RUSSIAN NUCLEAR POWER 2018 the Bellona Foundation Is an International Environmental NGO Based in Norway

Total Page:16

File Type:pdf, Size:1020Kb

RUSSIAN NUCLEAR POWER 2018 the Bellona Foundation Is an International Environmental NGO Based in Norway RUSSIAN NUCLEAR POWER 2018 The Bellona Foundation is an international environmental NGO based in Norway. Founded in 1986 as a direct action protest group, Bellona has become a recognized technology and solution- oriented organizations with offices in Oslo, Brussels, Kiev, St. Petersburg and Murmansk. Altogether, some 60 engineers, ecologists, nuclear physicists, economists, lawyers, political scientists and journalists work at Bellona. Environmental change is an enormous challenge. It can only be solved if politicians and legislators develop clear policy frameworks and regulations for industry and consumers. Industry plays a role by developing and commercializing environmentally sound technology. Bellona strives to be a bridge builder between industry and policy makers, working closely with the former to help them respond to environmental challenges in their field, and proposing policy measures that promote new technologies with the least impact on the environment. Authors: Oskar Njaa Nils Bøhmer Charles Digges © Bellona 2018 Design: Bellona Cover photo and credit: Nuclear Power Plant Novovoronezh, Rosenergoatom. Disclaimer: Bellona endeavors to ensure that the information disclosed in this report is correct and free from copyrights, but does not warrant or assume any legal liability or responsibility for the accuracy, completeness, interpretation or usefulness of the information which may result from the use of this report. Contact: [email protected] Web page: www.bellona.org TABLE OF CONTENTS 1. THE PLACE OF NUCLEAR POWER IN RUSSIA ...................................................................................... 5 2. THE NUCLEAR POWER PLANTS OF RUSSIA ........................................................................................ 6 3. BRIDGING THE GAP: LIFETIME EXTENSIONS AND FUTURE NPPS ......................................... 8 3.1. Roadmap to new reactors: Current nuclear building plans ..................................................... 9 3.2. Russia’s pursuit of fast neutron reactors ...................................................................................... 12 4. RUSSIAN NUCLEAR POWER ABROAD .................................................................................................. 14 5. COUNTRIES BYING ROSATOM-BUILT NPPS ..................................................................................... 17 5.1. Bangladesh ................................................................................................................................................ 17 5.2. Belarus ........................................................................................................................................................ 18 5.3. China ............................................................................................................................................................ 19 5.4. Egypt ............................................................................................................................................................ 20 5.5. Finland ........................................................................................................................................................ 20 5.6. Hungary ...................................................................................................................................................... 21 5.7. India ............................................................................................................................................................. 22 5.8. Iran ............................................................................................................................................................... 22 5.9. Turkey ......................................................................................................................................................... 23 5.10. Vietnam ...................................................................................................................................................... 25 5.11. Bulgaria ...................................................................................................................................................... 25 6. ROSATOM’S COOPERATION WITH OTHER COUNTRIES ............................................................ 27 6.1. South America .......................................................................................................................................... 27 Argentina .................................................................................................................................................... 27 Bolivia .......................................................................................................................................................... 27 Brazil ............................................................................................................................................................ 28 Paraguay ..................................................................................................................................................... 28 6.2. Africa............................................................................................................................................................ 28 The Republic of Congo ............................................................................................................................ 28 Ethiopia ....................................................................................................................................................... 29 Namibia ....................................................................................................................................................... 29 Nigeria ......................................................................................................................................................... 29 Rwanda ........................................................................................................................................................ 30 South Africa ............................................................................................................................................... 30 Sudan ............................................................................................................................................................ 30 Zambia ......................................................................................................................................................... 31 6.3. Asia ............................................................................................................................................................... 31 Cambodia .................................................................................................................................................... 31 Japan............................................................................................................................................................. 31 Philippines .................................................................................................................................................. 32 3 6.4. Middle East ................................................................................................................................................ 32 Jordan ........................................................................................................................................................... 32 Saudi Arabia .............................................................................................................................................. 32 6.5. Former Soviet countries ...................................................................................................................... 33 Uzbekistan .................................................................................................................................................. 33 6.6. Recent developments ........................................................................................................................... 33 7. CLIMATE GOALS AND RUSSIAN NUCLEAR POWER ...................................................................... 34 8. RESEARCH AND DEVELOPMENT ............................................................................................................ 37 8.1. Decentralizing power production with… NPPs?......................................................................... 37 8.2. Technologies in the pipeline ............................................................................................................... 39 8.3. Closed fuel cycle ....................................................................................................................................... 40 8.4. Nuclear Science and Technology Centers abroad ...................................................................... 44 9. GOVERNMENT AGENCIES AND THEIR ROLE .................................................................................... 45 9.1. NO RAO ........................................................................................................................................................ 45 9.2. RosRAO ........................................................................................................................................................ 45 9.3. The process of waste handling – put simply ...............................................................................
