Ecophysiological Needs of the Potential Biomass Crop Spartina Townsendii Grov
Total Page:16
File Type:pdf, Size:1020Kb
KOYRO & HUCHZERMEYER 123 Tropical Ecology 45(1): 123-139, 2004 ISSN 0564-3295 © International Society for Tropical Ecology Ecophysiological needs of the potential biomass crop Spartina townsendii Grov. HANS-WERNER KOYRO1 & BERNHARD HUCHZERMEYER2 1Institute for Plant Ecology, Justus Liebig University Gießen, Heinrich–Buff–Ring 26-32, D-35392, Giessen; 2Botany Institute, Hannover University, Herrenhäuser Str. 2, D-30 419 Hannover Abstract: The aim of this study was to determine the level of salinity tolerance of Spartina townsendii and to study the mechanisms by which this species survives salinity and the specific conditions at the intertidal zone. Therefore, Spartina was irrigated with five differ- ent saline levels ranging from nutrient solution (control) to 100% seawater (480 mM NaCl) in a “quick check” system (QCS). The salinity tolerance was measured on the basis of the two pa- rameters maximum yield, and gas exchange. a) The maximum yield of Spartina was reduced by 50% (C50-value) at 480 mM NaCl salinity. b) Gas exchange parameters such as net photo- synthesis (µmol * m-2 * s-1), stomatal conductance (mol * m-2 * s-1), transpiration (mol * m-2 * s-1), and water use efficiency of the photosynthesis (µmol CO2 * mmol-1 H2O) were lowest at 500 mM NaCl-salinity. The strategies employed by Townsend´s cordgrass for avoiding salt injury de- pend on adaptation to low water potential and high Na and Cl concentrations. Spartina has sufficient adjustment mechanisms even at high NaCl salinity suggesting that there was no reason for growth reduction by water deficit. The low external water potential was balanced e.g. by a decrease of the osmotic potential. Especially Na and Cl were accumulated in high con- centrations in the root and shoot. The main defence of Spartina townsendii to elevated salinity regimes is the activation of salt glands. These salt glands are working highly selective and eliminate relatively large quantities of salt by secretion to the leaf surface. However, the salt glands were neither able to balance the high burden especially of Na in the leaf tissues at the high salinity treatment, nor useful in maintaining a constant supply of essential elements such as K, Mg and Ca. The gap between a sufficient nutrient supply and NaCl accumulation grows with increasing salinity and seems to limit the salinity tolerance of Spartina by nutrient im- balance and/or ion toxicity. The high salinity tolerance and the ecological engineering of Spartina townsendii can produce various ecological (e.g. highly effective nutrient cycling of N, Fe and S) and economical (e.g. biomass crop) benefits. The QCS offers a reliable basis to define this species as a potentially useful cash crop halophyte. Resumen: El propósito de este estudio fue determinar el nivel de tolerancia a la salinidad de Spartina townsendii y estudiar los mecanismos que permiten a esta especie sobrevivir a la salinidad y a las condiciones específicas de la zona intermareal. Para ello, Spartina fue regada con cinco diferentes niveles salinos, variando desde solución de nutrientes (control) hasta agua de mar al 100% (480 mM NaCl) en un sistema de verificación rápida (QCS por sus siglas en in- glés). Las estrategias utilizadas por esta planta (conocida como ‘pasto cuerda de Townsend’) pa- ra evitar el daño por la sal dependen de la adaptación a un bajo potencial hídrico y a altas con- centraciones de Na y Cl. Spartina tiene suficientes mecanismos de ajuste, incluso con una alta salinidad de NaCl, lo que sugiere que no existe ninguna razón para una reducción del creci- miento debida a un déficit hídrico El bajo potencial hídrico externo estuvo balanceado, p.ej. por un decremento del. potencial osmótico. En especial, el Na y el Cl se acumularon en grandes concentraciones tanto en la raíz como en la parte aérea. La principal defensa de Spartina town- sendii contra regímenes de alta salinidad es la activación de glándulas de sal que eliminan can- 124 ECOPHYSIOLOGY OF SPARTINA TOWNSENDII tidades relativamente grandes de sal por secreción hacia la superficie foliar. La brecha entre una suficiente disponibilidad de nutrientes y la acumulación de NaCl crece conforme aumenta la salinidad y parece limitar la tolerancia a la salinidad de Spartina por un desequilibrio nutri- cional y/o por toxicidad de iones. La alta tolerancia a la salinidad y la ingeniería ecológica de Spartina townsendii pueden producir varios beneficios ecológicos (p.ej. un reciclaje muy eficien- te de N, Fe y S) y económicos (p.ej. cosecha de biomasa). El QCS ofrece una base confiable para definir a esta especie como una halófita potencialmente útil como cultivo comercial. Resumo: O objectivo deste estudo foi o de determinar o nível de tolerância da Spartina townsendii ao sal e estudar os mecanismos pelos quais esta espécie sobrevive à salinidade e as condições específicas na zona entre marés. Nesse sentido a Spartina foi irrigada com cinco níveis diferentes de solução salina num intervalo que variou entre uma solução nutriente (con- trolo) a 100% de água do mar (480 mM