hurricanes El Nino • El Nino‐ a warm‐water event occurs in the tropical Pacific Ocean where winds shi & push warm surface water toward the west coast of South America • Occurs once every 2 to 7 years & cause dramac climate changes around the Pacific Ocean & nearby areas such as droughts, floods, & tornadoes • The only semi‐reliable way to predict an El Nino is to noce the rising surface temperatures of the tropical parts of the Pacific Ocean Weather Forecasng • Meteorologist‐ sciensts who study the causes of weather & try to predict it • Meteorologists use informaon from many sources including local weather observers, weather balloons, satellites, & weather staons around the world Radio-sonde Satellites Weather stations Radar Weather ship Supercomputer and weather buoys Aviation Forecaster National and International Shipping Global forecast services Forecast Services up to Weather forecasting 7 days ahead.
    [Show full text]
  • Extreme Weather: Hurricanes and Tornadoes | 1
    The Layered Earth | D4 Extreme Weather: Hurricanes and Tornadoes | 1 The relative intensity of a hurricane is categorized by a D4 – Extreme chart known as the Saffir-Simpson Scale. (See figure 1) Weather: Hurricanes A hurricane begins to lose its intensity after landfall. This is because it has lost its main source of energy: the heat and Tornadoes stored in the warm waters of the tropics. Severe thunderstorms sometimes produce violently Guiding Question rotating columns of air. When this whirling funnel of air touches the ground, it is known as a tornado. The funnel How are hurricanes and tornadoes formed? in a tornado spins rapidly around a very strong low pressure center. Tornadoes typically rotate in a counterclockwise Key Concepts direction in the northern hemisphere. Tornadoes usually form in spring and early summer • Severe weather conditions can result in atmospheric when atmospheric conditions often support the formation disturbances of great violence and intensity. of violent thunderstorms. Tornadoes form when wind • Hurricanes and tornadoes are violent storms that speed and direction change suddenly with height. In form around strong low pressure areas. the United States, the most tornado-prone country in the world, tornadoes usually form between April and July. Tornadoes are usually only about 100 m (330 ft) wide. Science Background They can, however, be extremely destructive because winds in a powerful tornado can reach speeds up to Hurricanes are intense tropical storms with a strong 480 km/h (300 mph). rotating wind pattern. All hurricanes have a low pressure center. Hurricanes must have wind speeds in excess of 119km/h (74 mph) in order to be classified as hurricanes.
    [Show full text]