Recommended publications
  • Developing an Intergovernmental Nuclear Regulatory Organization
    Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Bachelor of Science in Mechanical Engineering, May 1988 Seattle University, Seattle, WA Master of Science in Technical Management, May 1997 The Johns Hopkins University, Baltimore, MD Master of Arts in International Science and Technology Policy, May 2009 The George Washington University, Washington, DC A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 10, 2020 Dissertation directed by Kathryn Newcomer Professor of Public Policy and Public Administration The Columbian College of Arts and Sciences of The George Washington University certifies that Clarence Eugene Carpenter, Jr. has passed the Final Examination for the degree of Doctor of Philosophy as of November 26, 2019. This is the final and approved form of the dissertation. Developing an Intergovernmental Nuclear Regulatory Organization: Lessons Learned from the International Civil Aviation Organization, the International Maritime Organization, and the International Telecommunication Union Clarence Eugene Carpenter, Jr. Dissertation Research Committee: Kathryn Newcomer, Professor of Public Policy and Public Administration, Dissertation Director Philippe Bardet, Assistant Professor,
    [Show full text]
  • Survey of Design and Regulatory Requirements for New Small Reactors, Contract No
    Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 RSP-0299 Canadian Nuclear Safety Commission R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report July 3, Released for Brian Gihm 0 Victor Snell Jim Sarvinis Milan Ducic 2014 Use Victor Snell Date Rev. Status Prepared By Checked By Approved By Approved By Client - CNSC H346105-0000-00-124-0002, Rev. 0 Page i © Hatch 2015 All rights reserved, including all rights relating to the use of this document or its contents. Canadian Nuclear Safety Commission - R550.1 Survey of Design and Regulatory Requirements for New Small Reactors, Contract No. 87055-13-0356 Final Report - July 3, 2014 Executive Summary The objectives of this report are to perform a design survey of small modular reactors (SMRs) with near-term deployment potential, with a particular emphasis on identifying their innovative safety features, and to review the Canadian nuclear regulatory framework to assess whether the current and proposed regulatory documents adequately address SMR licensing challenges. SMRs are being designed to lower the initial financing cost of a nuclear power plant or to supply electricity in small grids (often in remote areas) which cannot accommodate large nuclear power plants (NPPs). The majority of the advanced SMR designs is based on pressurized water reactor (PWR) technology, while some non-PWR Generation IV technologies (e.g., gas-cooled reactor, lead-cooled reactor, sodium-cooled fast reactor, etc.) are also being pursued.