NaCl) utilizando um sistema de “avaliação rápida” (QCS). As estratégias empregues por “Townsend’s cordgrass” para evitar os danos do sal de- pende na adaptação ao baixo potencial hídrico e elevada concentração em Na e Cl. A Spartina tem mecanismos de adaptação suficientes, mesmo para valores elevados de NaCl, sugerindo que não há razão para a redução do crescimento pelo deficit hídrico. O baixo potencial hídrico externo foi balanceado, p.e. por um decréscimo do potencial osmótico. O Na e o Cl foram espe- cialmente acumulados em elevadas concentrações nas raízes e nos lançamentos. A defesa prin- cipal da Spartina townsendii para regiões salinas elevadas é a activação das glândulas de sal as quais eliminam quantidades relativamente elevadas de sal por secreção da superfície das folhas. A diferença entre uma oferta nutritiva suficiente e a acumulação de NaCl cresce com o acréscimo de salinidade e parece limitar a tolerância à salinidade da Spartina por um dese- quilíbrio nos nutrientes e/ou toxicidade iónica. A elevada tolerância ao sal e o “engineering” ecológico da Spartina townsendii pode produzir vários benefícios ecológicos (p.e. reciclagem al- tamente efectiva de nutrientes quanto ao N, Fe e S) e económicos (p.e. produção de biomassa). O QCS oferece uma base fiável para definir esta espécie como uma cultura halófita potencial- mente útil. Key words: Spartina townsendii, cash crop halophytes, gas exchange, NaCl salinity, nutrients, “quick check” system, salinity tolerance, water relations, water potential. Introduction increasing shortage of living space and availability of freshwater. It is, therefore, necessary to develop Background information sustainable systems in presently waste or deserted areas. Besides the naturally occurring salt-affected The economic basis of the existence of more soils, the extent of man-made salinized soils as a than 1 billion of people in 100 countries is threat- consequence of improper irrigation management is ened by the expansion of the deserts. Every year 6 significant (Choukr-Allah 1996). It should be noted million ha arable land are lost for agricultural use that salinity problems are liable to spread as irriga- in developing countries. Reasons for the desertifica- tion is intensified and irrigated areas are extended tion are climatic changes, intensive pasture, defor- (Choukr-Allah & Harrouni 1996). Therefore, a new estation and unsuited irrigation practices. The ex- concept of saline irrigation had to be developed and tension of irrigated agriculture and the intensive the research into management practices with salt use of water resources combined with high rates of resistant species became increasingly essential. The evaporation in arid and semiarid regions, have in- technology is available now to use unconventional evitably given rise to the problems of salinity in the water resources or habitats for salinity-tolerant soil and in underground water. Among the most plant production systems for many purposes. pressing problems for the growing mankind are the KOYRO & HUCHZERMEYER 125 Introduction of halophytes component of new coastal management practices and useful in developing strategies for the stabili- The standard approach to this problem would zation of deteriorating marshes (in marsh restora- be to increase salinity salt tolerance of conven- tion projects; Lieth 1999; Miller et al. 2001; tional crop plants, but the gained yield is generally Pezeshki & DeLaune 1997; Simas et al. 2001), low (Koyro & Huchzermeyer 1999b). The alterna- - can tolerate oil spills (its growth is even tive approach is to make use of the plants that al- stimulated by crude oils) and are hosts of microbial ready have the required level of salt tolerance, and degraders promoting oil spill cleanup in coastal are still productive at high external salinity levels: wetlands (Lin et al. 1999; Lindau et al. 1999; Ny- the halophytes. Halophytes are plants, able to man 1999; Pezeshki et al. 2001; Smith & Proffitt complete their life cycle in a substrate rich in NaCl 1999), (Lieth 1999; Schimper 1891). This substrate offers - support biodiversity and the production of advantages for obligate halophytes in the competi- marsh fauna (e.g. fishes, benthic invertebrates; tion with salt sensitive-plants (glycophytes). Angradi et al. 2001; Connolly 1999; Riera et al. Some of 2600 species of halophytes occur in sa- 1999; San Leon et al. 1999; Waide et al. 1999; line coastal environment and inland deserts. In- Weinstein et al. 2000), creasing attention has been paid to research and - support bioremediation of recalcitrant com- development of halophytes and several authors plex carbohydrate biopolymers by marine bacteria proposed utilising undiluted seawater on a large (Ensor et al. 1999). scale for irrigation (Koyro & Huchzermeyer 1999a; Spartina itself Lieth & Al Masoom 1993). The sustainable use of - is a potential biomass crop (e.g. grown for halophytic plants is a promising approach to valor- fodder; Beale et al. 1999; Lieth 1999) in poor soil ize strongly salinised zones unsuitable for conven- conditions, tional agriculture and mediocre waters (Boer & - is highly effective in nutrient cycling (e.g.