    [Show full text]
  • Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels No
    156 pages, 9mm IAEA Nuclear Energy Series IAEA Nuclear No. No. NP-T-3.11 No. No. Steels Vessel Pressure Reactor in Effects Embrittlement Irradiation of Assessment Plants: Power Nuclear in Vessels Pressure Reactor of Integrity IAEA Nuclear Energy Series No. NP-T-3.11 Basic Integrity of Reactor Principles Pressure Vessels in Nuclear Power Plants: Objectives Assessment of Irradiation Embrittlement Guides Effects in Reactor Pressure Vessel Steels Technical Reports INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–101709–3 ISSN 1995–7807 P1382_covI-IV.indd 1 2009-05-05 11:14:48 INTEGRITY OF REACTOR PRESSURE VESSELS IN NUCLEAR POWER PLANTS: ASSESSMENT OF IRRADIATION EMBRITTLEMENT EFFECTS IN REACTOR PRESSURE VESSEL STEELS The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GUATEMALA OMAN ALBANIA HAITI PAKISTAN ALGERIA HOLY SEE PALAU ANGOLA HONDURAS PANAMA ARGENTINA HUNGARY PARAGUAY ARMENIA ICELAND PERU AUSTRALIA INDIA PHILIPPINES AUSTRIA INDONESIA POLAND AZERBAIJAN IRAN, ISLAMIC REPUBLIC OF PORTUGAL BANGLADESH IRAQ QATAR BELARUS IRELAND REPUBLIC OF MOLDOVA BELGIUM ISRAEL ROMANIA BELIZE ITALY RUSSIAN FEDERATION BENIN JAMAICA SAUDI ARABIA BOLIVIA JAPAN SENEGAL BOSNIA AND HERZEGOVINA JORDAN SERBIA BOTSWANA KAZAKHSTAN SEYCHELLES BRAZIL KENYA SIERRA LEONE BULGARIA KOREA, REPUBLIC OF SINGAPORE BURKINA FASO KUWAIT SLOVAKIA CAMEROON KYRGYZSTAN SLOVENIA CANADA LATVIA SOUTH AFRICA CENTRAL AFRICAN LEBANON SPAIN REPUBLIC LIBERIA SRI LANKA CHAD LIBYAN ARAB JAMAHIRIYA SUDAN CHILE LIECHTENSTEIN SWEDEN CHINA LITHUANIA
    [Show full text]
  • E-Mail: [email protected]
    ATOMENERGOMASH JSC Nuclear and Power Engineering Address: 28/3 Ozerkovsakaya nab., Moscow, 115184 Telephone: +7(495) 668-20-93 Fax: +7(495) 668-20-95 Website: http://www.aem-group.ru/en/ E-mail: [email protected] www.aem-group.ru/en/ 3 JSC Atomenergomash ABOUT US Аtomenergomash JSC (AEM, Сompany, Group) is a machine building division of ROSATOM State Atomic Energy Corporation. One of the leading Russian power engineering companies, a supplier of efficient integrated solutions for nuclear and thermal power plants, natural gas and petrochemical industry, shipbuilding, hydroelectricity, demineralization, water treatment, water purification and special steel market. FIGURES AND FACTS ATOMENERGOMASH • The key developer and equipment manu- • AEM was established in 2006 as part of facturer for the reactor facility of the ROSATOM State Atomic Energy Corporation. water-water energetic reactor (VVER). • The Holding includes about 20 • The key developer and equipement man- power engineering companies, R&D, ufacturer of fast nuclear reactors (FNR). manufacturing, construction and • Equipment manufacturer for the turbine construction companies located in Russia, island of NPP with VVER. Ukraine, the Czech Republic, and Hungary. • The only Russian manufacturer of steam • The Holding’s equipment is installed in generators and main circulation pumps more than 20 countries. for Russian-built NPPs. • 14% of global Nuclear Power Plants (NPP) • The key developer and manufacturer of and 40% of Thermal Power Plants (TPP) marine reactor plants for the Navy and in Russia and the former Soviet Union nuclear icebreakers. countries run our equipment. • One of the largest manufacturers of power plant boilers and Heat Recovery Steam Generator (HRSG) for medium and large Combined Cycle Gas Turbine (CCGT) units.
    [Show full text]
  • A Comparison of Imaging Modalities for the Diagnosis of Osteomyelitis
    A comparison of imaging modalities for the diagnosis of osteomyelitis Brandon J. Smith1, Grant S. Buchanan2, Franklin D. Shuler2 Author Affiliations: 1. Joan C Edwards School of Medicine, Marshall University, Huntington, West Virginia 2. Marshall University The authors have no financial disclosures to declare and no conflicts of interest to report. Corresponding Author: Brandon J. Smith Marshall University Joan C. Edwards School of Medicine Huntington, West Virginia Email: [email protected] Abstract Osteomyelitis is an increasingly common pathology that often poses a diagnostic challenge to clinicians. Accurate and timely diagnosis is critical to preventing complications that can result in the loss of life or limb. In addition to history, physical exam, and laboratory studies, diagnostic imaging plays an essential role in the diagnostic process. This narrative review article discusses various imaging modalities employed to diagnose osteomyelitis: plain films, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, bone scintigraphy, and positron emission tomography (PET). Articles were obtained from PubMed and screened for relevance to the topic of diagnostic imaging for osteomyelitis. The authors conclude that plain films are an appropriate first step, as they may reveal osteolytic changes and can help rule out alternative pathology. MRI is often the most appropriate second study, as it is highly sensitive and can detect bone marrow changes within days of an infection. Other studies such as CT, ultrasound, and bone scintigraphy may be useful in patients who cannot undergo MRI. CT is useful for identifying necrotic bone in chronic infections. Ultrasound may be useful in children or those with sickle-cell disease. Bone scintigraphy is particularly useful for vertebral osteomyelitis.
    [Show full text]
  • Report of JSC Atomenergomash
    JSC ATOMENERGOMASH 2016 INTEGRATED ANNUAL REPORT ar2016.aem-group.ru JSC Atomenergomash provides access to the integrated interactive version of the annual report for 2016 for its stakeholders. This product allows easy information presentation of the main annual results of the Company, as well as the access to additional data, which was not included in the print version in a analysis-friendly format. i – Links to online version GRI – GRI indicators Approved by the Board of Directors on May 26, 2017 Preliminarily approved by the Chief Executive Officer on May 19, 2017 Chief Executive Officer Andrey Nikipelov JSC ATOMENERGOMASH THE COMPANY IN BRIEF Contents 10 YEARS OF PROGRESS ............................................................................................................................4 THE COMPANY IN BRIEF ..............................................................................................................................6 6. ENVIRONMENTAL IMPACT ...................................................................................................................66 2016 PERFORMANCE HIGHLIGHTS ............................................................................................................8 6.1. Ecological management ................................................................................................................................................................................................66 6.2. Emissions and Wastes .....................................................................................................................................................................................................70
    [Show full text]
  • Annual Report JSC CONCERN ROSENERGOATOM for 2009
    Annual Report JSC CONCERN ROSENERGOATOM FOR 2009 Safety Effi ciency Responsibility Safety Effi ciency Responsibility JSC Concern Rosenergoatom Annual report for 2009 Content I. GENERAL INFORMATION 1. Preamble 7 1.1. On the Annual Report 7 2. Statements of top management of Rosenergoatom 8 2.1. Statement of the Chairman of the Board of Directors of Rosenergoatom 8 2.2. Statement of the General Director of Rosenergoatom 9 3. General information on Rosenergoatom 10 4. Key corporate events in 2009 11 5. Mission of Rosenergoatom 13 6. Management 13 6.1. Management structure 13 6.2. Management methods and corporate policy 24 II. CORE BUSINESS 7. Strategy 29 7.1. Positions of Rosenergoatom within the industry 29 7.2. Strategy of Rosenergoatom 30 7.3. Rosenergoatom’s medium-term development objectives and tasks (2009–2011) 30 7.4. Key performance indicators of Rosenergoatom 31 7.5. Key risks associated with Rosenergoatom’s operations 31 8. Rosenergoatom. Facts and fi gures 32 8.1. Generating capacities of Rosenergoatom 34 8.2. Electricity generation at Russian NPPs 44 8.3. Maintenance and repairs 45 8.4. Lifetime extension of NPP units 46 8.5. Production growth program 46 8.6. Construction of new power units 47 9. Priority areas of operations of Rosenergoatom 49 9.1. Production and marketing activities of Rosenergoatom 49 9.2. Investments 50 9.3. Innovation and competitive growth 50 III. CORPORATE RESPONSIBILITY 10. Safety 53 10.1. Safety indicators 53 10.2. Ensuring nuclear and radiation safety and non-proliferation of nuclear materials 55 4 JSC Concern Rosenergoatom 10.3.
    [Show full text]
  • Security Operational Skills 2 (Tracing).P65
    Unit - 4 K Operating Skill for handling Natural Disasters Structure 4.1 Objectives 4.2 Introduction 4.3 Operating Skill for natural and nuclear disasters 4.4 Accident Categories 4.5 Nuclear and radiation accidents and incidents 4.6 Geological disasters 4.7 Operating Skills for handling Mines and other Explosive Devices 4.8 Operating Skills for handing hijacking situation (other than an airline hijacking 4.9 Operating skills for antivehicle theft operations 4.10 Operating skills for facing a kidnapping or hostage situation 4.11 Operating Skill for handling coal mines and other explosive devices 4.12 Hostage Rights : Law and Practice in Throes of Evolution 4.12.1 Terminology 4.13 Relative Value of Rights 4.14 Conflict of Rights and Obligations 4.15 Hong Kong mourns victims of bus hijacking in the Philoppines 4.16 Rules for Successful Threat Intelligence Teams 4.16.1 Tailor Your Talent 4.16.2 Architect Your Infrastructure 4.16.3 Enable Business Profitability 4.16.4 Communicate Continuously 4.17 Construction Safety Practices 4.17.1 Excavation 4.17.2 Drilling and Blasting 4.17.3 Piling and deep foundations 234 4.18 Planning 4.18.1 Steps in Planning Function 4.18.2 Characteristics of planning 4.18.3 Advantages of planning 4.18.4 Disadvantages of planning 4.1 Objectives The following is a list of general objectives departments should consider when creating an Information Disaster Prevention and Recovery Plan: O Ensure the safety of all employees and visitors at the site/facility O Protect vital information and records O Secure business sites
    [Show full text]
  • Isotope Production Potential at Sandia National Laboratories: Product, Waste, Packaging, and Transportation*
    Isotope Production Potential at Sandia National Laboratories: Product, Waste, Packaging, and Transportation* A. J. Trennel Transportation Systems Department *- *-, o / /"-~~> Sandia National Laboratories** ' J Albuquerque, NM 87185 O Q T » Abstract The U.S. Congress directed the U.S. Department of Energy to establish a domestic source of molybdenum-99, an essential isotope used in nuclear medicine and radiopharmacology. An Environmental Impact Statement for production of 99Mo at one of four candidate sites is being prepared. As one of the candidate sites, Sandia National Laboratories is developing the Isotope Production Project. Using federally approved processes and procedures now owned by the U.S. Department of Energy, and existing facilities that would be modified to meet the production requirements, the Sandia National Laboratories' Isotope Project would manufacture up to 30 percent of the U.S. market, with the capacity to meet 100 percent of the domestic need if necessary. This paper provides a brief overview of the facility, equipment, and processes required to produce isotopes. Packaging and transportation issues affecting both product and waste are addressed, and the storage and disposal of the four low-level radioactive waste types generated by the production program are considered. Recommendations for future development are provided. This work was performed at Sandia National Laboratories, Albuquerque, New Mexico, for the U.S. Department of Energy under Contract DE-AC04-94AL85000. A U.S. Department of Energy facility. DISTRPJTO OF THIS DOCUMENT IS UNLIMITED #t/f W A8 1 fcll PROJECT NEED AND BACKGROUND Nuclear medicine is an expanding segment of today's medical and pharmaceutical communities. Specific radioactive isotopes are vital, with molybdenum-99 (99Mo) being the most important medical isotope.
    [Show full text]
  • Russia Highly Appreciates the Activity of IAEA and Its Role in Promoting "Peaceful Atom” in Every Aspects of Life
    Unofficial translation Dear colleagues, ladies and gentlemen! Russia highly appreciates the activity of IAEA and its role in promoting "peaceful atom” in every aspects of life. We strongly support Agency's activities in the field of nuclear science and technology, participate in virtually all areas of activity and provide our knowledge, experience, educational opportunities and experimental facilities to promote this important industry. We are convinced that nuclear and radiation technologies, based on solid foundation of science, will make a significant contribution to achievement of Sustainable Development Goals of mankind, including problems of climate and power supply. The strategic goal of Russian nuclear industry is to ensure the innovative development of our country based on the expansion of application of nuclear technologies in various sectors of the economy. The focus is traditionally set on the development of nuclear energy technologies. We are convinced that the future of nuclear energy is inextricably linked with the closure of the nuclear fuel cycle. Russian scientists have already made a significant contribution to the development and commercialization of this direction, demonstrating to the world the operability and attractiveness of its key element - fast neutron reactor of 4th generation. This was the basis for the development and implementation of the Breakthrough project with a demonstration of technical solutions for existing challenges, nuclear power industry faces today: critical decision to increase the safety of nuclear power generation is the transition to “natural safety” reactor systems and the resolution of issues related to the management of spent nuclear fuel and radioactive waste. Undoubtedly, one of the components of new technological platform is the development of low and medium power sector of nuclear power industry.
    [Show full text]
  • Consensus Nomenclature Rules for Radiopharmaceutical Chemistry – Setting the Record Straight
    ÔØ ÅÒÙ×Ö ÔØ Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight Heinz H. Coenen, Antony D. Gee, Michael Adam, Gunnar Antoni, Cathy S. Cutler, Yasuhisa Fujibayashi, Jae Min Jeong, Robert H. Mach, Thomas L. Mindt, Victor W. Pike, Albert D. Windhorst PII: S0969-8051(17)30318-9 DOI: doi: 10.1016/j.nucmedbio.2017.09.004 Reference: NMB 7967 To appear in: Nuclear Medicine and Biology Received date: 21 September 2017 Accepted date: 22 September 2017 Please cite this article as: Coenen Heinz H., Gee Antony D., Adam Michael, Antoni Gunnar, Cutler Cathy S., Fujibayashi Yasuhisa, Jeong Jae Min, Mach Robert H., Mindt Thomas L., Pike Victor W., Windhorst Albert D., Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight, Nuclear Medicine and Biology (2017), doi: 10.1016/j.nucmedbio.2017.09.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Consensus nomenclature rules for radiopharmaceutical chemistry – setting the record straight Recommended guidelines, assembled by an international and inter- society working group after extensive consultation with peers in the wider field of nuclear chemistry and radiopharmaceutical sciences. Heinz H. Coenen1*, Antony D. Gee2*, Michael Adam3, Gunnar Antoni4, Cathy S.
    [Show full text]
  • State Atomic Energy Corporation Rosatom Performance in 2018
    State Atomic Energy Corporation Rosatom Performance in 2018 State Atomic Energy Corporation Rosatom Performance in 2018 PERFORMANCE OF STATE ATOMIC ENERGY CORPORATION ROSATOM IN 2018 2 3 TABLE OF CONTENTS Chapter 7. Development of the Northern Sea Route 94 7.1. ROSATOM's Powers Related to the Development and Operation 97 Report Profile 4 of the Northern Sea Route 7.2. Performance of the Nuclear-Powered Icebreaker Fleet 97 and Development of the Northern Sea Route Chapter 1. Our Achievements 6 About ROSATOM 9 Chapter 8. Effective Management of Resources 100 Key Results in 2018 10 Key Events in 2018 11 8.1. Corporate Governance 102 Address by the Chairman of the Supervisory Board 12 8.2. Risk Management 109 Address by the Director General 13 8.3. Performance of Government Functions 116 Address by a Stakeholder Representative 14 8.4. Financial and Investment Management 119 Financial and Economic Results 15 8.5. ROSATOM's Production System 126 8.6. Procurement Management 128 8.7. Internal Control System 132 Chapter 2. Strategy for a Sustainable Future 16 8.8. Prevention of Corruption and Other Offences 134 2.1. Business Strategy until 2030 18 2.2. Sustainable Development Agenda 23 Chapter 9. Development of Human Potential 136 2.3. Value Creation and Business Model 27 and Infrastructure Chapter 3. Contribution to Global Development 32 9.1. Implementation of the HR Policy 138 9.2. Developing the Regions of Operation 150 3.1. Markets Served by ROSATOM 34 9.3. Stakeholder Engagement 158 3.2. International Cooperation 44 3.3. International Business 52 Chapter 10.
    [Show full text]